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Abstract—Prior work has shown that resilience of random
P2P graphs under dynamic node failure can be improved by
age-biased neighbor selection that delivers outbound edges to
more reliable users with higher probability. However, making the
bias too aggressive may cause the group of nodes that receive
connections to become small in comparison to graph size. As
they become overloaded, these peers are forced to reject future
connection requests, which leads to potentially unbounded join
delays and high traffic overhead. To investigate these issues, we
propose several analytical models for understanding the interplay
between resilience and degree. We formulate a Pareto-optimal
objective for this tradeoff, introduce new metrics of resilience and
degree, analyze them under Pareto lifetimes, and discover that
traditional techniques can be highly suboptimal in this setting. We
then show evidence that optimization can be solved by a family
of step-functions, which connect outgoing edges to uniformly
random users whose age exceeds some threshold.

I. INTRODUCTION

P2P networks map communication nodes onto random
graphs and scale extremely well in terms of bandwidth,
storage, processing power, resilience, and resource availability.
The P2P paradigm has resulted in diverse applications includ-
ing online storage systems [20], [24], video streaming [19],
[21], conferencing and instant messaging [26], content delivery
networks [2], [7], [9], anonymous routing [32], peer trading
and e-commerce [1], [33], and mobile ad-hoc networks [6],
[16]. Despite being ubiquitous in the current Internet, these
networks are still poorly understood, especially under node
churn and non-uniform neighbor selection.

A. Motivation

Consider an unstructured P2P graph with n nodes. Upon
arrival into the system, suppose users create k outgoing edges
using some preference function w(τ) that selects live peers
proportional to their current age τ . When the lifetime distri-
bution FL(x) allows prediction of residuals from the observed
ages (i.e., in all cases except memoryless), the rationale for
using age-bias is to allow connectivity to concentrate on
more reliable nodes. However, as the target population of
users preferred by w(τ) shrinks in size, they must sustain
higher connection-request rates from the rest of the graph.
It is therefore possible that an O(1) fraction of the system is
eventually forced to handle Θ(n) load in the network.
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This situation not only presents local problems (i.e., over-
load for certain peers), but also leads to larger global issues.
Suppose each user has an upper bound on its operational
degree. After this bound is reached, any surplus connection
load is rejected and joining users are required to seek other
peers that can accept their connections. As n → ∞ and
the degree at each reliable node becomes maxed out with
probability 1 − o(1), the join delay approaches infinity and
the network ceases to function. This is because none of the
new users can join and the existing network collapses under
an infinite load of redundant join messages.

While special arrangements can be made that alter weight
w(τ) (e.g., revert to uniform) after a number of repeated
connection failures, the resulting system is not only difficult
for analysis and less insightful, but it may in fact be equivalent
to the original system with some other function w′(τ). Instead,
we are interested in the behavior of the pure age-biasing
algorithm, i.e., the one driven by the same w(τ) at all times.
Our goal is not to simply prevent scenarios described above,
but rather to find a selection strategy that achieves the best
resilience for a given degree. Unlike prior work [39] that
examined all live peers (some of which may never receive
connection requests), we focus only on the reliable core, which
is a probabilistic artifact of w(τ).

B. Contributions

Age-biased neighbor preference can be implemented in two
general frameworks – active [5], [15], [23], [27], [34] and
passive [14], [22]. The former relies on k out-neighbors for
routing/resilience and uses edge rewiring upon detecting out-
neighbor departure. The latter uses all links bidirectionally,
benefitting from both incoming and outgoing edges, and never
replaces those that fail. Recent work [39] showed initial evi-
dence suggesting that passive networks were highly appealing
as they exhibited good levels of disconnection resilience, in
addition to simpler operation and lower overhead compared
to active networks [22]. We therefore continue investigation in
this direction and limit analysis to these types of P2P graphs.

Our first contribution is to articulate a novel tradeoff be-
tween resilience and degree overload, which gives rise to an
optimization problem that aims to obtain a Pareto-optimal
curve based on the points swept by the two parameters in
question. Traditionally [14], resilience was measured by the
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probability that a node lost all of its neighbors before departing
from the system; however, this metric is virtually impossible to
obtain in closed-form, even for the simplest w(τ). Instead, we
introduce a replacement measure φ that reduces the probability
of disconnection to the amount of time a user spends with
zero neighbors during its lifetime, which we call the idle
fraction. We also formally define the age Y of users to whom
incoming edges arrive and focus analysis on their expected
degree E[D(Y )].

Our second contribution is to study the idle fraction under
general w(τ), where we prove that φ decreases exponentially
fast in the number of initial neighbors k. While aggressive bias
functions (e.g., step-weight [39], max-age [30], [40]) skew
selection towards more reliable peers, they surprisingly fail
to always achieve better φ than uniform selection (i.e., certain
parameter choices make them worse). Our third contribution is
to derive a model for E[D(Y )] and examine its growth as age-
bias of w(τ) increases. We show existence of a fundamental
tradeoff in the design of P2P networks – achieving φ → 0
always comes at the expense of E[D(Y )] → ∞. However,
the difference between the various preference functions w(τ)
lies in the rate at which E[D(Y )] increases, with some of
them being vastly suboptimal compared to the others.

