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Abstract—Previous analytical studies of unstructured P2P
resilience have assumed exponential user lifetimes and only con-
sidered age-independent neighbor replacement. In this paper, we
overcome these limitations by introducing a general node-isolation
model for heavy-tailed user lifetimes and arbitrary neighbor-se-
lection algorithms. Using this model, we analyze two age-biased
neighbor-selection strategies and show that they significantly
improve the residual lifetimes of chosen users, which dramatically
reduces the probability of user isolation and graph partitioning
compared with uniform selection of neighbors. In fact, the second
strategy based on random walks on age-proportional graphs
demonstrates that, for lifetimes with infinite variance, the system
monotonically increases its resilience as its age and size grow.
Specifically, we show that the probability of isolation converges to
zero as these two metrics tend to infinity. We finish the paper with
simulations in finite-size graphs that demonstrate the effect of this
result in practice.

Index Terms—Age-based selection, heavy-tailed lifetimes, node
isolation, peer-to-peer networks, user churn.

I. INTRODUCTION

R ESILIENCE of P2P networks under random user arrival
and departure (i.e., churn) has recently become an active

research area [15]–[20], [22], [32]. One of the primary metrics
of resilience is graph disconnection during which a P2P network
partitions into several nontrivial subgraphs and starts to offer
limited service to its users. However, as shown in [19], most par-
titioning events in well-connected P2P networks are single-node
isolations, which occur when the immediate neighbors of a node

fail before is able to detect their departure and then replace
them with other alive users. For such networks, node isolation
analysis has become the primary method for quantifying net-
work resilience in the presence of user churn.

Traditional analysis of node isolation [18], [19] focuses on
the effect of average neighbor-replacement delay , average
user lifetime , and fixed out-degree on the resilience of
the system. These results show that probability with which
each arriving user is isolated from the system during its lifetime
is proportional to , where . While
this result is asymptotically exact under exponential user life-
times and uniform neighbor selection, it remains to be investi-
gated whether stronger results can be obtained for heavy-tailed
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lifetimes observed in real P2P networks [1], [41] and/or nonuni-
form neighbor selection. We study these questions below.

A. Paper Structure and Contributions

The main focus of this paper is to understand node isola-
tion in the context of unstructured networks (such as Gnutella)
where neighbor selection is not constrained by fixed rules. As
in [18], we assume that each arriving user is assigned a random
lifetime drawn from some distribution and is given
initial neighbors randomly selected from the system. The user
then constantly monitors and replaces its neighbors to avoid iso-
lation from the rest of the system. Random replacement delay

is needed to detect the failure of an old neighbor and find a
new one from among the remaining alive users. Unlike [18], we
allow to come from any completely monotone1 distribution
(e.g., Pareto or Weibull), as long as , and neighbor
selection to be arbitrary, as long as the stationary distribution

of residual lifetimes of selected neighbors is known.
We first build a generic isolation model that allows computa-

tion of with arbitrary accuracy for any completely monotone
density function of residual lifetimes . This result is achieved
by replacing the distribution of with a hyper-exponen-
tial distribution, which can be performed with any accuracy, and
then solving the resulting Markov chain for the probability of
absorption into the isolation state before the user decides to
leave the system. While this model only admits a numerical
solution through matrix manipulation, it allows very accurate
computation of for very heavy-tailed cases when the expo-
nential upper bound [18] is rather loose. The
model is also necessary for studying isolation behavior of the
various neighbor-selection strategies examined in later parts of
the paper where simulations are impractical or impossible due
to the small values of .

The second part of this paper verifies the model of under
uniform neighbor replacement and analyzes its performance for
very heavy-tailed lifetimes (i.e., ). We show that,
as the age of the system becomes infinite and shape parameter

of Pareto user lifetime distribution approaches 1, the isolation
probability decays to zero proportionally to , which
holds for any number of neighbors and any search delay

, implying that such systems may achieve arbitrary resilience
without replacing any neighbors. In practice, however, is a
fixed number bounded away from 1 (common studies suggest
that is between 1.06 [1] and 1.09 [41]) and is finite, which
cannot guarantee high levels of robustness without neighbor re-
placement.

1A PDF ���� is completely monotone if derivatives � of all orders exist
and ���� � ��� � � for all � � � and � � � [8, p. 415].
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As an improvement over the uniform case, we next study the
so-called max-age neighbor selection [1], [17], [35], in which a
user samples uniformly random peers per link it creates and
selects the one with the largest current age to be its neighbor. We
show that larger values of lead to stochastically larger and
improve the expected remaining lifetimes of found neighbors by
a factor approximately proportional to for . For
example, increases as , increases
linearly in , and results in regardless of
as long as . We do not obtain a closed-form factor of re-
duction for compared to the purely uniform case, but note that
it is a certain monotonic function of . This does not change,
however, the qualitative behavior of under the no-replacement
policy and still requires to achieve for any fixed

.
While the max-age approach is viable and very effective

in general, it relies on the system’s ability to sample peers
uniformly randomly per created link. This can be accom-
plished using Metropolis-style random walks [46]; however,
this method requires overhead that is linear in and thus may
not scale well for large . To build a distributed solution that
requires only one sample per link, the last part of the paper pro-
poses a novel technique based on random walks over directed
graphs, in which the weight of in-degree edges at each node is
kept proportional to the age of the corresponding user. Under
these conditions, we derive a model for the residual distribution

and show that isolation probability converges to 0 for
any as system size and age , which
holds for any number of neighbors and any search delay

. Compared with the uniform and max-age cases, this is a
much stronger result that shows that, with just neighbor
and no replacement of failing neighbors, large P2P systems
with can guarantee arbitrarily low values of . We finish
the paper by studying in simulations the approach rate of to
0 and its effect in practice.

