
2430 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Unsupervised Clustering Under Temporal
Feature Volatility in Network Stack

Fingerprinting
Zain Shamsi and Dmitri Loguinov, Senior Member, IEEE

Abstract— Maintaining and updating signature databases are
tedious tasks that normally require a large amount of user effort.
The problem becomes harder when features can be distorted by
observation noise, which we call volatility. To address this issue,
we propose algorithms and models to automatically generate
signatures in the presence of noise, with a focus on single-probe
stack fingerprinting, which is a research area that aims to discover
the operating system of remote hosts using their response to a
TCP SYN packet. Armed with this framework, we construct a
database with 420 network stacks, label the signatures, develop
a robust classifier for this database, and fingerprint 66M visible
webservers on the Internet. We compare the obtained results
against Nmap and discover interesting limitations of its classifi-
cation process that prevent correct operation when its auxiliary
probes (e.g., TCP rainbow, TCP ACK, and UDP to a closed port)
are blocked by firewalls.

Index Terms— OS fingerprinting, internet measurement.

I. INTRODUCTION

W ITH the immense growth of the Internet, classification
of large networking datasets has become an important

topic [1], [6], [9], [11], [14], [16], [19], [20], [26], [35], [36].
For classifiers to work, there must be a process that establishes
signatures for known types of behavior and builds a database
that contains all sufficiently different specimens found in the
wild. To keep results up-to-date, new signatures must be peri-
odically acquired and merged into the existing database. This
is often a manual process that suffers from human error, poor
repeatability, heuristic decisions, and database compositions
incompatible across different classification methods.

To overcome these problems, we investigate algorithms and
models for automated creation of clusters among the available
samples, elimination of duplicates, and assignment of labels to
the resulting signatures. We next explain the issues involved
and our results.

A. Motivation and Contributions

Performance of each classifier depends on not only its
internal algorithms, but also database D and types of volatility
experienced during measurement. This makes comparison

Manuscript received July 7, 2016; revised January 23, 2017; accepted
March 22, 2017; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor A. X. Liu. Date of publication April 17, 2017; date of current
version August 16, 2017. An earlier version of the paper appeared in ACM
SIGMETRICS 2016. (Corresponding Author: Dmitri Loguinov.)

The authors are with Texas A&M University, College Station, TX 77843
USA (e-mail: zain@cs.tamu.edu; dmitri@cs.tamu.edu).

Digital Object Identifier 10.1109/TNET.2017.2690641

between different approaches (e.g., Nmap [21], Snacktime [3],
Hershel [25], p0f [34]) fairly complicated, especially if they
utilize incompatible sets of features, databases, or assumptions
on feature determinism. For example, consider method M1

with n signatures and M2 with m � n. It may appear that
M1 is more powerful because its D is bigger; however, its
classification accuracy may be lower due to the larger number
of options to choose from and/or less reliable decision-making.
Additionally, the specific model of distortion X (i.e., noise in
certain features) applied during the experiment may have a
dramatic impact on the result. In such cases, it is possible that
M1 resorts to random guessing and makes inferior choices to
those of M2.

To capture these aspects, our first contribution is to propose
that each classification method be characterized by the number
of signatures d(1 − ε,X), which we call the dimension,
between which it can differentiate with probability at least
1 − ε under a given X . We also argue that database D
should be customized to each pair (ε,X) to contain exactly
d(1− ε,X)-separable signatures. To determine the dimension
and the corresponding D, our second contribution is to propose
an algorithm we call Plata,1 which disturbs each candidate
signature in D using X and verifies that it can be matched to
itself with probability at least 1− ε. Samples that fail to meet
this criterion are eliminated and classification decisions among
other signatures are redistributed in an iterative procedure that
stops when all remaining candidates are (1 − ε,X)-separable.
Assuming availability of labels for a subset of initial candi-
dates, we explain how Plata automatically assigns them to the
d generated clusters.

We apply these concepts to Hershel [25], which is a classi-
fier that, unlike all previous tools in active stack fingerprinting,
allows random OS behavior and provides probabilities, rather
than heuristic weights, for the match across any pair of
samples. We focus on its temporal network features (i.e., delay
jitter) since they are highly volatile and fairly well-understood,
but difficult to separate using manual analysis. This leads
to our third contribution that consists of building a Plata
database using 9.7K webservers discovered in our campus
network and passing all HTTP headers through simhash [16]
to label the elements of D. Using only delay features, we
show that Hershel achieves 80%-separation under 500-ms
random distortion on 117 signatures. Adding deterministic

1The city of La Plata in Argentina pioneered fingerprint databases in 1892.

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SHAMSI AND LOGUINOV: UNSUPERVISED CLUSTERING UNDER TEMPORAL FEATURE VOLATILITY 2431

header values, this number jumps to d(0.8,X) = 398, which
is 3.4 times larger than the biggest database in prior work [25].

While Plata works well, its Monte Carlo simulations require
a large amount of CPU time to compute the Hershel probabil-
ities (i.e., over 24 hours using 16 cores). Therefore, our fourth
contribution is to build a closed-form model for the matrix
produced by Plata. This leads to an interesting discovery
that Hershel’s iid (independent and identically distributed)
jitter assumption [25] is violated in practice, making the
model disagree with simulations. We therefore create a novel
classifier for temporal features that relies on one-way delay
instead of jitter. We call the resulting method Hershel+ and
show that it is not only more accurate, but also faster than
Hershel after an appropriate expansion of integrals. It also
admits a closed-form representation of the entire Plata matrix,
which reduces the separation time to just 12 minutes and
boosts our database dimension to 420 separable signatures.
All of this forms our fifth contribution.

We finish the paper by scanning the Internet on port 80
and applying Hershel+ to the result. Among Internet-wide
studies, this is the largest population to be fingerprinted
(i.e., 66M IPs), using the most extensive database (i.e., 420
signatures), and the first such attempt with an automatically
generated D. Compared to the scan six years ago [25],
we find that the number of Linux and embedded devices
has almost doubled, while that of Windows has remained
stable. We compare some of our results with those of Nmap
and discover a major flaw in the operation of the latter
that surfaces in scenarios with non-ideal network conditions
(e.g., firewalls). More importantly, however, we conclude that
stochastic network effects do not impede the use of temporal
features, but they require a more careful database construction
process. Our proposed framework of Plata and Hershel+ is a
step in the direction of automated, repeatable, and streamlined
classification of massive datasets.

II. BACKGROUND

A. Remote OS Classification

Stack fingerprinting is often used in market-share analy-
sis [19], [20], Internet characterization [11], [14], research
measurements [4], [8], [15], and security, where administrators
aim to discover vulnerable devices and/or stealth intruders in
the network [1], [17], [26]. We split the work across two
main categories in Fig. 1. In the first tier are classifiers that
rely only on deterministic features, usually selected from the
headers of various protocols (i.e., TCP, IP, UDP, ICMP).
Among these, Nmap [21] is the most prominent tool with
rules to identify over 4K network stacks.2 With hundreds of
transmitted probes, several protocols that must pass remote
firewalls, and complaints from network administrators dur-
ing fingerprinting of their networks, Nmap is not generally
considered suitable for Internet-scale use. Additional clas-
sifiers in this category include p0f [34], Xprobe [33], and
several others [2], [18], [28]. They have a smaller presence

2Nmap once used random delay features, but they were later removed due
to classification difficulties.