Our last contribution is to analyze the issue of finding the
best pair (k,w(τ)) that minimizes φ subject to E[D(Y )] = d,
where d > 0 is a given constant. We use the obtained models
to formulate a numerical optimization for this problem and
discover that among the strategies considered in this paper
step-function w(τ) = 1τ≥x0 comes out as the clear winner.
While proving a similar result for an unrestricted class of w(τ)
is a difficult problem, we provide intuition for why we believe
this is generally true. Since any nondecreasing and bounded
w(τ) can be represented as a (possibly infinite) sum of step-
functions 1τ≥xi , Monte Carlo simulations can be used to
shed light on the existence of a random mixture that achieves
better performance than the step-weight. Our results with over
10K random iterations show that a single step-function indeed
forms a Pareto-optimal boundary of the feasible (E[D(Y )], φ)
space, at least to the extend considered here.

II. RELATED WORK

Analysis of P2P networks under node failure has become
a well-studied area [4], [5], [10], [11], [12], [13], [14], [15],
[17], [18], [23], [27], [30], [35], [36], [40], [38], [39]. While
initial papers built upon Poisson arrivals and exponential
lifetimes [4], [13], [17], [27], [35], later work took into account
measurements from real P2P systems [3], [20], [28], [29], [36]
and examined their performance under non-Poisson arrivals
and heavy-tailed lifetimes [10], [14], [30], [20], [39], [40].

Close to our work are [38] and [39], which studied node
in/out degree evolution in P2P systems under user churn. In
[38], a heterogenous user ON/OFF model was considered.
When each user returned into the network, it connected to a
number of out-degree neighbors using uniform selection. Upon
detecting neighbor failure, the user sought a replacement in

order to remain connected to the system. This active neighbor-
management model was used in a number of P2P designs
for handling node failure [5], [15], [23], [27], [34]. It was
shown in [38] that the edge-arrival process to any live user
was asymptotically Poisson with a fixed rate λ.

More recent work [39] also covered passive systems, where
users searched for neighbors only when joining the network,
and introduced generic age preferences, under which any live
node with age τ ≥ 0 was selected by other peers with a
probability asymptotically proportional to its current weight
w(τ). Results showed that passive systems were surprisingly
resilient due to the constant arrival of in-edges from other
users in the system. While [39] derived node degree D(τ) at
fixed age τ , it did not address resilience, degree of the users
that received edges, or the tradeoff between the two.

Other objectives have been considered in prior work –
optimizing churn rate [10], node isolation probability [40],
connectivity [15], data delivery ratio [30], retrieval latency in
P2P storage systems [20], and content search [8], [25], [31] –
but they are orthogonal to our results.

III. UNDERSTANDING THE TRADEOFF

In this section, we first explain our model of decentralized
P2P systems and then define our objectives.

A. Dynamic Graph Model

User join/departures are modeled by stationary ON/OFF
renewal processes {Zi(t)}ni=1, where n is the number of peers
participating in the system. Each user randomly transitions
between ON (online) and OFF (offline) states, where duration
of ON cycles are called lifetimes. Even though each peer
may have its own lifetime distribution, [38] shows that such
heterogeneous systems can in fact be reduced to homogenous,
where all users have the same lifetime CDF (cumulative
distribution function) FL(x).

Upon join, each node v performs k neighbor searches under
the general age-preference model of [39]. Specifically, each
live peer i with age Ai is selected proportionally to w(Ai),
where w(τ) is some non-negative weight function. Nodes cho-
sen using this approach are called out-neighbors with respect
to v. Similarly, as v stays in the system, it receives incoming
edges from other continuously joining users, which are in-
neighbors from v’s perspective. Active systems replace only
out-links, ignoring failure of in-links, while passive systems
replace neither. Since passive networks have many benefits
(i.e., low traffic overhead, simplicity of design, predictable
performance), we model them below.

Define V ∼ FV (x) to the random lifetime of an out-
neighbor. As illustrated in Fig. 1(a), each user starts with
k initial out-links, whose lifetimes V1, . . . , Vk are the re-
maining delays until departure of the corresponding peers.
Define L ∼ FL(x) to be the lifetime of a random peer and
observe in Fig. 1(b) that incoming links of duration L1, L2, . . .
randomly appear and disappear throughout v’s online session.
The number of these edges at any time may exceed k and
even become unbounded as v’s age increases.
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Fig. 1. In/out-link lifetimes at user v in the passive model.

Define A ∼ FA(x) to be the age of L, whose distribution
is well-known from renewal theory [37]:

FA(x) := P (A < x) =
1

E[L]

∫ x

0

(1− FL(y))dy. (1)

If we examine live users at some time t in a stationary
system, the age (i.e., elapsed duration of the current ON
cycle up to time t) and residual (i.e., remainder if their
lifetime) are both distributed according to FA(x). As given
by [39, Theorem 1], the distribution of out-link lifetime can
be expressed as a function of w(τ) and A:

FV (x) := P (V < x) = 1− E[w(A− x)]

E[w(A)]
, (2)

where we assume that E[w(A)] < ∞. Equipped with (2),
notice that the out-degree Dout(τ) of node v at given age
τ ≥ 0 is a binomial variable with mean:

E[Dout(τ)] = kF̄V (τ) =
kE[w(A− τ)]

E[w(A)]
, (3)

where F̄V (x) = 1−FV (x) refers to the complementary CDF
of V . Since the arrival process of incoming edges towards v
tends to non-homogeneous Poisson [39, Theorem 6] as n →
∞, we assume the system is sufficiently large and the in-
degree Din(τ) at age τ is a Poisson variable with mean:

E[Din(τ)] =
kE[w(τ −A)]

E[w(A)]
. (4)

The combined degree at age τ is then defined as D(τ) :=
Dout(τ) +Din(τ).