The remainder of this paper is organized as follows. Section II
introduces a generic isolation model for nonexponential life-
times and verifies it in simulations. In Section III, we formalize
max-age neighbor replacement and derive the corresponding
residual lifetime distributions. Section IV discusses random
walks on age-weighted graphs and studies the asymptotic effect
of on isolation probability. Section V discusses
related work, and Section VI concludes the paper.

II. GENERAL NODE ISOLATION MODEL

Here, we build a model for the probability that a node
becomes isolated due to all of its neighbors simultaneously

reaching the failed state during its lifetime.

A. Background

For the churn model, we adopt the conventions of [18], but
relax the assumptions of uniform neighbor selection and expo-
nential lifetimes. As in [18], we assume that each joining user

is assigned a random lifetime whose distribution is
known to our analysis (e.g., through an external measurement
process [1], [41]). Upon join, user finds initial neighbors and
then continuously monitors their presence in the system. Upon

failure, each neighbor is replaced with a random alive user cur-
rently in the system. Each neighbor is either alive (i.e., ON)
or dead (i.e., OFF) at any time . The random ON duration is
the residual lifetime of the neighbor from the instance it is se-
lected by until its departure. The random OFF duration is
search delay until a replacement is found. Note that residuals

depend on the neighbor-selection strategy [43] and should be
analyzed accordingly.

Denote by the number of neighbors of user at time
. We can then define the first-hitting time onto the isolation

state as

(1)

Note that specifies the duration before user becomes iso-
lated (i.e., loses all of its neighbors). The goal of this section is
to derive the node isolation probability , which
is the likelihood of becoming isolated before it voluntarily
decides to leave the system. For systems with nonexponential
user lifetimes, the out-degree process is not Markovian,
which makes closed-form derivation of very difficult. How-
ever, certain cases identified below can be solved with arbitrary
accuracy by replacing residual lifetimes and search delays with
their hyper-exponential equivalents.

The remainder of this section deals with constructing a con-
tinuous-time Markov chain that keeps track of ’s out-degree
under the hyper-exponential approximation and leads to very
accurate closed-form models of and .

B. Hyper-Exponential Approximation

Recall that the hyper-exponential distribution is a mix-
ture of exponential random variables with probability density
function (PDF) in the form of [42]

(2)

where for all and . The above distri-
bution can be interpreted as generating each exponential random
variable with probability . It is well known [7] that
any completely monotone density function can be repre-
sented with any desired accuracy using (2), i.e.,
as . In the analysis below, we leverage this property of
hyper-exponentials and the fact that Pareto and Weibull residual
PDFs are completely monotone. While some of the prior lit-
erature [7] has used as many as 14 exponentials to approxi-
mate Pareto , our analysis suggests that as few as three\are
usually sufficient for achieving very accurate results on (see
below).

Before we proceed with the derivations, it is useful to visu-
alize the meaning of hyper-exponential distributions in our life-
time model. Given that the PDF of neighbor residual lifetimes
is , imagine that there are different
types of neighbors, where residual lifetimes of peers of type
are exponentially distributed with rate for . When

requires a new neighbor, it selects a node of type with prob-
ability . Similarly, provided that the PDF of search delay
is , suppose that there are types of
searches that can be currently in progress. A search of type is
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instantiated by with probability and has duration exponen-
tially distributed with rate for .

Given that there are types of neighbors and types of search
processes, define to be a random process that counts the
number of ’s neighbors and searches of each type at time :

(3)

where is the number of ’s neighbors of type at time
for and is the number of searches in progress
of type at time for . Also note that ’s out-degree

is fully described by process . The
state space for is

(4)

where , , and
. As long as neighbor residual lifetimes and

search delays can be reduced to the hyper-exponential dis-
tribution, the resulting process can be viewed as a ho-
mogenous continuous-time Markov chain, as we show next.

Theorem 1: Given that the density function of residual life-
times and the density function of
search times , is a homoge-
neous continuous-time Markov chain with a transition rate ma-
trix given below.

Proof: Since neighbors of type are and search
processes of type are , the sojourn time in state

is exponential with rate

(5)

Observe that, when a neighbor dies, a search starts immedi-
ately and its properties are independent of those of the existing
searches or neighbor lifetimes. Conversely, when a search ends
and a new neighbor is found, the characteristics of this neighbor
are independent of any previous behavior of . This in-
dependence allows us to easily write transition probabilities be-
tween adjacent states of .

The first type of transition reduces by 1 in response to
the failure of one of ’s neighbors, which is equivalent to a jump
from state

(6)

to state

(7)

for any suitable . For simplicity of notation, we call the
above transition . The corresponding
probability that a neighbor of type dies and a search of type
starts is .

The second type of transition increases by 1 as a result
of finding a replacement neighbor, which corresponds to a jump
from state

(8)

to state

(9)

for any . The corresponding notation for this transition is
. The related probability that a search

process of type ends and finds a new neighbor of type before
any other event happens is .