Fig. 1. Taxonomy of previous work.

and significantly fewer signatures, but most of their ideas have
been ported to Nmap.

The second direction in Fig. 1 handles random features,
usually in the form of delays produced by the OS. One option
is use the clock drift in the kernel, which can be derived
from observing the timestamp option in streams of reply pack-
ets [13] or variation in timer frequency [6]. Another option
is to monitor retransmission timeouts (RTOs) of SYN-ACKs
for half-open connections, where the methods include Snack-
time [3], RING [30], IRLsnack [14], and Hershel [25]. The
last classifier uses a stochastic model that takes into account
packet loss, delay jitter, and random header-field modifications
by end-users, some of which we review below.

B. Database Creation

The majority of efforts in stack fingerprinting [2], [3],
[6], [13], [18], [21], [25], [28], [30], [34] concentrate on
introducing new features and designs to further distinguish
between the OSes, thus improving the classification step;
however, they universally rely on manual effort to construct
databases. Since all of them rely only on deterministic features,
database creation is fairly uncomplicated.

The closest related problem to ours is automatic discovery
of features that can be used to differentiate one OS from
another. For example, [5] proposes a set of rules built from
sending out a large number of probes (i.e., 300K) to controlled
hosts and randomly varying header fields to detect patterns
that produce OS-specific responses. The authors show that
this method can reliably differentiate between three stacks
(i.e., Windows XP, Linux 2.6, and Solaris 9) in a LAN
environment.

In [23], this idea is explored at a larger scale by increasing
the number of network stacks and applying a wider range
of machine-learning algorithms from the Weka tool [10].
However, their results from scaling this approach to more
signatures are quite pessimistic – the authors conclude that
over-fitting to non-deterministic header fields, training bias
towards certain implementations, and lacking semantics lead
to confusion for the learning algorithms.

III. OVERVIEW

We start by defining the type of decisions we are facing
and the inherent challenges. While later sections use examples

2432 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Fig. 2. Classifier features. (a) types. (b) separability.

from stack fingerprinting, the same concepts are applicable to
broader families of problems.

A. Terminology

Classifiers rely on vectors of distinctive features that identify
each specimen, either uniquely or with some reasonably high
probability. The former case arises when the features are deter-
ministic, meaning all inspections of a given system produce
the same result (e.g., the order of TCP options). The latter
case occurs when the features are inherently random due to
some non-deterministic processes running within the specimen
(e.g., SYN-ACK retransmission delays). Features of either
type may undergo additional modification due to influence of
system owners or as byproduct of the measurement process,
in which case we call them volatile (e.g., users tuning the
TCP window size, queuing delays affecting packet spacing).
All four types are illustrated in Fig. 2(a).

Note that volatility and randomness are not the same –
the former arises due to forces external to the object being
classified, while the latter due to internal. This distinction
is important when internal disturbances exhibit substantially
larger variance than external, or produce patterns that cannot
be accounted for in the volatility model alone. With this in
mind, we call classifiers simple if they operate using only
non-volatile deterministic features (i.e., type-1 in Fig. 2(a))
and complex otherwise (i.e., types 2-4).

Consider an automaton that performs classification deci-
sions for measurements x using some database D. We call
the matching process membership if it returns the probability
that x ∈ D, where determination of the most-likely match is
not important. One example is intrusion detection that aims
to decide whether payload x is malicious or benign against a
database of known exploits. We call the process identification
if the result must produce the one signature y ∈ D with
the highest similarity to x. Stack fingerprinting falls into
this category. In either case, the accuracy of the method is
assessed by the percentage of correctly classified values under
a particular model of volatility.

B. Challenges

We are now ready to describe the problem of creat-
ing D. Assume a measurement of several, possibly duplicate,
specimens. Membership classifiers are not overly concerned
with high-precision duplicate elimination as these have no
effect on accuracy, only on speed and memory consumption.
Simple identification classifiers can construct D by retain-
ing the observations with unique combinations of features,

which makes the problem trivial. However, complex iden-
tification classifiers must instead ensure separability among
the signatures, keeping only those that can be reliably distin-
guished from each other under various types of distortion X .
Inseparable specimens in D drop classification accuracy and
increase overhead, while offering no tangible benefit.

To visualize this better, Fig. 2(b) plots random features
of four hypothetical systems – circles, squares, diamonds,
and triangles – where each point is a random observation
of the corresponding system. Assuming uniformly random
noise centered at each sample, distortion X1 keeps circles and
diamonds separable, but not necessarily triangles and squares.
Dropping either of the last two leads to a separable 3-signature
database. For larger radius of noise (e.g., X2 in the figure)
the database may consist of only two separable signatures –
diamonds and one of circles/squares/triangles.

Our goal in this paper is to study separation algorithms
for volatile and/or random features, with application to
inter-packet delays in wide-scale stack fingerprinting. This
problem arises in single-packet techniques [3], [25], [30]
whose classifier must heavily rely on temporal features. The
general appeal of these methods includes low bandwidth
consumption (i.e., no extra packets beyond those sent by the
scanner), a reduced probability of tripping IDS, no requirement
that the target respond on closed ports or multiple protocols,
and good scalability in Internet-wide classification. However,
unlike traditional tools [21] that rely on deterministic features,
single-packet classifiers require prohibitively expensive man-
ual effort to construct databases of non-trivial size. Since this
problem has not been studied before, we address it below.

IV. DATABASE CREATION USING PLATA

This section describes our technique for ensuring separa-
bility between observations with volatile/random features and
building a database on top of such measurements.

A. Preliminaries

Traditional manual construction of D isolates each unique
system and lets the classifier analyze it separately. In contrast,
our framework assumes a one-step measurement process that
remotely probes production systems S1, . . . , Sn and builds the
entire database without knowing which ones are duplicates
of each other. We allow these specimens to exhibit feature
randomness and aim to construct D that is (1 − ε)-separable
under a known volatility model X .

To capture random behavior, each specimen Si must be
observed several times to establish a distribution of its
behavior. Let Δi be the corresponding random feature vector
whose probability mass function (PMF)

pi(δ) := P (Δi = δ) (1)

is built from observation. Note that δ = (δ1, δ2, . . .) is a
deterministic feature vector that consists of multiple scalar
values. Using a pair of initial RTOs (SYN-ACK retransmission
timeouts), Fig. 3(a) shows the distribution of Δi for two Xerox
printers in our dataset. Depending on the target jitter model X ,
these two hosts may very well be (1− ε)-separable; however,

SHAMSI AND LOGUINOV: UNSUPERVISED CLUSTERING UNDER TEMPORAL FEATURE VOLATILITY 2433

Fig. 3. Randomness of RTO features and elimination of duplicates in Plata.
(a) random features. (b) matrix reduction.

doing so manually for hundreds of thousands of points is close
to impossible. To compound the issue, the majority of systems
use random vectors with at least 3 dimensions and some with
over 20.