B. Weight Functions

It has been shown that user lifetimes in real P2P systems
are either Pareto [36] or Weibull with shape a < 1 [20],
both from the class of NWU distributions1. In such cases,
non-decreasing functions w(τ) place more bias on users with
higher age and thus produce stochastically larger V [39]. In
passive networks, (3) monotonically decreases in user age τ ,
which is compensated by a monotonic increase in (4). As a
result, users are kept connected though out-links long enough

1A random variable X is called NWU (new worse than used) if its
remaining lifetime at age t is stochastically larger than X , i.e., P (X − t >
x|X > t) ≥ P (X > x) for all x, t ≥ 0. If the inequality is reversed, X is
called NBU (new better than used). If both inequalities hold simultaneously,
X is said to be memoryless (i.e., exponential).

for in-degree to take over, resulting in a well-functioning and
efficient system.

For performance-comparison purposes, we examine four
categories of non-decreasing weight functions. The first is
uniform [14], which is given by w(τ) = 1. It is simple to
implement and not in danger of causing degree overload,
although optimality of its resilience is currently unknown.
The second is max-age [30], [40], where joining users sample
m uniformly random peers and then select the one with
the largest age. As shown in [39], this is equivalent to
using w(τ) = m(FA(τ))

m−1. The third is the step-weight
w(τ) = 1τ≥x0 [39], which selects uniformly among the users
whose age is at least τ0. This can be viewed as creating a
virtual “waiting room,” where nodes with age τ < x0 are not
eligible to receive any in-links.

The fourth category consists of truncated-power functions
w(τ) = min((τ/x0)

ρ, 1), where x0 > 0 and ρ ≥ 0. These
generalize two methods discussed above, as well as one
additional approach. Specifically, truncated-power becomes
uniform using ρ = 0, step-weight using ρ → ∞, and age-
proportional w(τ) = τ [40] using ρ = 1 and x0 = ∞.

C. Performance Measures

Building decentralized graphs requires taking into account
resilience against node failure. Assigning larger weights w(τ)
to long-lived users forms a stable core in the graph; however,
this also creates a possibility of severely overloading a small
cluster of peers with too much traffic and collapsing the rest
of the network that depends on them. We thus aim to create
an algorithm that achieves a good level of protection again
node failure and partitioning, but with proper load-balancing
of edges across the graph.

Suppose T is the random delay before v loses all of its
neighbors, which is simply the first hitting time of D(τ) to
zero. Then, resilience is usually assessed [14] by the prob-
ability that v can remain online without disconnecting, i.e.,
ϕ = P (T > L). In general, however, ϕ is difficult to analyze.
This is because D(τ) is a complex birth-death process, whose
first-hitting time to zero is unavailable in closed-form even
under uniform selection and exponential lifetimes [14].

To overcome this setback, we treat D(τ) as a non-absorbing
process and approximate ϕ by the expected fraction of time

φ =
1

E[L]
E
[∫ L

0

P (D(τ) = 0)dτ
]

(5)

it spends in state 0 within a user’s lifetime L. As shown in
[14], the probability of disconnection is closely related to the
recurrence time between visits of D(τ) to state 0, which in turn
is related to φ (i.e., larger ϕ implies larger φ and vice versa).
Given this monotonic relationship between the two metrics,
we can interchangeably use them for our tradeoff analysis.

As for load-balancing, denote by Y the age of a random
user at the time it is selected by v and by D(Y ) its degree
when an incoming request arrives. With the degree capped at
some constant d > 0 (e.g., 30 in Gnutella [36]), the fraction
of rejected connections is P (D(Y ) ≥ d). In the interest of
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Fig. 2. Pareto-optimal curves in two dimensions.

simplifying presentation, we replace this probability with the
expected node degree E[D(Y )], which in many cases also has
a monotonic relationship with the metric in question.

D. Optimization

To build intuition, consider Fig. 2, where each point signifies
a system driven by some combination (k,w(τ)). We allow
fractional k since it represents the mean out-degree upon
join [38], which is not restricted to integers. In this 2D
space, assume that point (x1, y1) dominates (x2, y2) if either
x1 < x2, y1 ≤ y2 or x1 ≤ x2, y1 < y2. For example, point A
in the figure is dominated by both B and C. Then, define a
point to be Pareto-optimal if it is dominated by no other point.

As the number of points tends to infinity and assuming the
function mapping (k,w(τ)) to the (degree, resilience) pair is
sufficiently smooth, Pareto-optimal points merge into a curve,
whose piece-wise linear approximation is shown in the figure.
The goal of our optimization problem is to obtain the best
preference function w(τ) that places points only along the
Pareto-optimal curve. This can be rephrased as finding the
lowest φ for a given E[D(Y )] = d.

IV. IDLE FRACTION

In this section, we derive the idle fraction and analyze the
impact of various system parameters.