By recognizing that the jumps behave like a discrete-time
Markov chain and the sojourn times at each state are indepen-
dent exponential random variables, we immediately conclude
that is a homogeneous continuous-time Markov chain
with a transition rate matrix , where

otherwise

(10)

are transition rates from to , which represent any suitable
states in the form of (4) that satisfy transition requirements on
the right-hand side of (10).

Using notation , the first-hitting time in (1) can now
be rewritten as

(11)

where is defined in (3). The next step is to obtain the
initial state distribution of and derive the PDF of the
first-hitting time based on the transition rate matrix in (10).
For small values of , the matrix can be easily represented in
memory and manipulated in software packages such as Matlab.
For example, when commonly used in this work, the
size of is 252 252 for and 792 792 for .

The initial state distribution is in form of

(12)

where each entry in the vector represents the probability that
the chain starts in state for all possible
permutations of variables and . Note, however, that the
only valid starting states are those in which the number of alive
neighbors is exactly and the number of searches in
progress is zero.

After rather straightforward manipulations, can be ob-
tained as follows.

Lemma 1: Valid starting states have initial probabilities

(13)

and all other states have initial probability 0.
Proof: See Appendix A.

Armed with this result, we next focus our attention on de-
riving .

C. Isolation Probability

Recall that denotes the set of all valid states (i.e., in the form
of (4) and satisfying all constraints following the equation). De-
note by

(14)
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the set of states with zero out-degree. Since we are only inter-
ested in the first-hitting time to any state in , it suffices to
assume that all states in are absorbing. Then, for each nonab-
sorbing state , its transition rate to is given by

(15)

where is the cell of matrix corresponding to transitions
from state to . We can then write in canonical form as

(16)

where for is a column vector rep-
resenting the transition rates to the absorbing set and

is the rate matrix obtained by
removing the rows and columns corresponding to states in
from . The following lemma shows that the PDF of is fully
determined by and .

Lemma 2: For residual lifetimes and search delays with
hyper-exponential distributions, the PDF of is given by

(17)

where is the initial state distribution in (13), is a matrix
of eigenvectors of , is a diagonal matrix,

is the th eigenvalue of , and and are in (16).
Proof: See Appendix B.

With Lemma 2 in hand, integrating using the distribu-
tion of user lifetimes immediately leads to the following the-
orem.

Theorem 2: For hyper-exponential residual lifetimes and
search delays, the probability of isolation is

(18)

where is a diagonal matrix with

(19)

is the CDF of user lifetimes, and all other parameters are
the same as in Lemma 2.

Proof: Note that, for node with lifetime , its isolation
probability is given by

(20)

where is the CDF of user lifetimes. Invoking Lemma 2 and
integrating using , we immediately obtain

(21)

which directly leads to (18).

Using rate matrix , vector , and (18), (19), the solution
to node isolation probability can be easily computed using
numerical packages such as MATLAB. We perform this task next.

D. Verification of Isolation Model

We examine the accuracy of (18) and (19) using the simplest
example of uniform selection. We first explore the exponential
case for comparison purposes and then derive the same metric
for Pareto lifetimes.

Lemma 3: For exponential and search delays
with a hyper-exponential density , the transition rate ma-
trix of is given by (10) with , , and

. Isolation probability is in the form of (18) where
(19) is simply

(22)

Proof: See Appendix C.
Our next theorem derives for Pareto lifetimes with the fol-

lowing CDF:

(23)

for shape parameter , scale parameter , and .
Denote by the residual lifetime of a uniformly random user
in the system. Assuming a sufficiently large system age , it
follows from [43] that the CDF of under uniform selection is
given by

(24)

It is clear from (24) that the PDF of Pareto residuals is com-
pletely monotone and thus can be fitted with its hyper-exponen-
tial equivalent. Invoking Theorem 2, we immediately obtain the
following.

Lemma 4: For Pareto and hyper-
exponential search delays, the transition rate matrix is shown
in (10), where and for are given by the hyper-
exponential approximation of Pareto with shape in (24).
Isolation probability is given in (18) where (19) is

(25)

where is the generalized exponential
integral.

Proof: See Appendix D.
To observe the accuracy2 of Lemmas 3 and 4, we run simula-

tions over different distributions of search times on a graph with
nodes, , and mean lifetime hours

(additional simulations produce similar results and are omitted
for brevity). The first search time distribution is Pareto with

and to keep the mean equal to .
The second distribution is Weibull with CDF and
mean . The third is exponential with rate

. To compute the model, Pareto residual lifetime is
fitted with a hyper-exponential mixture model (2) using ,

2Note that simulations in this paper are performed to see the accuracy of an-
alytical results in systems with finite age and size.
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TABLE I
COMPARISON OF MODEL � TO SIMULATIONS UNDER UNIFORM SELECTION WITH ���� � ��� h AND � � �

Fig. 1. Impact of shape parameter � on model � under uniform selection,
Pareto lifetimes, ���� � ��� h, � � �� � �	����, exponential search de-
lays, and � � �. (a) ���� � 
 min. (b) ���� � ��
 s.

and each nonexponential search distribution is fitted with model
(2) using .

Exponential and Pareto models of are compared with sim-
ulation results in Table I. Notice in the table that both (22) and
(25) are indeed very accurate for all examined search and life-
time distributions. The table also confirms that, as ,
metric becomes insensitive to the distribution of , which was
earlier observed in [18] but never verified.