Classifiers that deal with random features must provide a
function p(δ|δ′,X) that produces a similarity score for each
pair of deterministic vectors (δ, δ′) under a given volatility
model X . This metric estimates the likelihood that δ′ has
been distorted to δ during remote measurement. Then, sim-
ilarity between two observed systems (Si, Sj) is given by the
following expectation

p(Δi|Δj ,X) =
∑

δ

∑

δ′
p(δ|δ′,X)pi(δ)pj(δ′). (2)

For a given i, classifiers are typically concerned with
finding j that produces the largest value in (2). However, we
are facing a different problem that requires normalization. Let
πi(X) :=

∑n
j=1 p(Δi|Δj ,X) be the total similarity weight

of system Si across all available options j. Depending on the
classifier, πi may not always be 1. To handle such cases, define

q(Δi|Δj ,X) =
p(Δi|Δj ,X)

πi(X)
(3)

to be the probability that Si gets classified as Sj . Now suppose
systems S1, . . . , Sn are deployed in a production environment
(e.g., wide-area Internet) and measured using remote probing.
Therefore, instead of seeing Δi, the observer now samples
Δi+θ, where random vector θ is driven by the same distortion
model X . We are thus interested in identifying the largest
subset of S1, . . . , Sn in which each system can be matched
back to itself with probability at least 1 − ε under noise X ,
i.e., E[q(Δi + θ|Δi,X)] ≥ 1 − ε.

B. Matrix Construction

We next describe our database-construction framework,
which we call Plata. It starts by building a confusion matrix
M = (Mij), where each cell Mij = E[q(Δi + θ|Δj ,X)]
and the expectation is taken over θ. In general, classification
decisions and vectors θ may be available only as output of
some algorithm. For example, the former might be a C4.5
decision tree and the latter may require simulations of a
specific queuing discipline. In such cases, the only solution
is to run Monte-Carlo simulations that repeatedly distort Δi,
classify the resulting observations, and average the result to
obtain an approximation to Mij .

To this end, suppose we generate r vectors θ1, . . . , θr by
simulating X . Using the PMF in (1), we obtain the same
number of instances from random variable Δi, which we call
δ1i , . . . , δ

r
i . Then, the approximate matrix is given by

M̃ij =
1
r

r∑

m=1

q(δm
i + θm|Δj ,X). (4)

Since this expands to

M̃ij =
1
r

r∑

m=1

∑

δ′
q(δm

i + θm|δ′,X)pj(δ′), (5)

the overhead of constructing M̃ is determined by the product
of r, matrix size n2, the number of unique values δ′, and
complexity of computing p(δ|δ′,X), which typically is a linear
function of the combined vector length |δ| + |δ′|.

C. Separation

Once complete, the diagonal of M̃ contains the probability
of self-classification under X . The next task is to iteratively
eliminate specimens that disperse a significant fraction of
classification decisions to non-diagonal cells until the target
(1− ε)-separability is achieved, i.e., all M̃ii ≥ 1− ε. At each
step, Plata removes row k with the smallest diagonal value and
redistributes its probability weights to the remaining systems.
The naive approach is to re-run Monte-Carlo simulations and
build a new matrix with dimension (n−1)×(n−1); however,
this is extremely expensive, especially when r is orders of
magnitude larger than n.

The second option is to infer the new weights using a model
and build a sequence of approximations that produce a final
matrix similar to that in the naive method. Consider row i that
needs to partition M̃ik, i.e., the probability to classify i as k,
among the other columns. If we assume that in the absence
of system k, classification decisions follow the remaining
probabilities in row i, the likelihood to classify δm

i + θm as
j �= k now becomes M̃ij/(1 − M̃ik). Multiplying this by the
weight being removed and adding to the current M̃ij , we get
the following transformation that keeps row sums invariant

M̃ij = M̃ij +
M̃ij

1 − M̃ik

M̃ik. (6)

Note that if none of i’s classifications went to system k,
i.e., M̃ik = 0, row i does not change. This process continues
until all diagonal values are above 1−ε. The remaining systems
at that stage are added to the database and their number estab-
lishes the (1 − ε,X)-dimension of the classifier. An example
of this reduction process is shown in Fig. 3(b), where the
rows are sorted in ascending order of M̃ii for convenience of
presentation. Setting ε = 0.2, there are three rows that violate
separability constraints. Since (S1, S2) are both similar to S3,
but none of them resembles S4, intuition suggests the initial
measurement may contain only two separable specimens. After
removal of the first row, all diagonals receive a boost, but
(S2, S3) are still inseparable. Another iteration produces the
expected two vectors that match themselves with probability
0.95 or better.

2434 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Fig. 4. Applying labels to database clusters.

Note that 1 − ε can be used as a tuning parameter – larger
values reduce the number of eventual vectors in the database,
while smaller values preserve more, but at the risk of having
more duplicates and poor classification accuracy. Although
only M̃ii is compared against 1 − ε, the entire matrix needs
to be recomputed after each iteration. This is necessary in
order to properly distribute the weights of eliminated systems
using (6). Thus, the complexity of each step is n2, repeated
n− d times, where d := |D| is the size of the final database.

D. Labeling

Once database D is created, Plata needs to assign
system-identifying labels to the available signatures. Assume
a process that collects mappings from each Si to the corre-
sponding label li using some type of download (e.g., port-80
HTTP requests), oracle input, or other means, but possibly
for a subset of the known specimens. Incomplete labeling
may occur due to bandwidth constraints, obfuscation of certain
systems by their administrators, and generic software names
(e.g., apache) that fail to identify the underlying system. Since
labels might be available for hosts that have been discarded
during the matrix-separation step, we must again consider the
entire set S1, . . . , Sn. To this end, we classify each known
specimen using D and produce a set of clusters C1, . . . , Cd,
where d is the (1− ε,X)-dimension of the database/classifier
obtained earlier by Plata.

To eliminate duplicate labels, a separate procedure clusters
them into multiple categories L1, L2, . . . using some type of
string-similarity matching. As shown in Fig. 4, there is a
directed edge between clusters Lk and Cj if there exists a
system Si ∈ Cj such that its label li ∈ Lk. Note that this
forms a bipartite graph in which Lk may point to multiple
clusters Cj . Plata leaves the specifics of choosing the right
label for each Cj to the application. One option is to combine
the labels of all in-neighbors, as done in Fig. 4. Another option
is to assign weights to edges (e.g., equal to the number of
corresponding Si’s) and enforce some minimum frequency
before a label is considered valid. This can be further extended
to allow for majority voting. For example, 100 hosts with
label “Linux 2.4” and two with “Windows 7” mapping to
Cj probably indicate the former is more appropriate than the
latter.

V. OS FINGERPRINTING DATABASE

Plata is quite general and does not assume much beyond
existence of similarity function p, algorithms to produce

Fig. 5. RTOs of half-open connections.

distortion θ, and ability to observe remote systems. We now
apply this framework to one specific problem – OS stack
fingerprinting under random/volatile features.