A. General Case

The next result shows that φ can be expressed as the
probability that a random live node is currently idle, i.e.,
its degree is zero. While we consider non-resilience uses of
φ beyond the scope of the paper, it should be noted that
this probability may be useful to the analysis of routing
performance as it determines the fraction of the graph that is
unable to forward messages at any given time. As byproduct of
that analysis, one could also obtain the load on the remaining
users that must support the full overhead of the system.

Theorem 1: The idle fraction can be written as:

φ = P (D(A) = 0), (6)

where A is the age of a random live node in the graph.

Proof: Denote by z(y) the expected idle duration condi-
tioned on L = y:

z(y) :=
1

E[L]

∫ y

0

P (D(τ) = 0)dτ. (7)

Using integration by parts, this leads to:

φ = −
∫ ∞

0

z(y)dF̄L(y)

= −z(y)F̄L(y)
∣∣∣∞
0

+

∫ ∞

0

F̄L(y)dz(y)

=
1

E[L]

(∫ ∞

0

F̄L(τ)P (D(τ) = 0)dτ

)
. (8)

Recalling F̄L(x) = E[L]fA(x), (8) becomes (6).
Suppose ν(τ) is the expected in-degree of a node with age

τ in a system with k = 1:

ν(τ) :=
E[Din(τ)]

k
=

E[w(τ −A)]

E[w(A)]
. (9)

Then, expanding (6) we obtain the next result.
Theorem 2: The idle fraction φ can be written as:

φ = E
[(

FV (A)e
−ν(A)

)k]
. (10)

Proof: Given a fixed age τ , the in/out degrees of a
node are independent. As mentioned earlier, the out-degree
is binomial with parameters k and F̄V (x), while the in-degree
is Poisson with mean kν(τ). This leads to:

φ =

∫ ∞

0

P (D(τ) = 0)dFA(τ)

=

∫ ∞

0

P (Dout(τ) = 0)P (Din(τ) = 0)dFA(τ)

=

∫ ∞

0

(FV (τ))
ke−kν(τ)dFA(τ), (11)

which is the same as (10).
While (10) is fairly complex, we can at least extract the

impact of k on its decay rate, as shown next.
Theorem 3: For any w(τ), the following is a tight bound:

φ ≤
(
sup
τ≥0

FV (τ)e
−ν(τ)

)k

. (12)

Proof: Define H(x) = FV (x)e
−ν(x) and observe that

E[H(A)k]1/k is monotonically non-decreasing as k → ∞.
Therefore:

φ1/k = E[H(A)k]1/k ≤ lim
k→∞

E[H(A)k]1/k, (13)

where the limit is the essential supremum of H(A), which can
be shown to equal supτ≥0 H(τ).

Observe that (12) does not impose any conditions on w(τ)
or FA(x). Setting

c := sup
τ≥0

FV (τ)e
−ν(τ) < 1, (14)

it follows that the idle fraction φ ≤ ck must decrease at
least exponentially fast in k. Furthermore, this upper bound
is the best possible (i.e., among those that hold for all k).
This follows from the fact that φ1/k converges from below to
c as k → ∞. This result will come in handy shortly.
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Fig. 3. Idle fraction φ under uniform selection (n = 5K and E[L] = 0.5
hours). Pareto lifetimes use α = 3.

B. Uniform Weight

We now examine (10) under uniform selection in hopes of
obtaining more clarity about the role of k and FL(x).

Theorem 4: For uniform weights w(τ) = 1:

φ =

∫ 1

0

(
ye−y

)k
dy. (15)

Proof: Under uniform selection, ν(x) = FA(x) and out-
link lifetime V ∼ FA(x) [39]. Re-writing (10):

φ =

∫ ∞

0

(
FA(x)e

−FA(x)
)k

dFA(x), (16)

which is the same as (15).
While the new expression for φ can be computed more

easily than the general expectation (10), it still does not
provide much qualitative information on the decay rate towards
zero. We obtain that next.

Theorem 5: For uniform selection and all lifetime distribu-
tions, φ is tightly upper-bounded by:

φ ≤ e−k. (17)

Proof: Since ye−y monotonically increases in y ∈ [0, 1]
and ν(τ) = FA(τ), we get from (12) that

φ ≤
(
FA(∞)e−FA(∞)

)k

= e−k, (18)

which is the desired conclusion.
While the results in [38], [39] upon which we rely are of

asymptotic nature (i.e., n → ∞), they hold in relatively small
graphs too. To demonstrate this effect, we use simulations with
n in the thousands and two lifetime distributions – exponential:

FL(x) = 1− e−λx (19)

and Pareto:

FL(x) = 1− (1 + x/β)−α, (20)

where α > 1 and E[L] = β/(α − 1). The result is shown in
Fig. 3(a). Notice from this plot that the exact model (15) is
accurate and that φ remains the same for both exponential and
Pareto L. As illustrated in Fig. 3(b), the exponential decay rate
− lnφ/k starts at 1.17 and eventually converges to 1 as k →
∞, which was predicted by the tightness of the upper bound ck

in Theorem 4. Therefore, in cases when certain approximation
liberty is tolerated, and especially when k is large, one may
use φ ≈ e−k.