To understand the influence of tail weight of the lifetime dis-
tribution on isolation, we use (25) to compute for sev-
eral values of shape parameter and keep
to ensure that the mean lifetime remains fixed. The result
is shown in Fig. 1 for two values of and . Notice in
both subfigures that the relationship between and is similar
and that appears to be approximately a logarithmic function
of for , confirming that the more heavy-tailed the life-
time distribution is, the smaller is.

E. Necessity of Neighbor Replacement

Fig. 1 suggests that tends to 0 as approaches 1 from above,
but it is not clear at what rate this convergence takes place and
whether this is indeed true. Furthermore, since for

, a natural question arises about whether a finite system
of users and finite age can in fact exhibit infinite expected
residuals or when . We answer these questions next
and show that condition indeed guarantees even
in cases when no replacement of failed neighbors is performed;
however, it requires that the system be in equilibrium3 by the
time it is observed by an arriving user.

3The first renewal cycle of each user must be drawn from its residual distri-
bution or system age � be infinite. See [42, p. 65] for a definition.

Theorem 3: For an equilibrium system, Pareto lifetimes with
, and infinitely large search delays (i.e., ), the

isolation probability is

(26)

where . For fixed and (i.e., ),
(26) converges to zero as .

Proof: Assuming that search delays are infinity, the first
hitting time defined in (11) equals the maximum residual life-
time among all neighbors

(27)

Then, due to the independence among neighbors, it is easy to
see that the distribution of for Pareto lifetimes under uniform
selection is

(28)

It follows that, given that , node isolation probability is
simply [18]

(29)

where is the PDF of Pareto life-
times, , and is the gamma function.

Recalling that and canceling the
common divisor , (29) reduces to

(30)

As , it is clear that , which makes in (30)
converge to 0. Noticing that is fixed, it is easy to see from (30)
that .

This result is very interesting since most prior work [18] does
not consider as such cases result in infinite expected
residual lifetimes, which cannot be observed in any finite
system. However, if the age of the system tends to infinity,
i.e., , or the first lifetime of each user is drawn from
the residual distribution (24), the asymptotic bound in (26) is
actually achievable. In such cases, as tends to 1, the isolation
probability will decay to zero proportionally to as
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Fig. 2. Convergence of simulation results to model � in (26) as system age
� � � under uniform selection, no neighbor replacement, and Pareto life-
times with � � ��� ������ in a graph with � � �� ��� nodes. (a) � � ���
and 	 � �. (b) � � ��	 and 	 � �.

given by Theorem 3 and the system will attain any desired level
of resilience without replacing neighbors. On the other hand,
for sufficiently larger than 2 studied in prior work [18], age

must simply exceed the convergence time to equilibrium of
the underlying user-lifetime renewal process, which usually
happens very quickly.

Fig. 2 shows simulation results of with and two
cases of very heavy-tailed . Notice in Fig 2(a) that for

, simulation results converge to model before system age
reaches hours (i.e., 1.14 years). However, as reduces to
1.2, the convergence takes a much longer time as shown in
Fig. 2(b), where simulations approach the model when system
age grows to more than h years.

The above analysis shows that the asymptotic result
as is not readily achievable in finite P2P systems. Fur-
thermore, recent measurement studies of user lifetimes suggest
that P2P networks exhibit that is bounded away from 1 (i.e.,

is between 1.06 [1] and 1.09 [41]). Hence, most current P2P
systems are not likely to satisfy the condition for under
uniform selection and thus need to utilize either a large number
of neighbors or perform dynamic replacement of dead links
with .

F. Discussion

While the general form of in the exact model (18) is very
complex, a simple qualitative rule of increasing resilience
(i.e., reducing ) can be formulated based on the properties of
residual lifetimes selected by the users of a P2P system. Notice
that, for a fixed lifetime distribution , higher resilience is
achieved by selecting neighbors that exhibit larger (in some
sense) remaining lifetimes. Thus, given two strategies and

for selecting neighbors, the strategy that obtains a neighbor
with a larger residual lifetime during every replacement in-
stance guarantees a lower isolation probability since the
chosen neighbors survive longer and increase the chance that
the current user will depart before becoming isolated. Since
comparison of residual lifetimes of obtained neighbors in
and can be performed only in the probabilistic sense, the
above discussion can be formalized as following: strategies
that produce stochastically larger4 distributions of residuals
guarantee lower isolation frequency and higher resilience.

4Variable 
 is stochastically larger than � if � �
  �� � � ��  �� for
all � � [42].

Note, however, that future residual lifetimes of sampled peers
are usually not available in practice. Instead, assuming that
is not memoryless (i.e., nonexponential), current user age may
be used as a robust predictor of . To understand this correlation
for Pareto shown in (23), consider the probability that a
peer’s remaining lifetime is larger than given that its
current age is :

(31)

Observe that the above conditional probability is a monoton-
ically increasing function of age, i.e., the larger , the more
likely a node is to survive at least time units in the future.
This implies that users with larger age demonstrate stochasti-
cally larger residual lifetimes .

This result can be generalized to all heavy-tailed distribu-
tions (defined in terms of conditional mean exceedance [12]
or tail-decay rate [38], e.g., Pareto, Weibull, and Cauchy), in
which the expected remaining lifetime increases and becomes
stochastically larger with age. In contrast, light-tailed distribu-
tions (e.g., uniform and Gaussian), exhibit expected residual
lifetimes that are decreasing functions of age. Finally, for the
exponential distribution, age does not affect residual lifetimes
and hence does not provide any useful information for neighbor
selection.