A. Classifier

As discussed earlier, the majority of stack fingerprinting
tools treat all features as deterministic, in which case database
construction is rather straightforward. The only exceptions are
clock-skew methods [6], [13] and single-packet classifiers [3],
[14], [25], [30]. The former direction has serious bandwidth
overhead and suffers from inability to scale the database
beyond a handful of hosts. The latter category, which is our
focus, sends a single SYN packet to the target and observes
a stream of SYN-ACKs, as illustrated in Fig. 5. The vector
of retransmission timeouts (RTOs) observed by the client
forms the network features of the classifier. Combining unique
RTO patterns with various fixed TCP/IP header fields, these
algorithms can produce pretty robust OS identification.

The database for single-packet tools has evolved from 25
signatures in [3] to 98 in [14], eventually reaching 116 in [25],
but the corresponding (1−ε,X)-dimensions of the underlying
classifiers remain unknown. So far, manual construction of D
in these tools has relied on separation only across determin-
istic features (e.g., window size, TTL, RST bit) and never
examined how to determine whether two hosts with the same
fixed header values have sufficiently distinct RTO vectors.
To address this issue, we next apply Plata to temporal features
of single-packet classifiers and build the first OS-fingerprinting
database that is separable across random/volatile features.

B. Data Collection

We scan our campus network (three /16 blocks) on
port 80 to obtain observations Δ1, . . . ,Δn from responsive
hosts S1, . . . , Sn. Since each Δi may be random due to
kernel-scheduling peculiarities, as in Fig. 3(a), we persist in
gathering w = 50 RTO vectors from each host, which is
typically enough to capture whatever variation Δi may exhibit.
Additionally, to exclude lossy vectors from being included in
the database, the scanner continues until it receives w samples
of the maximum length seen so far. Since packet loss in
our network is low, quick convergence follows – the average
number of SYN probes per responsive IP was 50.14.

As each Si is a public server, care needs to be exercised
to not overload the target with w back-to-back requests
and cause unnecessary side-effects (e.g., rejected connections,
CPU overload). However, as it turned out, even conserva-
tive 1-second inter-SYNs delays were too small. One such
problem surfaced with certain printers, whose SYN-backlog

SHAMSI AND LOGUINOV: UNSUPERVISED CLUSTERING UNDER TEMPORAL FEATURE VOLATILITY 2435

queue [36] was smaller than w. When the queue was full, the
printers terminated the oldest ongoing sequence of SYN-ACKs
and started a new one. This caused the corresponding Δi

to exhibit random truncation and presented difficulties in
obtaining w loss-free observations. We eventually settled on
delaying SYN probes by 240 seconds, i.e., double the TCP
MSL (maximum segment life), which solved the problem.

The final caveat relates to OS kernel timing of RTOs.
As speculated in [25], some hosts use a global timer that is
independent of the SYN arrival time to generate SYN-ACKs
for half-open connections. This causes the first RTO (and
sometimes the remaining ones) to be randomized in some
default range. In such cases, it is important to capture these
effects in the database. We thus add random variable U to
240 seconds to avoid SYNs synchronization with any global
clocks. Our U is uniform in [0, 3] seconds, but other options
are possible as well.

Along with the scan, a separate process opens a con-
nection to each responsive host and attempts to download
its root page over HTTP. This is known as banner grab-
bing – a general technique for discovering host type using
some text-based protocol (e.g., telnet, finger, HTTP, FTP, and
SMTP). This was used for OS fingerprinting in the 1990s,
when Unix-based servers would readily volunteer their OS
name and version. It has since fallen out of favor because
these identification strings may be replaced by OS-oblivious
names (e.g., Apache) or altogether removed, which makes
the technique less reliable. However, banner grabbing works
for our purpose since admins have no incentive to obfuscate
OS names behind our campus firewall, and Plata only needs
a subset of S1, . . . , Sn to be labeled. This provides a fast,
repeatable process that requires no manual intervention.

We receive SYN-ACKs from 9,879 IPs, assemble
w loss-free RTO vectors from n = 9,701 hosts, and success-
fully complete a banner download from 9,594 of them.

C. Separating Features

Single-packet OS-fingerprinting tools use both deterministic
and random features. For each Si, we move the former into
vector ui and the latter into Δi. In general, Hershel treats
ui as volatile, which means it allows users to change TCP/IP
header values without making the OS fundamentally different.
However, there is no even remotely accurate model for distor-
tion X applied by users to these features. We therefore limit
our efforts to the better-understood network delay jitter and
its volatility. If a realistic noise model X becomes available
for ui, Plata can be used to compact duplicate hosts even
further.

The simplest way to achieve separation on the deterministic
features is to combine ui with the size of RTO vector Δi.
Splitting the available hosts S1, . . . , Sn into clusters based
on the deterministic pair (ui, |Δi|) produces the first row
of Table I, with 28 signatures for RING [30], 209 for Snack-
time [3] and IRLsnack [14], and 344 for Hershel [25]. Note
that hosts within each cluster have same-length RTO vectors
and our next goal is to further subdivide them into smaller
groups that are (1 − ε,X)-separable.

TABLE I

DATABASE DIMENSIONS

Fig. 6. Plata example. (a) candidate hosts. (b) (1 − ε)-separable hosts.

To decide on X , assume the objective is to achieve sufficient
accuracy during Internet-wide scanning, where each Δi is
disturbed by random queueing delays along the path from
the server back to the scanner. Due to constant SYN-ACK
packet size, fixed transmission/propagation delays cancel out
during RTO computation [25]. It is thus sufficient to use
a FIFO-queue simulator that adds random delay jitter θ to
each measurement, ensuring that no packets are reordered.
As Hershel is fairly insensitive to the assumed model of
jitter [25], we use exponentially distributed queueing delays
with mean 500 ms, which results in θ being zero-mean
Laplace. If better knowledge of network conditions is acquired,
θ can be modified accordingly.

We generate r = 1K random noise vectors θ1, . . . , θr and
add them to each observation of Δi, resulting in wr = 50K
disturbed samples per host Si. We run Plata for each candidate
classifier using their similarity function p and compute (5),
in which pj(δ′) = 1/w. This creates one matrix M̃ for each
unique combination of deterministic features, which is fed to
Plata’s separation algorithm with 1−ε = 0.8. After all matrices
are compacted, we combine the surviving specimens into the
final database D.

Going back to Table I, the second row shows that RTO fea-
tures alone allow single-packet tools to differentiate between
23 − 117 stacks under this combination (ε,X). Hershel
more than doubles the dimension of its nearest competitor,
which stems from its more sophisticated model for p(δ|δ′).
Combining both deterministic and random features, Hershel
ends up with 398 signatures, which is quite significant given
the limited scope of the initial scan. Due to its higher accuracy
and better separation ability, the rest of this paper stays with
Hershel as the underlying classifier for Plata.

To demonstrate how matrix reduction works in practice,
consider five actual Windows hosts in Fig. 6(a) with |Δi| = 2.
While all of these OS kernels produce noisy RTOs, there
are two distinct patterns. Fig. 6(b) shows the result of
Plata separation, which successfully extracts both patterns
(Windows Server 2003 with two different service packs) out
of the group and represents them using hosts (S3, S5).