In systems that utilize only the out-degree for resilience
[14], it is well-known that Pareto FL(x) improves protection
against node failure compared to exponential L. In fact, shape
α has a direct impact on V and the resulting disconnection
likelihood (i.e., smaller α produces stochastically larger V ).
Furthermore, results show [14] that passive usage of out-
neighbors is insufficient for maintaining a highly fault-tolerant
environment (e.g., φ = ϕ = 1/(k+1) under exponential life-
times). This is why these networks must use active neighbor
replacement, especially when L is memoryless or light-tailed.

In contrast, (15) shows that uniform selection keeps φ the
same in systems with different user lifetime distributions. This
allows any L to reach the same level of resilience as heavy-
tailed lifetimes, which might be important to systems where
FL(x) is unknown, light-tailed, or changing. In addition, the
improved resilience achieved through in-degree neighbors is
quite non-trivial and in many cases sufficient for keeping the
network connected. For instance, φ = 5 × 10−10 for k = 20
and φ = 2 × 10−14 for k = 30, which for exponential L
are respectively 8 and 12 orders of magnitude better than in
networks that utilize only the out-degree (see above).

Results in this subsection confirm previous intuition [39]
that passive neighbor management belongs in the realm of
feasibility and show that uniform selection is a good base-
line algorithm, whose mean combined degree E[D(τ)] =
kF̄A(τ) + kFA(τ) = k remains fixed throughout a node’s
lifetime. Next, we examine other alternatives.

C. Non-Uniform Weights

Since we now consider age-biased preference functions,
more discussion is required on the properties of typical life-
times found in real networks, i.e., Pareto [36] and Weibull
[20]. For the former case, the distribution of age A remains
Pareto, but its shape decreases to α− 1:

FA(x) = 1− (1 + x/β)1−α. (21)

For Weibull lifetimes L, the CDF is:

FL(x) = 1− e−(x/b)a , (22)

where b > 0 is the scale parameter, a > 0 is the shape
parameter, mean E[L] = bΓ(1+1/a), and Γ(x) is the gamma
function. Note that (22) is an exponential distribution if a = 1,
heavy-tailed (NWU) if a < 1, and light-tailed (NBU) when
a > 1. Weibull’s age is distributed according to:

FA(x) =
1

E[L]

∫ x

0

(1− FL(y))dy =
1

E[L]

∫ x

0

e−(y/b)ady

=
1

Γ(1/a)

∫ (x/b)a

0

e−uu
1
a−1du, (23)

which can be computed using the incomplete gamma function
in numerical software packages (e.g., Matlab). Its density is
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Fig. 4. Examination of idle fraction φ in (10) under various weight functions (n = 10K, α = 3, k = 8, and E[L] = 0.5 hours).

available directly as F̄L(x)/E[L]:

fA(x) =
e−(x/b)a

bΓ(1 + 1/a)
. (24)

We start with the step-weight, where we have from [39]:

FV (x) = 1− F̄A(x+ x0)

F̄A(x0)
(25)

and

ν(τ) =

{
0 τ ≤ x0
FA(τ−x0)
1−FA(x0)

τ > x0
. (26)

While max-age and truncated power do not allow similar
closed-form expansion, the corresponding metrics are easily
computed numerically. Recalling both age distributions (21)
and (23) yields φ in (10) for all four methods. Fig. 4 shows that
simulations under different lifetime distributions and weight
functions match model (10) quite well. We next examine each
of the subfigures individually.

Starting with Fig. 4(a), observe that φ for exponential L
initially decreases in x0, but then rebounds towards much
higher values. This shows existence of some optimal value,
which we call x∗

0, where the step-weight outperforms uniform
selection (i.e., x0 = 0) even in systems with memoryless L.
This intuitively suggests that live nodes with age smaller than
x∗
0 are sufficiently connected through their out-links and hence

do not need improved resilience from in-degree neighbors.
Instead, the network benefits by delivering edges to users with
larger age whose out-links are more likely to have gone offline.
For x0 → ∞, users rely entirely on the out-degree and thus:

φ →
∫ ∞

0

(FL(x))
kdFL(x) =

1

k + 1
, (27)

which is consistent with our previous discussion of this special
case from [14] and the saturation point in Fig. 4(a).

The Pareto and Weibull cases are covered in Fig. 4(b).
Notice that φ here exhibits a more pronounced dip compared
to exponential L. For x0 ∈ [0, x∗

0), the system monotonically
improves by obtaining neighbors with progressively larger V ,
which outweighs the opposite effect applied to in-degree. After
crossing the optimal point, the idle fraction reverses direction
and then peaks at some x+

0 . Region [x∗
0, x

+
0 ] shows that better

out-neighbors can no longer compensate for fewer incoming

edges. This relationship is again switched after x0 > x+
0 ,

where φ monotonically decays towards zero.
Fig. 4(c) illustrates the max-age case. Observe that φ also

encounters a dip and a peak, confirming that this behavior
is not limited to the step-function. The optimal value here is
m∗ = 2, but this is not always the case (i.e., m∗ gets larger for
smaller α). Lastly, plot (d) displays φ under truncated power.
Interestingly, this method outperforms uniform selection for all
x0, despite having a wobble like the other methods. Smaller
values of ρ produce less fluctuation, but their φ either stays
constant or decays really slow as x0 → ∞.