Armed with these observations and prior measurement results
that demonstrate heavy-tailed user lifetimes in real P2P systems
[1], the rest of the paper explores two simple neighbor-selection
methods that rely on age of existing peers to increase network
resilience.

III. MAX-AGE SELECTION

Recall that, under uniform selection, each alive user is chosen
by peer with the same probability. To prevent from con-
necting to weak neighbors that are about to depart (i.e., users
with short remaining lifetimes), this section leverages the heavy-
tailed nature of the lifetime distribution and models the
max-age neighbor-selection strategy proposed in [1], [17], and
[35]. In this approach, a joining node uniformly randomly se-
lects alive users from the system and chooses the user with
the maximal age. It then repeats this procedure times to obtain
its initial neighbors. The same process is executed every time
a dead link is detected.

In what follows here, we first analyze the distribution of resid-
uals obtained by the max-age method and then discuss the cor-
responding isolation probability .

A. Residual Lifetime Distribution

Denote by the set of candidate nodes, by the
residual lifetime of the max-age user in , and by

the complementary cumulative distribution func-
tion (CCDF) of random variable . Then, we get

(32)

where is the current age of a user in and is its
residual lifetime. Intuitively, (32) states that equals given
that user has the maximum age in . Next, from renewal
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process theory, given , the equilibrium age distribu-
tion of existing users in the system is [31]

(33)

The following theorem shows that is fully determined
by the number of sampled users, lifetime distribution , and
age distribution .

Theorem 4: Given that a user’s age is larger than that of
uniformly selected alive users in the system, its residual lifetime
has the following CCDF:

(34)

where is given by (33).
Proof: Recall that represents the maximal user age

among uniformly randomly selected users. It is then clear
that the distribution of is

(35)

where is the equilibrium age distribution of existing users
given by (33). Taking the derivative of (35), we immediately get
the PDF of as

(36)

where is the PDF of existing user ages.
Assuming an equilibrium renewal lifetime process, density

can be expressed using (33) as

(37)

Substituting (37) into (36), reduces to

(38)

Next, conditioning on , in (32) can be trans-
formed to

(39)

where is given by (38). Observing that
is equal to and could be any user,

(39) yields

(40)

where is user lifetime distribution. The last step is to sub-
stitute (38) into (40), which then directly leads to (34) after

is canceled.
Next, we use exponential lifetimes as an example to verify

(34). Using , (34) reduces to

(41)

Hence, it follows from (41) that for exponential lifetimes

for any (42)

which is consistent with the memoryless property of the expo-
nential distribution. Substituting Pareto lifetimes into (34), we
obtain

(43)

where .
Although no closed-form solution for (43) exists in the gen-

eral case, we next perform a self-check using . Note that,
for , (43) yields

(44)
which indicates that (i.e., max-age
selection with reduces to single-user uniform selection).

Our next result shows that is stochastically larger than
for any heavy-tailed and any .

Theorem 5: For any distribution in which larger age implies
stochastically larger residuals (i.e., function (31) is monotoni-
cally increasing in ), the following holds:

(45)

Proof: Denote the maximal user age among uniformly
randomly selected users by

(46)

It is shown in (35) that the distribution of is given by
. Then, we immediately obtain the

following for :

(47)

which shows that is stochastically larger than , i.e.,
.

Next, denote by

for fixed (48)
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Fig. 3. Accuracy of models (43) and (53) for Pareto lifetimes with ���� �
��� h and � � � in a graph with � � ���� nodes. (a) accuracy of (43) with
� � �. (b) Comparison of (53) with (51).

the probability that the user residual lifetime is greater than
given that its current age is . The distribution of can then
be transformed from (39) to the following for any fixed

(49)

Realizing that, for any nondecreasing function , the following
holds [42, page 486]:

(50)

we easily obtain (45) by using and sub-
stituting (49) into (50).

Simulation results in Fig. 3(a) show for that (43) is
very accurate and random variable is indeed stochastically
larger than (simulations with other and those confirming
(45) are omitted for brevity). Next, we solve for the expectation
of in closed-form for Pareto lifetimes and show the effect
of on the average residual lifetimes of selected neighbors.

Lemma 5: For Pareto , the
expectation of is given by

(51)

where is the gamma function. For , the expected
residual lifetime converges to infinity as system age becomes
large

(52)

Proof: See Appendix E.
To better understand the effect of on the mean of , we

approximate as follows. Setting
and expanding the gamma function in the denominator, (51) for

yields

(53)

We next discuss several examples that use (53) with different
. For Pareto lifetimes with h and , it can

be seen from (53) that follows the curve
as . However, for smaller , a more

Fig. 4. Comparison of model � to simulations using the max-age selection
strategy for Pareto lifetimes with ���� � ��� h and � � �, exponential search
times, and � � � in a graph with 5000 nodes. (a) � � �. (b) � � �.

aggressive increase in can be obtained. For ,
is approximately linear, and for ,

for any (as before, the last results only holds condi-
tioned on ). It is also apparent from (53) that, as shape
parameter tends to infinity, the impact of on is weak-
ened and , which confirms a well-known fact
[18] that Pareto lifetimes with very large behave as exponen-
tial random variables.

Model (51) is confirmed to be exact using simulations not
shown here due to limited space. Fig. 3(b) shows the accuracy
of the match between predicted by the exact model (51)
and that by the approximate model (53) for . Additional
examples with smaller are omitted for brevity.