2436 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

TABLE II

TOP 5 DATABASE SIGNATURES GATHERED FROM OUR CAMPUS SCAN (WIN = WINDOW SIZE, TTL = TIME TO LIVE,
DF = DO NOT FRAGMENT, MSS = MAX SEGMENT SIZE, RST = RESET PACKET FEATURES)

D. Label Clustering

Note that Plata does not specify how to assign labels to clus-
ters {Lj}. Besides ground-truth obtained from device owners,
which may be infeasible for large decentralized networks,
some of this information can be collected automatically. Our
approach is to proceed along this route. Recall that HTTP
headers contain the “Server:” string that sometimes identifies
the version of the web server and uniquely ties it to a
particular OS (e.g., Windows IIS). However, in other cases, the
operating system can be inferred only from the HTML content
of the page, as is the case with certain embedded devices
(e.g., printers, cameras). We thus combine the “Server:” field
with the entire HTML page and perform clustering using
simhash [16], which is a well-known technique for detecting
similar webpages. This creates 515 clusters L1, L2, . . ., which
we match to d = 398 Hershel signatures C1, . . . , Cd using the
procedure in Fig. 4.

The final step is to perform manual verification of label
sanity, determine which tags in the HTML to use (e.g., head,
title), and convert low-level software versions to the corre-
sponding OS name (e.g., IIS 7.5 to Windows Server 2008 R2).
With enough coding effort to account for the various formats,
most of this can be automated [29], but we found it easier to
just show each page to a human and let them decide which of
the found labels is appropriate. Plata does this by sequentially
rendering one page from each Lk and recording the user’s
response. Even for n → ∞, the number of unique clusters
should remain reasonably small.

Results reveal that our label clustering works quite well
– 326 out of 398 signatures (82%) receive a meaningful
description. They are responsible for 98% of n = 9,701
measured hosts. Table II shows the top five most-popular
signatures on our campus, where Plata successfully shrinks
the most common Windows RTO pattern from 3, 803 hosts
down to 1. Heavy usage of Windows (43% of all servers) and
Linux (12%) is no surprise, but we also find a large amount
of HP LaserJet printers in fifth place. The 398 − 326 = 72
unlabeled cases belong to network elements that either fail to
provide a banner or supply one that contains no clue about the
underlying OS. The latter case often happens with extremely
rare devices for which we have only one banner to analyze.
If Plata is exposed to additional data collection and user input
(i.e., outside of our network), these gaps can be eliminated.
The main benefit of our framework is that only a small fraction
of n (i.e., 72/9701 = 0.7%) requires further attention.

Note that using automated banners for labeling does limit
our ability to distinguish between OS versions. For example,

the two Linux signatures in Table II are likely from different
kernel versions. However, if the application requires more
fine-granular labeling, additional effort – installing each OS
in a test environment or contacting the owner – is needed in
conjunction with Plata.

VI. OPTIMIZING PLATA

While Plata works well, it bottlenecks on generating θm

and recomputing p(δm
i + θm|δ′,X) for each of the r random

noise samples. This becomes especially noticeable in large
groups, such as Windows with 3.8K hosts. Using 16 AMD
Opteron cores @ 2.8 GHz and 64 GB of RAM, a parallelized
C++ implementation requires over 24 hours to compute M̃ .
Although database creation is a one-time process, it is still
desirable to have faster and more scalable algorithms that can
tackle larger input. We address this next.

Analyzing (5), there are two obvious ways to reduce com-
plexity – lowering r and making function p(.) faster. However,
for Hershel, we can attempt to do even better – replace
Monte-Carlo simulations with a directly evaluated model that
produces the expected probability that Si gets classified as
Sj under random noise θ. The rest of the section treats
θ = (θ1, θ2, . . .) as a vector consisting of scalar random
variables, with respect to which all expectations are taken.
Since Mij := E[p(Δi + θ|Δj ,X)] can be written as

∑

δ

∑

δ′
E[p(δ + θ|δ′,X)]pi(δ)pj(δ′), (7)

construction of M in Plata requires only knowing E[p(δ +
θ|δ′,X)] for two deterministic, same-length vectors δ, δ′.

A. Closed-Form Plata-Hershel Matrix

To understand the results that follow, we briefly review
how Hershel deals with delay jitter. Assuming f(x) is the
distribution (density or PMF) of one-way jitter and em =
δm − δ′m is the error term in the m-th RTO, the similarity
between two deterministic vectors is [25]

p(δ|δ′,X) =
|δ|∏

m=1

f(em). (8)

Note that (8) treats error values (e1, e2, . . .) as iid random
observations. For the default model of X , Hershel uses
exponential one-way delay [25]. This produces Laplace jitter
with density f(x) = (λ/2)e−λ|x|, where parameter λ should
conservatively reflect the amount of jitter anticipated in
the network during actual measurement (i.e., 1/λ should

SHAMSI AND LOGUINOV: UNSUPERVISED CLUSTERING UNDER TEMPORAL FEATURE VOLATILITY 2437

upper-bound the real mean). With this in mind, our goal is
to derive the following expectation

E[p(δ + θ|δ′,X)] = E
[|δ|∏

m=1

f(em + θm)
]
, (9)

where each θm is a random variable.
Given vectors δ and δ′, we are interested in how similar

Hershel considers them after the former undergoes random
modification by the network. Suppose variables (θ1, θ2, . . .)
are iid Laplace with rate μ. Note that μ may not equal λ
if separation is performed for purposes other than future
scanning of the Internet. In that case, μ may be set to match
the environment in which S1, . . . , Sn are probed (e.g., 5-ms
average jitter for a campus network). Define bm = e−|em| and
consider the next result.

Theorem 1: For the Hershel classifier, the expected similar-
ity between δ + θ and δ′ is

E[p(δ + θ|δ′,X)] =
(λμ

4

)|δ| |δ|∏

m=1

{
gm λ �= μ

hm λ = μ,
(10)

where

gm =
2(λbμm − μbλm)

λ2 − μ2
, hm = bλm

(
|em| + 1

λ

)
. (11)

Proof: Using (8),

E[p(δ + θ|δ′)] = E
[|δ|∏

m=1

f(δm + θm − δ′m)
]

=
(λμ

4

)|δ| |δ|∏

m=1

∫ ∞

−∞
e−λ|em+z|−μ|z|dz.

First assume λ �= μ. Given a constant c < 0, we get
∫ ∞

−∞
e−λ|c+z|−μ|z|dz =

eλc

λ+ μ
+
eμc − eλc

λ− μ
+

eμc

λ+ μ
.

When c ≥ 0, we have
∫ ∞

−∞
e−λ|c+z|e−μ|z|dz =

e−μc

λ+ μ
+
e−λc − e−μc

μ− λ
+

e−λc

λ+ μ
.

Combining the two cases, notice emergence of |c|
∫ ∞

−∞
eλ|cm−z|eμ|z|dz =

e−λ|c| + e−μ|c|

λ+ μ
+
e−μ|c| − e−λ|c|

λ− μ
.