Complex behavior of φ is peculiar in another aspect –
careless choice of parameters (x0,m) may lead to lower
resilience than under uniform selection, which underscores the
importance of seeking insight into what makes w(τ) better.
While age-biased methods are successful at driving φ to
arbitrarily low values (e.g., using x0 → ∞), this comes at the
expense of severe suboptimality and high degree. For example,
using the Pareto case in Fig. 4(b), idle fraction 10−5 can be
achieved using x0 = 0.2 and x0 = 100. What differentiates
the two is the corresponding degree E[D(Y )], which equals
approximately 9 in the former case and 100K in the latter.
Our tradeoff analysis later in the paper takes exactly these
situations into consideration.

D. Asymptotic Decay Rate

Figs. 4(b)-(d) show that NWU lifetimes allow φ → 0 with
a sufficiently biased age-preference function. The next result
examines this decay rate.

Theorem 6: For Pareto L, step weight w(τ), and k > α−1,
the following ratio converges to a constant:

lim
x0→∞

φ

F̄A(x0)
= (α− 1)

∫ 1

0

(1− (1 + y)1−α)ky−αdy.

(28)

Proof: If k > α− 1, we have:

φ

F̄A(x0)
=

∫ ∞

0

(FV (x))
ke−kν(x) dFA(x)

F̄A(x0)

=

∫ ∞

0

(FV (x0y))
ke−kν(x0y)

x0fA(x0y)

F̄A(x0)
dy. (29)

Recalling (25)-(26), observe that:

lim
x0→∞

FV (x0y) = 1− (1 + y)1−α (30)
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and

lim
x0→∞

ν(x0y) =

{
0 y ≤ 1

∞ y > 1
. (31)

Since ν(x0y) → ∞ for y > 1, it suffices to consider
the integral in (29) only on the interval [0, 1]. To deduce the
behavior of the density term in (29), notice that for y ≤ 1:

lim
x0→∞

x0fA(x0y)

F̄A(x0)
= (α− 1)y−α. (32)

Using the fact that all functions inside the integral of
(29) are uniformly bounded in x0 and applying dominated
convergence, we get that:

lim
x0→∞

φ

F̄A(x0)
= (α− 1)

∫ 1

0

(1− (1 + y)1−α)ky−α dy.

The final note is that if k ≤ α − 1, then the last limit is
infinite by Fatou’s lemma.

This result demonstrates that the idle fraction of the step-
weight follows the tail of the age distribution, i.e., Θ(x1−α

0 ),
under Pareto L. The power-law decay rate of φ is quite
slow compared to the exponential e−k observed earlier. This
suggests that using large x0 → ∞ is never beneficial; instead,
the optimal technique might be to set x0 close to x∗

0 and then
increase k until the desired φ is reached. However, the question
of what w(τ) to use in this algorithm still remains open.

V. DEGREE OF SELECTED USERS

In what follows, we first obtain E[D(Y )] and then analyze
its growth rate in more detail.

A. General Case

Suppose Y is the random age of users that receive inbound
connections. Note that its distribution depends on w(x) and
FL(x). With that in mind, consider the next result.

Theorem 7: The mean degree of a selected users is:

E[D(Y )] = k
E[w(|A1 −A2|)w(A1)]

(E[w(A)])2
, (33)

where A, A1, and A2 are iid (independent and identically
distributed) with distribution FA(x).

Proof: Given N live users with ages A1, . . . , AN , the
probability of selecting one with age smaller than τ is:∑N

i=1 w(Ai)1Ai≤τ∑N
i=1 w(Ai)

(34)

As n → ∞, this converges to the CDF of Y :

P (Y < τ) =
E[w(A)1A≤τ ]

E[w(A)]
=

∫ τ

0

w(y)fA(y)

E[w(A)]
dy. (35)

Differentiating with respect to τ , we get the density of Y :

fY (τ) =
w(τ)

E[w(A)]
fA(τ). (36)
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Fig. 5. Degree E[D(Y )] under the step-weight (n = 10K, α = 3, k = 8,
and E[L] = 0.5 hours).

Invoking (25)-(26) yields:

E[D(Y )] = E[Dout(Y ) + E[Din(Y )]

=
k
∫∞
0

(E[w(A− y)] + E[w(y −A)])w(y)fA(y)dy

(E[w(A)])2

= k
E[w(|A1 −A2|)w(A1)]

(E[w(A)])2
, (37)

where we use the fact that w(x− y)+w(y−x) = w(|x− y|)
since w(x) = 0 for x < 0.

Theorem 7 indicates that E[D(Y )] is finite when E[w2(A)]
is, which can be seen from:

E[D(Y )] ≤ k
(
1 +

E[w2(A)]

(E[w(A)])2

)
. (38)

B. Asymptotic Growth

Since max-age and truncated power are difficult to simplify,
we limit analytical insight in this section to the step function.
For exponential L, it is easy to get from (33) that

E[D(Y )] = k cosh
( x0

E[L]

)
, (39)

which increases exponentially in x0. One example is shown in
Fig. 5(a), where the degree skyrockets to 1 billion neighbors
with x0 just 10 hours. Note that some of the plots in the paper
miss simulations for large x0, which is a consequence of them
being too slow (since we simulate an entire graph) or requiring
impossibly large n for the system to be random enough.

We next obtain an upper bound on E[D(Y )] for Pareto L
to understand the impact of x0 in non-memoryless cases.