B. Isolation and Resilience

To obtain model , we approximate the tail of in (34) with
its hyper-exponential equivalent in (2) and then compute by
applying Theorem 2 as in Section II-D. Fig. 4 shows predicted
by the model compared with simulations for Pareto lifetimes
with h, , exponential search delays, and two
values of . As the figure illustrates, the derived result is very
accurate and indeed shows inversely proportional dependency
between the number of sampled users and . The influence of

on isolation probability for Pareto lifetimes is presented more
clearly in Fig. 5. As the trendlines show, is approximately a
power-law function for each fixed , where exponent

is 2.4–5.7 in the figure. Thus, for , sampled
users reduce by a factor of 251 and by a factor of
3508; however, for , drops by a factor of
489 000 and by a factor of 2.5 billion. Interestingly,
while may exhibit an unimpressive growth as a function
of (i.e., linear or slower), the corresponding demonstrates
much faster decay rate and almost always provides significant
benefits as increases.

In systems that do not replace neighbors and , the
limiting isolation probability in (26) is reduced along the
corresponding curve in Fig. 5, i.e., proportionally to .
Thus, for any finite , (26) does not qualitatively change its
decay rate toward zero as a function of and
leads to no novel discussion. In the next section, however, we
develop another neighbor-selection framework that guarantees
a much stronger result in which converges to zero for any

, any number of neighbors , and any search
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Fig. 5. Influence of� on model� under max-age selection for Pareto lifetimes
with ���� � ��� h, exponential search times with ���� � � minutes, and
� � �. (a) � � �. (b) � � 	.

delay as system age and size tend to infinity. An additional
reason for improving the max-age method in the next section
is the difficulty of implementing uniform neighbor selection in
decentralized P2P networks without global knowledge at each
node. Distributed methods of uniform sampling of users exist
[9], [46]; however, they require either -regular graphs [9] or
complex walk patterns [46]. In both cases, max-age selection
forces a user to sample peers to obtain a single neighbor
and may not scale well for large . In contrast, the method
we describe below needs only one sample per neighbor and
operates in graphs with irregular degree distributions.

IV. AGE-PROPORTIONAL NEIGHBOR SELECTION

Here, we first introduce a new-neighbor selection strategy
that is based on random walks over weighted directed graphs
and then deal with the distribution of neighbor residual lifetimes
and the corresponding isolation probability.

A. Random Walks on Weighted Directed Graphs

We start by designing a low-overhead random-walk algorithm
whose stationary distribution ensures that the probability that
a user is selected by another peer is proportional to ’s current
age. We call the resulting method of choosing neighbors age-
proportional neighbor selection.

Recall that a directed graph consists of a vertex
set and edge set (note that we use notation instead of

at time under the assumption that remains the same
while a random walk is performed). Let represent a
directed link , be the set
of out-degree neighbors of , and be
the set of in-degree neighbors of . Further define to be the
age of user and set the weight of each incoming edge
at node to be ’s age normalized by the number of in-degree
neighbors

(54)

It then follows that the in-degree of is simply its age

(55)

and its out-degree is the sum of normalized ages of its out-
degree neighbors

(56)

Then, age-proportional random walks are executed by alter-
nating between walking along incoming and outgoing edges,
as we describe next. Given that the walk is currently at node

, the first jump is performed to an in-degree neighbor of ,
, with probability

(57)

The second jump is performed to an out-degree neighbor of
with probability

(58)

It is clear that the transition probability from to is
. After the two jumps, becomes the

current node and this procedure repeats. Each step consists of
two jumps, and the node reached after steps is selected as a
neighbor of the current user. As shown in [47], the stationary
distribution of this random walk is given by , where

. Recalling (55), we immediately obtain
that age-proportional random walks achieve the desired distri-
bution

for all (59)

The starting point of a random walk is determined as follows.
Each new user executes a random walk starting from an alive
user obtained through bootstrap, while each existing user uni-
formly randomly selects one of its currently alive out-degree
neighbors as the initial point of the walk. Note that if a node
does not have any incoming edges, it will never be selected by
our walk. To avoid this situation, we alternate between ending
walks with an in-degree and an out-degree jump, which gives
new users an opportunity to receive incoming edges. Simula-
tions below use random walks of steps as further in-
creasing does not result in measurable improvements in for
the cases considered in this paper.5

B. Residual Lifetime Distribution

Denote by the residual lifetimes of neighbors obtained by
age-proportional neighbor selection and by

its CCDF. We then obtain the distribution of in the next
theorem.

Theorem 6: Given that mean and variance
, neighbor residual lifetime has the following

CCDF:

(60)

5Generally speaking, the walk needs to be longer than the mixing time of the
chain corresponding to the underlying graph [23].
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where is the mean age of an alive user.
Proof: Denote by the age of node , , where is

the set of alive users, and by the age of the user sampled by
age-proportional selection. Further denote by the PDF
of such that for infinitely small

(61)

Conditioning on ages for all , (61) is transformed
into the following under age-proportional selection:

(62)

where is an indicator function such that if is
true and otherwise. In a system with a large number of
users, we can then invoke the law of large numbers to obtain

(63)

where is the mean age of an alive user, is its PDF
given by (37), and is the number of nodes in set . It im-
mediately follows that

(64)

which shows that the age distribution of sampled users is actu-
ally the spread distribution [42] of , i.e., a convolution of two
equilibrium age distributions given in (37). This means
that , which implies that is the residual of a
renewal process whose cycle lengths are given by random vari-
able .