For the special case λ = μ, we obtain
∫ ∞

−∞
eλ|c+z|e−λ|z|dz = e−λ|c|

(
|c| + 1

λ

)
. (12)

Simplifying using bm, we get (10). �
The next logical step is to investigate whether matrix

M built using (10) matches the Monte-Carlo version M̃ .
We consider a simple scenario with |δ| = 2, δ = δ′, and
λ = μ = 10. This represents some diagonal cell Mii, i.e., sim-
ilarity score of Si to itself, for a deterministic Δi. Setting
em = 0 for all m, (10) produces 6.25, while Monte-Carlo
simulations yield M̃ii = 6.7. The error increases with RTO
vector length and is more difficult to predict for off-diagonal
values Mij .

Further analysis uncovers that the source of this bias lies in
Hershel’s assumption on delay jitter. To illustrate this point,
consider distorting a two-RTO vector δ using θ = (θ1, θ2).
From the queuing model of [25], consecutive Laplace jitter
values can be expressed using three iid exponential one-way
delaysX,Y, Z , i.e., θ1 = Y −X and θ2 = Z−Y . While [25] is
reasonable in arguing that X,Y, Z are independent due to the
large gaps between SYN-ACKs, the same logic unfortunately
does not apply to jitter because θ1 and θ2 share a common
variable Y . For em = 0 and |δ| = 2, the correct expectation
of (9) is E[f(θ1)f(θ2)]. On the other hand, Theorem 1 uses
Hershel to deduce the result as E[f(θ1)]E[f(θ2)] = λ2/16.
We next expand the former term and show that it deviates
from the latter for all λ.

Theorem 2: For μ = λ and em = 0, the expected Hershel
similarity under dependent two-RTO jitter (θ1, θ2) is

E[f(θ1)f(θ2)] =
29λ2

432
. (13)

Proof: Considering jitter dependent, we must look at three
separate cases. For the first one, define

χ1 = E[f(J1)f(J2)|X > Y,Z > Y] (14)

and notice that event X > Y,Z > Y happens with probabil-
ity 1/4. Now observe

χ1 = λ5

∫ ∞

0

∫ ∞

y

∫ ∞

y

e−λ(x−y)e−λ(z−y)e−λ(x+y+z)dxdzdy

= λ5

∫ ∞

0

e−3λyy2dy = λ5 2
(3λ)3

=
2λ2

27
. (15)

For the second case, we have

χ2 = E[f(J1)f(J2)|X < Y,Z < Y], (16)

where eventX < Y,Z < Y also happens with probability 1/4.
This leads to

χ2 = λ5

∫ ∞

0

∫ y

0

∫ y

0

e−λ(y−x)e−λ(y−z)e−λ(x+y+z)dxdzdy

= λ5

∫ ∞

0

eλy

∫ ∞

y

e−2λdx

∫ ∞

y

e−2λdzdy

=
λ3

4

∫ ∞

0

e−3λydy =
λ2

12
. (17)

The remaining two cases X > Y > Z and Z > Y > X
are identical to each other. Without loss of generality, we use
the former and define

χ3 = E[f(J1)f(J2)|X > Y,Z < Y], (18)

which leads to

χ3 = λ5

∫ ∞

0

∫ x

0

∫ y

0

e−λ(x−y)e−λ(y−z)e−λ(x+y+z)dzdydx

= λ5

∫ ∞

0

e−2λx

∫ x

0

e−λyydydx

= λ3

∫ ∞

0

e−2λx(1 − (1 + λx)e−λx)dx =
λ2

18
. (19)

Combing these cases with respective weights 1/4, 1/4, and
1/2, we get the overall expectation in (13). �

Using λ = 10 in (13) produces 6.7 observed in simulations.
While we succeeded in correctly modeling Mii for two RTOs,
doing the same for i �= j and longer vectors δ is very tedious.

2438 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Fig. 7. Features in Hershel (δ) and Hershel+ (a).

B. Hershel+

We now show how the classification problem can be
solved using only one-way delay (OWD). This requires a
new model for p(δ|δ′,X) and additional constraints during
creation of D. For host Si, define Ai to be a random vector of
SYN-ACK transmission timestamps relative to the departure
time of the first reply. Then, assuming that network delays
are negligible, the distribution of elements inside Ai can
be accurately obtained at the measurement client by sub-
tracting the RTT of the first SYN-ACK from all observed
values.

Now suppose that the scanner finds a remote host on the
Internet and obtains a vector of SYN-ACK arrival instances
as A, which are relative to the transmission time of the SYN.
The main caveat here is that the forward SYN delay and
server think time, which we collectively call T , are not just
unknown in the public Internet, but also likely non-negligible.
Consequently, the classifier must consider all options for T
in its decision whether the observed A could have been
produced by some known vector Ai. Delay randomness is
handled similar to (7), which means that it is again sufficient
to consider only deterministic pairs of delay vectors, i.e., by
conditioning on A = a = (a1, a2, . . .) and Ai = a′ =
(a′1, a

′
2, . . .). This is illustrated in Fig. 7. Supposing that

Qm is the m-th OWD from the server to the client, we
have am = T + a′m +Qm.

With the new model, redefine the error as em = am − a′m
and let s = minm{em} be the largest possible value of T when
a system equipped with a′ is responsible for observation a.
Then, the similarity function becomes

p(a|a′,X) = E
[|a|∏

m=1

fQ(em − T)
]
, (20)

where fQ(x) is the density of OWD from model X . Assuming
fT (x) is the PDF of T , this leads to

p(a|a′,X) =
∫ s

0

[|a|∏

m=1

fQ(em − x)
]
fT (x)dx. (21)

We apply Hershel’s exponential OWD with fQ(x) = λe−λx

and additionally represent T as a sum of two exponential
variables (i.e., forward SYN delay and server think time),
which leads to fT (x) = ν2xe−νx, i.e., Erlang(2) distribution
with some rate ν and mean 2/ν. The OWD classifier (21)

TABLE III

ACCURACY ON THE HERSHEL DATABASE

is more complex than Hershel’s as it requires numerical
integration of a computationally expensive product of shifted
density functions. Our next result shows that this can be
avoided through additional derivations.

Theorem 3: The closed form for (21) is

p(a|a′,X) = 1s≥0ν
2λ|a|ψ

|a|∏

m=1

e−λem , (22)

where 1 is an indicator variable and

ψ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − e−(ν−λ|a|)s(1 + (ν − λ|a|)s)
(ν − λ|a|)2

|a| �= ν

λ
s2

2
|a| =

ν

λ
.

(23)
Proof: If s < 0, there exists m such that em − T is less

than zero. Since OWD cannot be negative, the corresponding
term fQ(em−T) = 0. Consequently, we need to consider only
s ≥ 0, in which case all em are non-negative. Substituting the
densities of Q and T into (21), we get

p(a|a′,X) = 1s≥0

∫ s

0

[|a|∏

m=1

λe−λ(em−x)
]
ν2xe−νxdx

= 1s≥0ν
2λ|a|

[|a|∏

m=1

e−λem

]∫ s

0

xe(λ|a|−ν)xdx.

