On Superposition of Heterogeneous Edge Processes in Dynamic Random Graphs

Zhongmei Yao (Univerity of Dayton) Daren B.H. Cline (Texas A&M University) Dmitri Loguinov (Texas A&M University)

IEEE INFOCOM 2012

March 26

- Introduction
 - Motivation and background
- General edge-creation Model
- Aggregate edge arrival process
- Wrap-up

Introduction

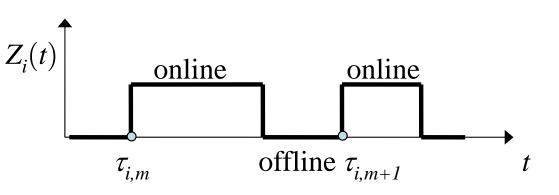
- Modern distributed systems can often be modeled as decentralized graphs
 - Nodes rely on communication services of other servers in the system
- System of *n* heterogeneous nodes
 - States: ON (green) and OFF (grey)

(

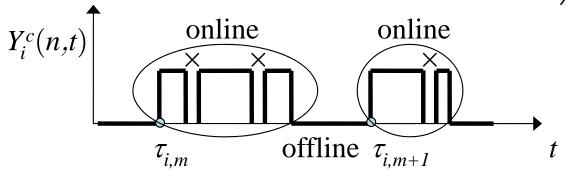
- User on/off durations may follow different distributions
- Each user *i* selects *k_i* out-going neighbors
 - Repair links upon neighbor failure
 - Degree-irregular graphs

Introduction – Link Dynamics

• User ON/OFF processes $\{Z_i(t)\}, i = 1, 2, ..., n$



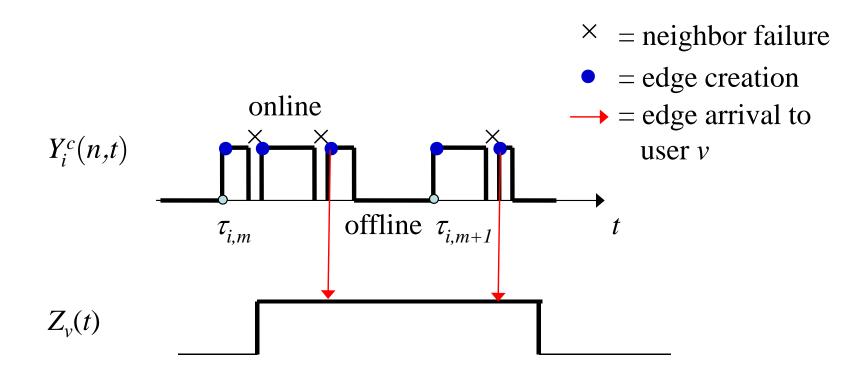
• User *i*'s link DEAD/ALIVE processes { $Y_i^c(n,t)$ }, $c = 1, ..., k_i$



 \times = neighbor failure

- Each $\{Z_i(t)\}$ process spawns k_i link DEAD/ALIVE processes

Introduction – Edge Arrival Processes



- Let {ξ_{n,i}(t)} be an edge-arrival process from *i* to v
 Mark processes Y^c_i(n, t) if user *i* throws edges to node v
- The superposition $\xi_n(t) = \sum_{i=1}^n \xi_{n,i}(t)$ is the aggregate edge arrival process from the system to *v*
 - More in-coming links, more likely this node will be overloaded
 - More in-coming links, smaller isolation probability

Motivation

- Previous work has analyzed numerous avenues for comprehending and improving decentralized systems
 - Graph connectivity [Gupta1998]
 - Resilience [Leonard2005, Yao2009]
 - Load balancing [Wang2007]
 - Routing mobility [Tshopp2008]
 - Improving capacity [Govindasamy2007]
- Prior studies rely on separate models
- This field has reached sufficient maturity that calls for a unifying foundation for explaining the behavior of the aggregate edge process