Next, following the derivation in (40) and using (64), we ob-
tain the CCDF of as

(65)

which leads to (60) upon substituting (37) into (65) and then
removing the common divisor .

It is easy to show that, for exponential lifetimes, (60) reduces
to , again confirming the memoryless property of ex-
ponential distributions. For Pareto lifetimes, the CCDF of is
also very simple given our informal discussion in the previous
proof. Since is the residual of a renewal process with Pareto
cycle length , we obtain that is also Pareto with shape that
is smaller than that of by 1. Since ’s shape parameter is

, exhibits shape . We formally prove this in the
next lemma.

Lemma 6: For Pareto lifetimes with
, the CCDF of is given by

(66)

For , converges in probability to as system age
and size both tend to . For , the expectation of

is and for it is .

Fig. 6. Comparison of model � to simulations under age-proportional random
walks for Pareto lifetimes, ���� � ��� hours, � � ���������, exponential
search delays, and � � 	 in a graph with � � 
��� nodes. (a) ���. (b) ���.

Fig. 7. Impact of � on � under uniform selection and under age-proportional
random walks for Pareto lifetimes, ���� � ��� h, � � �� � ������, expo-
nential search delays, and � � 	. (a) ��	� � � min. (b) ��	� � ��� s.

Proof: See Appendix F.
Note that, for , the PDF of is completely monotone

and thus suitable for our hyper-exponential model. Also notice
that is stochastically larger than residual lifetimes under
uniform selection for all choices of . In fact, shifts the shape
of the Pareto distribution from to , which is not achiev-
able under max-age selection even as . Furthermore,
for , residuals tend to a defective random variable
with all mass concentrated at as system size and age be-
come infinite. This shows that in asymptotically large systems,

exceeds any lifetime with probability 1 and no user suffers
isolation (more on this below).

C. Isolation and Resilience

To obtain model under age-proportional neighbor selection,
we fit the distribution of shown in (66) with its hyper-expo-
nential equivalent and then invoke Theorem 2 to solve for .
Next, we test the accuracy of model in simulations where

nodes join and leave the system at random instances
and each node performs age-proportional random walks to find
its neighbors. As shown in Fig. 6, simulation results are very
close to the values predicted by theoretical . Examples showing
the relationship between of and are presented in Fig. 7. As
shown in Fig. 7(a), simulation results are consistent with model

under a variety of values that allow quick simulations and
do not require very large or (i.e., ). It is interesting
to observe in the figure that as decreases, the gap between
under age-proportional random walks and that under uniform
selection drastically increases and reaches a factor of for

. This shows that age-proportional random walks are
extremely effective in systems with very heavy-tailed lifetimes
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(i.e., below 2.5). Fig. 6(b) shows that the same conclusion
holds for s, in which case is of the order of
and only allows computation using the model since simulations
are impractical for such small probabilities.

The most intriguing result shown in Fig. 7 is that tends to
0 as converges to 2 from above. However, as before, this con-
vergence requires that system age tend to infinity. In addition,
the following result states that system size must also be infi-
nite to obtain .

Theorem 7: For an equilibrium system, Pareto lifetimes with
, and infinitely large search delay (i.e., ), isolation

probability under age-proportional neighbor selection is given
by

(67)

where . For and fixed , (67) converges
to 0 as .

For Pareto lifetimes with , any number of neigh-
bors , and any type of search delay (including ), the
isolation probability under age-proportional neighbor selection
converges to zero as system age and size approach infinity:

.
Proof: Let us consider for and first. Recall

that if , the first hitting time is the maximum residual
lifetime among neighbors. Using (66), we then readily get the
following for :

(68)

Following derivations in the proof of Theorem 3, it is easy to
obtain

(69)

where is the PDF of Pareto ,
, and is the gamma function.

As , it is clear from (69) that , which makes
approach 0 as for fixed .

For , it has been shown in Lemma 6 that
for any as system age and system size

approach infinity. Supposing , we readily obtain
. Noticing that for any (including

and ) is smaller than that for , we immediately
establish Theorem 7.

Note that Theorem 7 is a much stronger result than Theorem
3 since under uniform selection does not asymptotically ap-
proach 0 for any fixed . However, the asymptotic re-
sult of this section is more difficult to achieve since it requires
not only an equilibrium system, but also an infinitely large user
population.

We finish this section by examining age-proportional random
walks under finite and using several values of .
For such cases, recall from Lemma 6 that converges in prob-
ability to ; however, initial analysis shows that the conver-

Fig. 8. Simulation results of � under age-proportional selection as system age
� and size � increase for Pareto lifetimes with ���� � ��� h. (a) � � ���,
� � �. (b) � � ���, � � �.

gence rate of and can only be expressed using
complex Appell hypergeometric functions [6] of and for
which no closed-form expansion exists. We leave this task for
future work and instead show simulations of in Fig. 8 as
becomes large ( is kept equal to ). For both values of

, the figure shows that monotonically decreases as system
age increases. In fact, for , the system achieves iso-
lation probability below without replacing neighbors at

hours and users. Additional simula-
tions with suggest that increasing to over one million
users and keeping the age around one year will produce suffi-
ciently small for most large-scale networks today.