Theorem 8: For the step-weight and Pareto lifetimes:

E[D(Y )] ≤ k
[(

1 +
x0

β

)α−1

− 2(α− 1)2

(2α− 1)

x0

x0 + β

]
. (40)

Proof: Given the step function w(τ) = 1τ≥x0 , recall that
E[w(A− x)] = F̄A(x+ x0) and E[w(x−A)] = FA(x− x0)
for x ≥ x0. Using the middle equation in (37), we get:

E[D(Y )]

k
=

∫ ∞

x0

1− FA(z + x0) + FA(z − x0)

(1− FA(x0))2
dFA(z)

=
1

1− FA(x0)
−

∫∞
x0

(FA(z + x0)− FA(z − x0)) dFA(z)

(1− FA(x0))2
.
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Fig. 6. Degree E[D(Y )] for Pareto lifetimes (n = 10K, α = 3, k = 8,
and E[L] = 0.5 hours).

Since fA(x) is convex for Pareto L, we get:

FA(z + x0)− FA(z − x0) =

∫ z+x0

z−x0

fA(y) dy ≥ 2x0fA(z).

Therefore, combining the last two equations:

E[D(Y )]

k
≤ 1

1− FA(x0)
−

2x0

∫∞
x0

f2
A(z) dz

(1− FA(x0))2
. (41)

Since A ∼ Pareto(α− 1, β), this works out to:

E[D(Y )]

k
≤

(
1 +

x0

β

)α−1

− 2(α− 1)2x0

(2α− 1)(x0 + β)
, (42)

establishing this theorem.
As shown in Fig. 5(b), the exact model (33) is very accurate

for Pareto L, but the upper bound in (40) is also very close.
The increase in degree is not as rapid as for exponential L,
but still E[D(Y )] in this case reaches close to 1 thousand
neighbors with x0 = 10 hours. It is not difficult to see that
after some initial period, the curve becomes a straight line,
which indicates a power-law function. From (40), we know it
must be quadratic since α− 1 = 2. Hence, assuming large x0

and ignoring the second term in (40), we get:

E[D(Y )] ≈ k

(
1 +

x0

(α− 1)E[L]

)α−1

= O(xα−1
0 ). (43)

The next result is a companion lower bound on E[D(Y )].
Theorem 9: For the step-weight and all lifetimes:

E[D(Y )] ≥ kFA(x0)
1− FA(2x0)

(1− FA(x0))2
. (44)

Proof: To get a lower bound on (33), write:

E[w(|A1 −A2|)w(A1)] = P (|A1 −A2| ≥ x0, A1 ≥ x0)

≥ P (A1 ≥ 2x0, A2 ≤ x0)

= FA(x0)(1− FA(2x0)), (45)

which leads to the desired result.
For Pareto L with α > 1, (44) reduces to:

E[D(Y )] ≥ kFA(x0)

(
1 +

2x0

β

)1−α (
1 +

x0

β

)−2+2α

.
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Fig. 7. Resilience-degree tradeoff for Pareto lifetimes (α = 3 and E[L] =
0.5 hours).

Combining with (43), we reach a conclusion that Pareto L
scales E[D(Y )] proportional to the inverse of the tail of the
age distribution:

E[D(Y )] = Θ(1/F̄A(x0)) = Θ(xα−1
0 ). (46)

Note that E[D(Y )] ∝ 1/F̄A(x0) holds for exponential L in
(39) and is likely to apply to other families of distributions. In
any case, these results show that increasing x0 beyond some
value (e.g., 0.5 hours in Fig. 5) may lead to explosion in
E[D(Y )], with the aggressiveness depending on the tail of
the lifetime distribution. Therefore, x0 can be safely tuned
within some interval near zero, after which the remainder of
resilience must come from an increase in k, whose impact on
E[D(Y )] is milder (i.e., linear). This conclusion works well
with our earlier analysis of φ, where the optimal x∗

0 was in
the ballpark of 0.1− 0.2 hours.

The expected degree under max-age and truncated power is
illustrated in Fig. 6. Notice in (a) that E[D(Y )] is linear in
m, which is a slower increase than discovered earlier in the
section. However, it is still unclear whether the combination
(E[D(Y )], φ) of this scenario can beat those of the step-
function. Subfigure (b) shows that under truncated-power
weight, larger ρ leads to higher E[D(Y )], where E[D(Y )]
remains bounded in x0 if ρ < (α− 1)/2.

VI. RESILIENCE AND DEGREE-OVERLOAD TRADEOFF

It should be fairly obvious now that minimizing φ and
keeping E[D(Y )] to a minimum are conflicting requirements.
In this section, we investigate this tradeoff in more depth and
offer avenues for finding optimal neighbor-selection strategies.

A. Objective Function

We first discuss two examples to better motivate the prob-
lem. Fig. 7(a) uses Pareto L and the step-weight to plot a
number of tradeoff curves, each of which is obtained by fixing
k and varying x0 from 0 to 100. As k increases, these curves
move in the south-east direction, with the location of the dips
(i.e., optimal points x∗

0) shifting right as k increases. Note
that the majority of feasible points in this 2D space are vastly
suboptimal and observe the emergence of a Pareto-optimal
boundary, which is continuous if we treat k as such. Similar
results appear under max-age weights shown in Fig. 7(b);
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Fig. 8. Pareto-optimal curves for Pareto lifetimes (E[L] = 0.5 hours).