Related Existing Results

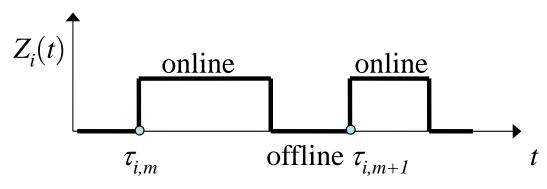
- The Palm-Khintchine Theorem [Heyman1982] states that the superposition process converges to Poisson in distribution if
 - Each stationary renewal process is independent from any other process;
 - Each individual process becomes sparser as *n* increases; and
 - The aggregate arrival rate converges to a *constant* as *n* increases
- The Poisson approximation on the weakly dependent superposition of sparse point processes [Chen 2006]
 - The Poisson approximation is adequate if points exhibit a locally dependent structure
- Our work is rather different
 - Due to the intricate dependency that arises in space (co-existing nodes on the graph) and time (between different lifetimes)

Focus of This Paper

- A complete *generic* modeling framework for understanding link dynamics
- Superposition of a large number of *dependent* edge arrival processes
- Understand *when/how* dynamic decentralized graphs develop the Poisson dynamics

- Introduction
 - Motivation and background
- General edge-creation Model
- Aggregate edge arrival process
- Wrap-up

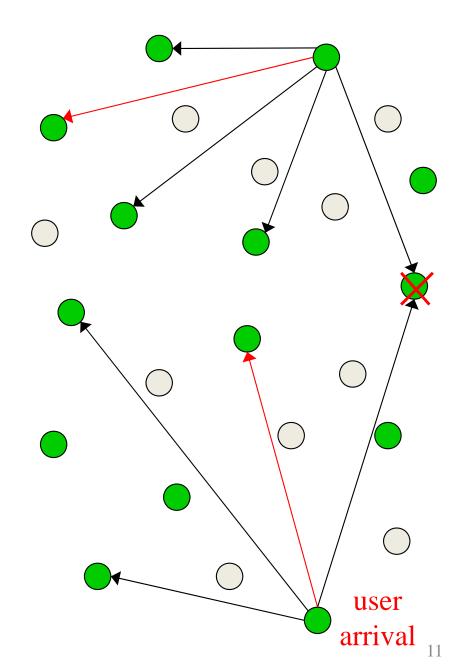
Modeling Assumptions

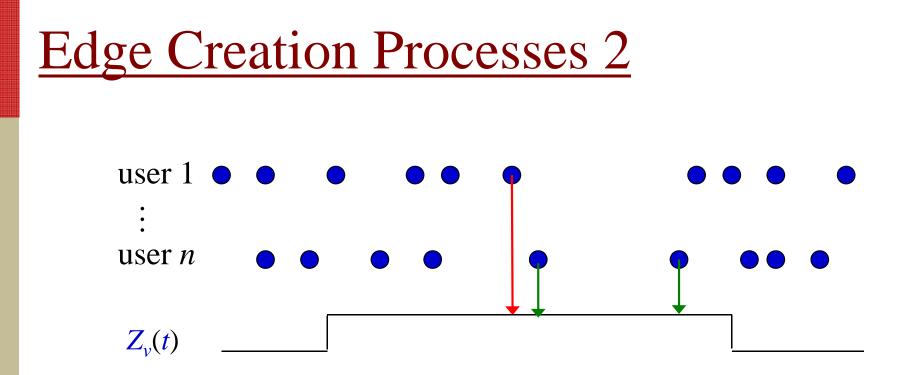


- <u>Assumption 1 (user ON/OFF processes)</u>:
 - 1) Given a fixed set of user types, the user ON/OFF durations of type *j* respectively follow CDFs $F^{(j)}(x)$ and $G^{(j)}(x)$ with finite means
 - 2) Each user ON/OFF duration CDF is labeled with type *j* with probability p_j , where $\sum_j p_j = 1$
 - 3) Given that users have chosen their types, $\{Z_i(t)\}_{i=1}^n$ are mutually independent, stationary alternating renewal processes
- <u>Assumption 2 (out-degree)</u>:
 - The number of outlinks k_i each user *i* monitors is drawn from some distribution K(x) with mean *k*