Using WolframAlpha’s integral solver [32] yields (22). �
Replacing Hershel’s p(δ|δ′,X) with (22) and keeping the

rest of the method unchanged gives rise to a technique we
call Hershel+. Our next step is to verify that its accuracy
is no worse than that of Hershel even when the assumed
Erlang model for T , which uses ν = 4 in all computation
below, does not match the true distribution. To this end,
we use the simulation setup from [25], where the only new
parameter is T . In the first scenario, we keep T uniform
in [0, 1] seconds, maintain zero packet loss, and run both
methods over Hershel’s original database with 116 stacks.
The result is shown in Table III. As the new model only
changes the RTO classifier, the most important comparison
involves the first three rows of the table, which confirm
superiority of Hershel+. In the second scenario, we fix the
OWD to be uniform in [0, 1] and use the larger Plata database.
Table IV shows that Hershel+ again edges out Hershel, despite
its higher uncertainty related to T .

C. Closed-Form Plata-Hershel+ Matrix

Armed with the new classifier, we revisit the issue of
obtaining a Plata matrix without Monte-Carlo simulations.

SHAMSI AND LOGUINOV: UNSUPERVISED CLUSTERING UNDER TEMPORAL FEATURE VOLATILITY 2439

TABLE IV

ACCURACY ON THE PLATA DATABASE

To model X , we disturb each Ai using a random OWD vector
V = (V1, V2, . . .), where all Vi are iid exponential with rate λ.
We additionally apply noise to the forward SYN delay and
server think time, which are collectively given by an Erlang(2)
random variable W with rate ν. Note that we use λ and ν from
Hershel+, although other options are possible.

Define matrix H = (Hij) to consist of all pairwise
Hershel+ similarities between the signatures in the database
under distortion V +W . This requires computing

ζ(a, a′) := E[p(a+ V +W |a′,X)] (24)

and setting Hij = E[ζ(Ai, Aj)], where the second expectation
is taken over random variables (Ai, Aj).

Theorem 4: Define v = (λ/2)|a|ν/4. Then,

ζ(a, a′) = v

∫ ∞

−∞
e−λ

�
m |em+z|(1 + ν|z|)e−ν|z|dz. (25)

Proof: We first require the following Lemma.
Lemma 5: Define Z = W − T , where W and T are

Erlang(2) with rate ν. The density of Z is then

f(z) =
ν

4
e−ν|z|(1 + ν|z|). (26)

Proof: Notice that W − T has the same distribution as
X + Y , where X,Y are iid Laplace with the same rate ν.
Their convolution for z ≥ 0 produces

fX+Y (z) =
∫ ∞

−∞
fX(x)fY (x− z)dx

=
ν2

4

∫ ∞

−∞
e−ν|x|e−ν|x−z|dx

=
ν2

4

(e−νz

2ν
+ ze−νz +

e−νz

2ν

)

=
ν2

4

(2e−νz

2ν
+ ze−νz

)
=
ν2

4

(e−νz + νze−νz

ν

)
.

Combining with the symmetric case z < 0, we get (26). �
Now we are ready to establish Theorem 4. The general form

of this expectation is

ζ(a, a′) = E
[|a|∏

m=1

fQ(am + Vm +W − a′m − T)
]

= E
[|a|∏

m=1

fQ(em + Vm +W − T)
]

= E
[|a|∏

m=1

fQ(em + Vm + Z)
]
, (27)

where Z = W − T . Note that em can be negative as long as
the sum em + Vm + Z ≥ 0. Condition on Z = z and define

ζz(a, a′) := E
[|a|∏

m=1

fQ(em + Vm + z)
]

=
|a|∏

m=1

∫ ∞

dm

fQ(x− cm)fV (x)dx, (28)

where cm = −(em + z), fV (x) = λe−λx is the density of
each Vm, and the integration range starts at dm = max(cm, 0)
to ensure the terms inside the density fQ are non-negative.
This leads to

ζz(a, a′) =
|a|∏

m=1

∫ ∞

dm

λe−λ(x−cm)λe−λxdx

=
|a|∏

m=1

λ

2
e−λ(2dm−cm). (29)

Since 2 max(x, 0) − x = |x|, this yields

ζz(a, a′) = (
λ

2
)|a|e−λ

�
m |cm|. (30)

Unconditioning Z and recalling cm = −(em + z),

ζ(a, a′) =
∫ ∞

−∞
ζz(a, a′)fZ(z)dz

= (
λ

2
)|a|

∫ ∞

−∞
e−λ

�
m |em+z|fZ(z)dz, (31)

which leads to (25) after invoking Lemma 5. �
Note that (25) can be computed by splitting the integral

into |a|+2 regions such that |z| and |em +z| are conclusively
resolved as being either positive or negative. Each of these
smaller integrals expands in closed-form; however, due to the
large number of terms involved and lacking structure, this
result is difficult to represent symbolically. Algorithmically,
however, this is simple to code using a bit-vector of size |a|+1
that keeps track of which of the terms (z, e1 + z, e2 + z, . . .)
is positive. Moving from one interval to the next flips one bit
from 0 to 1 and switches to the corresponding integral.

After verifying that (25) and its |a|+2 sub-integrals produce
correct results, we run Plata separation over H instead of M̃
and obtain 420 signatures, out of which 79 come out unlabeled.
Recalling Table I, notice that Hershel+ increases the dimension
of its predecessor by 22 entries, indicating a more powerful
classifier. Performance improvement is remarkable as well –
the runtime reduces from over 24 hours to just 12 minutes.
Added benefits include higher accuracy of Hershel+ decisions
and alleviation of uncertainty if r is large enough to keep
Monte-Carlo results convergent.

VII. INTERNET SCAN

We now use Hershel+ to classify every visible web-
server on the Internet against the previously constructed Plata
database.

A. Classification Results

In July 2015, we sent 2.7B SYN probes on port 80 to
every IP address advertised in BGP and obtained SYN-ACK
responses from 66.4M hosts. This is almost double the 37M
IPs used in the Hershel study [25]. The scan lasted six hours
and operated at 125K packets per second.

2440 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

TABLE V

OS CLASSIFICATION OF THE INTERNET DATASET

Table V shows the Hershel+ output on the Internet data.
We break down the result by OS category, showing the ten
most-popular signatures in Linux, Embedded, Windows and all
nine stacks in Other. Not surprisingly, Linux still dominates the
webserver market. Although its top-10 signatures are separable
at the feature level, limitations of our banner-based labeling do
not allow identification of the specific version of these OSes.
In second place, there is a large number of embedded devices,
mostly routers and printers. This finding agrees with those in
previous measurements at this scale [11], [25]. In third place,
we combine hosts that map to a signature without a banner and
those with a zero probability of matching to anything in D.
The former category is responsible for 94% of these cases,
where 79 “mystery” signatures in D catch almost 12% of
all Internet classification, despite being rare on our campus.
Future work will attempt to uncover their OS.

