In-Degree Dynamics of Large-Scale P2P Systems

Zhongmei Yao (Univerity of Dayton) Daren B.H. Cline (Texas A&M University) Dmitri Loguinov (Texas A&M University)

ACM HotMetrics 2010

June 18

Agenda

- Motivation and background
 - Peer churn and Palm-Khintchine Theorem
- General Edge-Creation Model
- Edge Arrival Process
- In-Degree
- Wrap-up

Dynamics of Distributed Systems

- System of *n* nodes
 - ON (green) and OFF (grey) states
- Each user selects *k* outgoing neighbors
 - Repair links upon neighbor failure
- Want to know in-coming edges of a node
 - More in-links, smaller isolation probability
 - More in-links, more likely this node will be overloaded

Decompose into Two-State Processes

• Each user *i* is either ON or OFF [Yao06]:

• Each outlink *c* is ALIVE/DEAD:

• No *complete* modeling framework in prior work; no rigorous results on in-degree dynamics

Edge Arrival Process

- Let $\xi_{n,i}(t)$ be a marked point process
 - Mark processes $Y_i^c(n, t)$ if user *i* delivers edges to peer *v*
- The edge arrival process to node v is Σ_{i=1}ⁿ ξ_{n,i}(t)
 Superposition of n point processes!

The Classic Poisson Result

"Under *mild* conditions, the superposition of n independent stationary renewal processes approaches Poisson ...

- Let $M_{n,i}(t)$ count the number of renewals in interval [0, t] with inter-arrival time distribution $F_{n,i}(t)$
- <u>The Palm-Khintchine theorem</u> [Heyman and Sobel]: Process $M_n(t) := \sum_{i=1}^n M_{n,i}(t)$ converges in distribution to a homogeneous Poisson process as $n \to \infty$ if

– Processes $M_{n,i}(t)$ are stationary and independent

arse Given any $\epsilon > 0$, for each t > 0 and n sufficiently large, $F_{n,i}(t) \le \epsilon$ for all i

- And the aggregate arrival rate converges to a constant: $\lim_{n\to\infty} \sum_{i=1}^{n} \lambda_{n,i} \to \lambda$

1. A complete modeling framework for understanding peer churn and in-degree dynamics

2. Superposition of a large number of dependent marked point processes

Agenda

- Motivation and background
 - Peer churn and Palm-Khintchine Theorem
- General Edge-Creation Model
- Edge Arrival Process
- In-Degree
- Wrap-up

Modeling Assumptions

- <u>Assumption 1</u>: The number of outlinks k a user monitors is a constant for all n
- <u>Assumption 2</u>:
 - 1) Given a fixed set of user types, the user ON/OFF durations of type *j* respectively follow CDFs $F^{(j)}(x)$ and $G^{(j)}(x)$ with finite means
 - 2) Each user ON/OFF duration CDF is labeled with type j with probability p_j , where $\sum_j p_j = 1$
 - 3) Given that users have chosen their types, $\{Z_i(t)\}_{i=1}^n$ are mutually independent, stationary alternating renewal processes

Dependency

- Edge creation processes are dependent
 - Multiple users may concurrently connect to the same neighbor
 - Each out-link may point to a peer v again after v re-appears in the system
- User *i*'s current selection depends on the history observed by *i*
 - As a result, the model for the number of users available at each zth selection time is intricate

Main Theorem

- Define $\xi_{n,i}(t)$ to be the edge arrival process from i to v: # of edges that igenerates in [0, t] $\xi_{n,i}(t) := \sum_{z=1}^{W_i(n,t)} I_{i,z}^v$ for i indicator that i $\sum_{z=1}^{V_i(n,t)} I_{i,z}^v$ for i to v as its z-th selection

- Our main task is to show [Resnick87]:
 - Continuity: the probability that no point occurs exactly at time t is 1
 - Mean convergence:

$$\forall t > 0: \lim_{n \to \infty} E\left[\sum_{i=1, i \neq v}^{n} \xi_{n,i}(t) | Z_v\right] = \gamma \int_0^t Z_v(u) du$$

- Probability convergence:

$$\forall t > 0: \lim_{n \to \infty} P\left(\left(\sum_{i=1, i \neq v}^{n} \xi_{n,i}(t)\right) = 0 | Z_v\right) = \exp\left(-\gamma \int_0^t Z_v(u) du | Z_v\right)$$

Proof Overview 2

- As *n* increase, the probability that each user *i* selects *any* other peer *more than once* in [0, *t*] becomes smaller
 The edge arrival process from each *i* to *v* becomes sparser
- To *bound* the above probability, we must first show that moments of collection $\{W_i(n, t)\}_{n>1}$ exist for all n
 - Lemma 3 in the paper
- The mean number of edges created by each *i* arrival rate of user *i* arrival rate of user *i* [*W_i(n,t)*|*i*'s type] = kλ_itE[*U(L_i)*|*i*'s type]
 # of selections per link within *i*'s lifetime
 The edge arrival rate γ to user *v* when *v* is alive must

converge
$$\gamma = \lim_{n \to \infty} E\left[\frac{\sum_{i=1}^{n} W_i(n, t)}{t} \cdot \frac{1}{\text{number of live users}}\right]$$

Simulations

Pareto lifetimes with shape parameter = 3

Pareto lifetimes with shape parameter = 1.5

Agenda

- Motivation and background
 - Peer churn and Palm-Khintchine Theorem
- General Edge-Creation Model
- Edge Arrival Process
- In-Degree
- Wrap-up

Main Theorem

• Theorem 2: Under Assumptions 1-2 and uniform selection, given that a user is alive in the system, its expected indegree at fixed age s > 0 converges as $n \to \infty$ to a monotonically increasing function of age: # of existing users that select v = # of connections that *each* user *i* builds since v arrives since both i and v are alive $\lim_{n\to\infty} E[X_n(s)] = kE[U(R) - U(R-s)]$ $=k\int_0^\infty \left(E[U(x)-U(x-s)]\right)dH(x)$

Simulations

Exponential lifetimes

Pareto lifetimes with shape parameter = 3

- A generic modeling framework for understanding user join/departure, edge arrival, and in-degree
- Closed-form results on the edge-arrival process to each user and the transient in-degree
 - Proofs in technical report
- Open problems:
 - Non-uniform selection
 - Non-stationary user churn