Edge Creation Processes

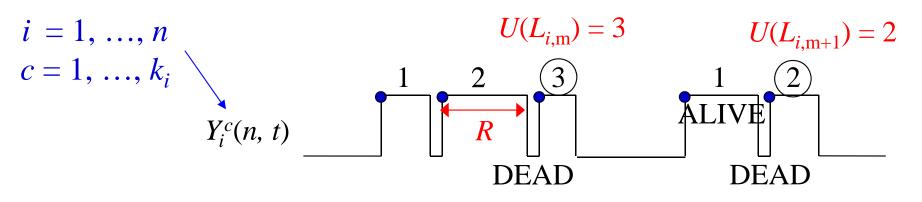
- Each user arrival triggers k_i simultaneous edge-creation events
- Each user departure causes edge-replacement by all its in-degree neighbors
 - Red links shown in this figure





- Edge creation processes are dependent
 - Multiple users may concurrently connect to the same neighbor
 - Each out-link may point to a peer v again after v re-appears in the system
- User *i*'s current selection depends on the history observed by *i*
 - As a result, the model for the number of users available at each selection time is intricate

Edge Creation Processes 3



• The $\{U(s)\}$ counts # of selections in an interval of length s

- For $n \rightarrow \infty$ and uniform selection, $\{U(s)\}$ converges to a pure renewal process with cycle length $R \sim H(x)$

$$\lim_{n \to \infty} P(R < x) = l^{-1} \int_0^x (1 - F(u)) du$$

mean user lifetime aggregate user lifetime distribution

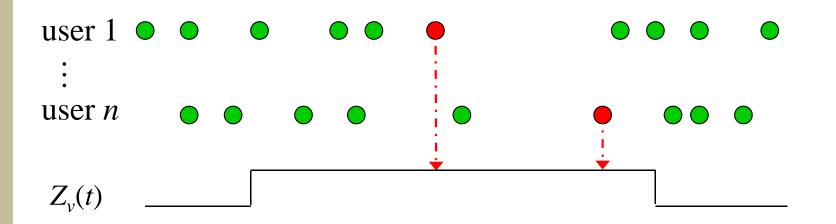
• The mean number of edges created by each *i* in [0, *t*]:

arrival rate of user *i*

 $\lim_{n \to \infty} E[W_i(n, t) | i's type, k_i] = k_i \lambda_i t E[U(L_i)]$ initial out-degree of user *i* # of selections per link within *i*'s lifetime

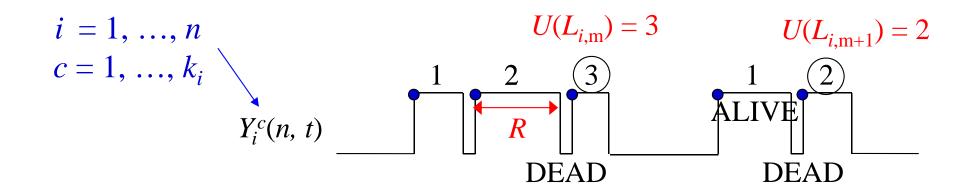
- Introduction
 - Motivation and background
- General edge-creation Model
- Aggregate edge arrival process
- Wrap-up

Main Theorem



- Define $\xi_{n,i}(t)$ to be the edge arrival process from *i* to *v*: # of edges that *i* generates in [0, t] $\xi_{n,i}(t) := \sum_{z=1}^{W_i(n,t)} I_{i,z}^{v}$ connects to *v* as its *z*-th selection

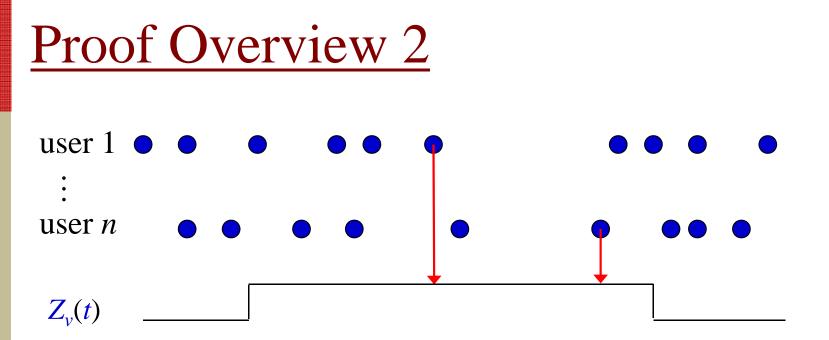
Proof Overview



• The aggregate edge arrival rate γ to user v when v is alive converges to

$$\gamma = \lim_{n \to \infty} E\left[\frac{\sum_{i=1, i \neq v}^{n} W_i(n, t)}{t} \cdot \frac{1}{\# of \ live \ users}\right] = \frac{k + \theta}{l}$$