TABLE I
OPTIMAL PAIR (x∗

0, k
∗) THAT MINIMIZES (49) UNDER THE STEP WEIGHT

AND PARETO LIFETIMES (E[L] = 0.5 HOURS)

α = 3 α = 2
d x∗

0 k∗ min φ x∗
0 k∗ min φ

10 0.13 9.2 6.2× 10−16 0.17 8.6 5.7× 10−6

20 0.14 18.2 5.8× 10−11 0.18 16.9 4.8× 10−11

30 0.14 27.3 5.7× 10−16 0.19 25.2 4.1× 10−16

40 0.14 36.4 5.8× 10−21 0.20 33.5 3.5× 10−21

50 0.14 45.5 6.0× 10−26 0.20 41.8 3.1× 10−26

however, comparison of its Pareto-optimal curve against that
in (a) shows slightly worse results.

Our objective is to determine w(τ) that achieves the best φ
for a given E[D(Y )] = d. Unfortunately, neither numerical
integration nor simulations can exhaust all non-decreasing
functions w(τ). We therefore first offer techniques for finding
the best parameters within a given class of functions and then
argue why the found solutions may be optimal across all w(τ).
Suppose θ is some parameter of w(τ) that we aim to optimize
(e.g., x0 in the step-weight or m in max-age). Then, define:

Q(θ) :=
E[D(Y )]

k
=

E[w(A1)w(|A1 −A2|)]
(E[w(A)])2

(47)

to be the expected degree under parameter θ and k = 1. Since:

k =
E[D(Y )]

Q(θ)
=

d

Q(θ)
, (48)

the objective function to minimize is then reduced to:

T (θ) :=

∫ ∞

0

(FV (x))
d/Q(θ)e−dν(x)/Q(θ)dFA(x), (49)

which is the value of φ, given d and θ. Running minimization
of T (θ) produces the optimal parameter θ for w(τ) and yields
the best k from (48) as well.

B. Results

Table I lists the optimal pair (x∗
0, k

∗) that minimizes (49)
under the step weight and Pareto L. Observe that x∗

0 increases
in d and then converges to some value smaller than E[L].
Condition x0 < E[L] makes sense as it ensures that the
reliable core does not contain too few nodes. Further notice in
the table that the optimal k∗ is slightly smaller than d, with the
heavier-tail case (i.e., α = 2) needing fewer initial edges due

to its higher resilience of out-neighbors. As a result, it sustains
lower join overhead, while achieving better resilience.

We next plot in Fig. 8 the optimal φ subject to E[D(Y )] =
d under additional weight functions. Somewhat unexpectedly,
part (a) shows that uniform and max-age have the same Pareto-
optimal boundaries in this case (i.e., max-age with m = 1
performs best). Nevertheless, both methods are worse than the
step-weight and the difference grows as d gets larger. By the
time d reaches 50, the step-weight offers φ that is 3 orders
of magnitude lower. As displayed in part (b), heavier tails
of L allow max-age to outperform uniform selection, but the
method is still inferior compared to the step-weight, although
the gap between the curves is closer.

In Fig. 8(c), we examine age-proportional w(τ) = τ (i.e.,
truncated power function with ρ = 1 and x0 = ∞). This
approach was used in [40] as a way to stochastically increase
V . Later analysis [39], however, found that this method was
likely infeasible due to the unbounded degree for users with
age τ → ∞. The figure confirms this finding and shows that
its aggressive bias towards older peers produces an extremely
suboptimal result. More interestingly, notice that truncated
power with ρ = 0.5 performs better than uniform, but still
slightly worse than the step-weight.

As shown in plot (d), when ρ becomes large (e.g., ρ = 16),
truncated power merges with the step-weight. Further increase
in ρ yields no improvement, suggesting that the family of
truncated power functions can offer no benefit over the step-
weight, even though it has an extra parameter ρ. Is it possible
that the same conclusion holds for a wider class of w(τ)?

C. General Optimality

Any non-decreasing function w(τ) can be represented as
a (possibly infinite) sum of step-functions

∑
i 1τ≥xi . To

examine whether there exist such combinations that beat a
single step-weight, we generate mixtures of 20 random step-
weights and examine the result in Fig. 9. Surprisingly, in over
10K iterations, we are unable to find a combination that works
better than a single step-weight. Experiments with random
piece-wise linear continuous (PLC) functions produce no
counter-examples either. Based on this evidence, we conjecture
that there is some inherent optimality to using a single step-
weight in solving the degree-resilience tradeoff. Future work
will address this issue further, but our current conclusion is that
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Fig. 9. Performance comparison under the step weight and random mixture
functions for Pareto L (β = 1).

this strategy not only achieves simplicity of implementation
and at least partial tractability in modeling, but also optimality
within the four classes of considered functions.

VII. CONCLUSION

This paper introduced models of resilience and degree
overload in decentralized P2P graphs under node failure. We
examined a number of link-creation methods and proved that
maximizing resilience alone (i.e., sending φ → 0) without
regard to degree provably overloads the reliable users, leading
to a non-functional network. Instead, we argued that the prob-
lem should be addressed from the perspective of minimizing
disconnection under constraints on the mean degree of chosen
users. Our findings suggest that a single step-weight may
be optimal not just within the class of preference functions
considered here, but also outside of it. Further investigation is
needed to address this in future work.
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