V. RELATED WORK

Construction and maintenance of overlay networks consists
of initial neighbor selection and subsequent replacement of
dead links. Many P2P systems, including structured [2], [13],
[21], [25], [28], [29], [33], [37], [45] and unstructured [3], [24],
[27], [34], [40], perform neighbor selection and replacement to
achieve the desired routing efficiency and search performance
in the face of node joins and departures.

Previous work has used proximity-based neighbor selection
to reduce lookup latency [11], [24], [30], [44], capacity-based
selection to improve system scalability [3], [17], [36], and age-
biased neighbor preference to improve reliability of the system
[1], [17], [25], [35]. Additional studies have analyzed the trade-
offs between resilience and proximity [4] as well as studied how
well different neighbor selection and recovery strategies could
handle churn in DHTs [10], [32]. In recent work [39], [40],
random walks have been used to build unstructured P2P systems
and replace failed links with new ones. Finally, only a handful of
modeling studies of user isolation and neighbor selection under
churn exist [15], [18], [22], [27] and they are mostly limited to
exponential user lifetimes and centralized (age-unrelated) user
replacement.

VI. CONCLUSION

This paper derived a general model of resilience for un-
structured P2P networks under heavy-tailed user lifetimes
and formally analyzed two age-dependent neighbor-selection
techniques. Our results show that the proposed random-walk
method may achieve any desired level of resilience without re-
placing neighbors as long as Pareto shape parameter
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and system size and age are sufficiently large. This indi-
cates that P2P systems under proposed neighbor selection and
very heavy-tailed lifetimes (i.e., ) become progressively
more resilient over time and asymptotically tend to an “ideal”
system that never disconnects as users join the network.

Future work includes derivation of residual lifetime distribu-
tions in finite systems under age-proportional neighbor selec-
tion and analysis of the limiting distribution of neighbor residual
lifetimes under max-age selection as the number of sampled
users .

APPENDIX A
PROOF OF LEMMA 1

Proof: Define to be a random variable representing the
number of neighbors of type for . Then, given a
valid starting state for ,
its initial probability can be described by

(70)

where is the probability that conditioned on all
for being equal to their corresponding

(71)

Denote by

for (72)

the binomial distribution with success probability . Note that
is simply . Next, it is clear

that, given neighbors of type 1, the probability that
the initial state contains neighbors of type 2 is also
binomial, but with success probability

(73)

It can be shown that the generalized version of (73) is

(74)

which, after substitution into (70) and some algebra, reduces
(70) to (13).

APPENDIX B
PROOF OF LEMMA 2

Proof: Generalize the first hitting time from a starting state
to any absorbing state in as

(75)

For regular Markov chains [31, p. 375], it is not difficult to
see that has a continuous density function such
that, for small , we have

(76)

At the same time, from last-step analysis [14, p. 211], [31, p.
388] we have

(77)

where is the probability
that the chain is in state at time given that it started in state

and is transition rate from state to any absorbing state
in . Combining (76), (77) and letting , we easily obtain

(78)

Notice from the above that computation of requires
transition probabilities for all , which are rather
difficult to obtain in explicit closed-form for non-trivial Markov
chains such as ours. Instead, we offer a solution that depends on
spectral properties of and a matrix representation of
in the analysis that follows.

Expressing (78) in matrix form, we have

(79)

where is a column vector, for
are transition probability functions

corresponding to non-absorbing states, and for
is a transition rate column vector. Then representing

using matrix exponential [31] and
using eigen-decomposition [26], where is given in (16), we
get

(80)

where , is the th eigenvalue of ,
and is a matrix of eigenvectors of . Substituting (80) into
(79), we obtain

(81)

Finally, the PDF of the first hitting time is simply the
product of row vector and column vector

(82)

where is given by (13) for Markov chain .
APPENDIX C

PROOF OF LEMMA 3

Proof: Due to the memoryless property of exponential
distributions, it is clear that residual lifetimes have the same
distribution as user lifetimes , i.e., . Thus, we
have , requiring only one exponential in the
hyper-exponential mixture model (2). Next, rewriting (19)
using for exponential lifetimes, we get

(83)

which, combined with (18), immediately establishes this the-
orem.
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APPENDIX D
PROOF OF LEMMA 4

Proof: Invoking Theorem 2 and using
, (19) yields

(84)

which completes the proof by recognizing that

(85)

is the generalized exponential integral.

APPENDIX E
PROOF OF LEMMA 5

Proof: Recall that the expectation of a nonnegative random
variable can be obtained as

(86)

Substituting from (34) into the above and switching
the order of integration variables, we have

(87)

Using and
and integrating over , (87) reduces to

(88)

where is the Gauss hypergeometric function [6],
which for is

(89)

Using (89) and recalling , (88) is trans-
formed into

(90)

which leads to (51) upon using .
For , recall that under single-user

uniform selection. Then, it is clear that for
upon invoking Theorem 5.

APPENDIX F
PROOF OF LEMMA 6

Proof: For Pareto lifetimes, straightforward integration of
(60) leads to

(91)

which gives us the desired result by recalling that
and . For , we have
. In this case, it is known from [5] that residuals

converge in probability to as system and size become
large. Note that is needed to obtain the limiting
distribution (37) of age with and is
needed for age of selected user to become the spread of
during the process of selecting neighbors from the current user
population.

For , integrating (66) leads to

.

(92)

For , it is easy to obtain that since
converges in probability to .
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