- The edge arrival rate is the sum of the mean number of new edges k and the mean number of replacement edges θ generated per user lifetime l



- Remaining tasks are to show [Resnick87]:
 - <u>Continuity</u>: the probability that no point occurs exactly at time *t* is 1
 - <u>Mean convergence</u>:

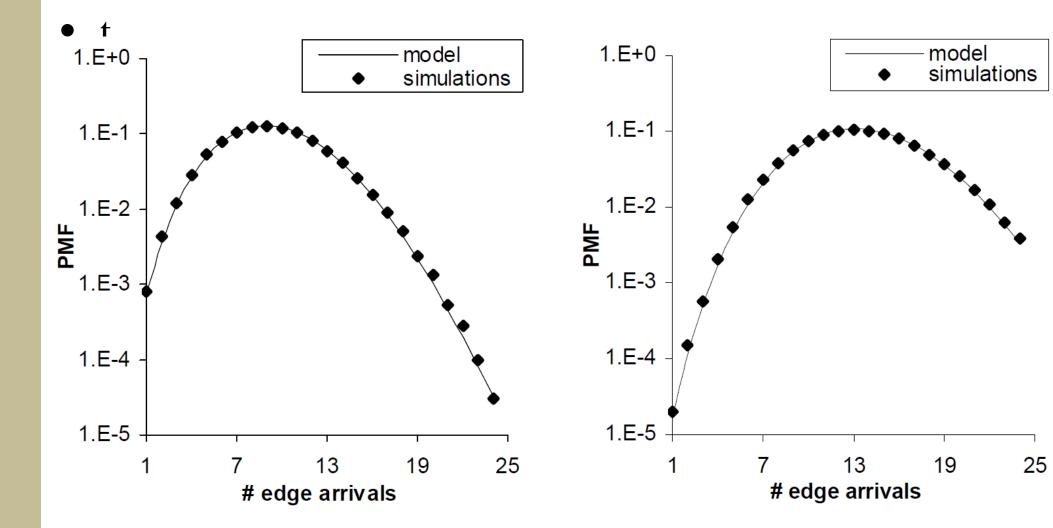
$$\forall t > 0: \lim_{n \to \infty} E\left[\sum_{i=1, i \neq v}^{n} \xi_{n,i}(t) | Z_v\right] = \gamma \int_0^t Z_v(u) du$$

- Probability convergence:
$$\forall t > 0: \lim_{n \to \infty} P\left(\left(\sum_{i=1, i \neq v}^{n} \xi_{n,i}(t)\right) = 0 | Z_v\right) = \exp\left(-\gamma \int_0^t Z_v(u) du | Z_v\right)$$

Proof Overview 3

- Intuitive thinking
 - Under Assumptions 1-2 and uniform selection, as *n* increase, the pool of available users for selection becomes larger
 - The probability that each user *i* selects *any* other peer *more than once* in [0, t] becomes smaller
- To bound the above probability, we first must show that moments of collection $\{W_i(n, t)\}_{n>1}$ exist for all *n*
 - Lemma 3 in the paper
- Currently, model is intractable under other neighbor selection strategies

Simulations



Pareto lifetimes with shape parameter = 3

Pareto lifetimes with shape parameter = 1.5

- Introduction
 - Motivation and background
- General edge-creation Model
- Aggregate edge arrival process
- Wrap-up

- A generic modeling framework for understanding user join/departure and edge arrival
- Closed-form results on the edge-arrival process to each user
- Open problems:
 - Non-uniform selection
 - Non-stationary user churn