Next, there is Windows in fourth place with 7M hosts.
Unlike the previous categories, we can identify the specific

Fig. 8. OS popularity distributions. (a) campus. (b) Internet.

type of Windows from its IIS version in the HTTP header.
While it is by far the most popular desktop OS [19], its
penetration of the webserver domain has been lagging behind
Linux. This is in contrast to our campus scan, which was
dominated by Windows. One explanation for Unix prevalence
is migration of online services to enterprise clouds, which
have traditionally favored Linux installations. Another is the
possibility that Linux distributions more commonly enable a
webserver in their default configurations or alias more IPs
to the same physical server. And yet another is a higher
percentage of Unix computers not being protected by a firewall
(either corporate or host-level).

The table ends with 752K devices (1.1% of the total) in the
“other” category that includes BSD, Mac, Novell, and Solaris.
Compared to the previous large-scale fingerprinting effort [25]
that used scans from July 2010, the table shows that Linux and
embedded have doubled their numbers (i.e., from 13 − 14M
to 25 − 26M), Windows remained pretty much unchanged
(i.e., a slight drop from 7.5M to 7.1M), and the “other”
group lost 68% of its membership (i.e., from 2.3M to 752K).
In summary, 99.3% of all IPs are successfully classified and
87.3% have a label.

B. OS Popularity and Confidence

To better understand device deployment at different scales,
we next examine the distribution of cluster size W for each
of the 420 signatures in our database. Fig. 8(a) shows the
CCDF P (W > x) using the initial campus scan. This plot
is a close match to Pareto tail (x/β)−α, where α = 0.8
and β = 1. Interestingly, the bottom 40% of the signatures
map to a single host each. In contrast to the well-known
stacks in Table II, these clusters enjoy more esoteric items
such as security cameras, room-temperature controllers, UPS
(uninterruptable power supplies), tape backup, humidity sen-
sors, and even discontinued oscilloscopes. Fig. 8(b) plots the
same tail for the Internet scan, which is a good match to
the Weibull distribution exp(−(x/λ)k), where k = 0.4 and
λ = 45K. Each of the top-14 signatures accounts for at least
1M hosts and the top-17 are responsible for 60% of IPs. The
bottom 204 signatures match a combined 1% of the servers
(i.e., 664K).

Another interesting issue is the amount of confidence with
which Hershel+ selects the best OS during classification.
Assuming a is a measurement from some IP, (21)-(22) can
be used to obtain similarity score p(a|Aj ,X) for each OS j,
the highest of which is selected as the match after normaliza-

SHAMSI AND LOGUINOV: UNSUPERVISED CLUSTERING UNDER TEMPORAL FEATURE VOLATILITY 2441

Fig. 9. Hershel+ classification confidence. (a) CDF of top p(a|Aj ,X).
(b) ratio top two p(a|Aj ,X).

tion. Fig. 9(a) plots the distribution of this probability across
all 66.4M IPs. Observe that almost no classifications occur
with less than 20% likelihood and over half the hosts fit some
signature with probability at least 65%. The far end of the CDF
shows 7% of the IPs with a 100% match, which are devices
with truly unique combinations of features. In the same vein,
to determine if the second-best match follows closely the top
signature and how often the classifier might be “guessing,”
Fig. 9(b) shows the CDF for the ratio of the two highest
probabilities. In 17% of the cases, the second-best match is
pretty close, i.e., within a factor of 1.2. Afterwards, the curve
sharply rises and yields over 68% of IPs with a decisive winner
(i.e., ratio 2 : 1 or better).

VIII. COMPARISON WITH Nmap

Since ground-truth for millions of Internet hosts is diffi-
cult to obtain, we next perform comparison against Nmap
v6.49 [21]. During the scan, we randomly selected 1% of
responsive hosts and invoked Nmap to fingerprint them as soon
as the first SYN-ACK was received. Real-time execution was
needed to minimize the possibility these hosts left the network
and other devices appeared in their place (e.g., due to DHCP).
We used Nmap’s least-verbose mode to limit the traffic and
complaints from target networks; however, this still resulted
in 80 sent and 60 received packets per IP, as well as several
notifications to campus network administrators about intrusive
activity coming from our subnet. The complaints identified
Nmap by name, which emphasizes the fact that IDS tools are
trained to detect (and possibly drop) its highly anomalous scan
traffic.

Out of 664K IPs, Nmap was successful for only 481K
(i.e., 72%). To rule out host departure as being responsible
for the failed classification, we verified that an overwhelming
majority (99.8%) of the contacted IPs returned at least one
reply to Nmap probes. The 28% of the targets for which Nmap
failed to reach a decision include unknown devices and cases
with firewalls/IDS blocking suspicious traffic (e.g., malformed
TCP packets, probes on closed ports, ICMP, UDP). For the
analysis in this section, we uniformly subsampled the 481K
IPs that produced an Nmap result, excluded roughly 12% for
which Hershel+ returned “unknown,” and ended up with 603
cross-labeled samples for further manual analysis.

TABLE VI

INTERNET SUBSAMPLE CLASSIFICATION

A. Agreement

We first investigate how well Nmap and Hershel+ agree
on the classification of the selected subset of hosts. This
is far from straightforward since Nmap’s stack names are
human-created, often very fine-granular, and verbose, e.g.,
“AirMagnet SmartEdge Sensor, SW Version: 8.0.0-11510”,
“Alcatel SpeedTouch Pro ADSL Modem (Firmware:
Khdsaa3.270 (1003194))”. The most detailed category in
our Plata database is Windows, while the majority of other
hosts are marked with just the name of the OS and/or device
(see Table V). Thus, it makes sense to separately consider
whether Hershel+ matches the exact signature string of Nmap
or just the category.

Table VI shows the result of this process, where we group
hosts based on Hershel+ classification. In the category match,
we achieve over 98% agreement in Linux, 95% in Windows,
and 100% in “other.” With embedded systems, Nmap often
claims the host is running Linux, whereas we have a specific
(non-Linux) device name from the banner. Without tedious
manual effort, it is difficult to know if Nmap has been exposed
to these devices and whether it can reliably identify them. With
that said, we still mark these cases as a mismatch, which drops
the agreement rate to 75%.

As for OS strings, lower numbers were expected due to
the difference in how the databases are labeled. The biggest
drop occurs in Linux, where our D consists of just distribution
names (e.g., Ubuntu, Redhat, SUSE), while Nmap provides
both major and minor kernel versions (e.g., Linux 2.6.18−22).
Nevertheless, there are 25 matching signatures for which both
methods can identify only the Linux family. For embedded
systems, Nmap produces a large variety of device names, many
absent from our campus. Finally, the Windows group keeps the
same 95% consensus rate since all 82 agreed-upon cases are
exact string matches.

B. Disagreement

We now analyze the peculiar case of the four Windows hosts
from Table VI where Nmap and Hershel+ disagree. We call
these observations S1, . . . , S4. Table VII shows their features
and the corresponding database signatures D1 − D2 for the
Hershel+ classification. Notice that S1 is an easy classification
decision because the RTT is small (i.e., ≈ 220 ms) and
D1 matches all of its features. For S2, Hershel+ prefers the
same OS, overcoming a change in TTL/MSS and a loss of the
RST packet at 21 sec. For the other two hosts, both matching
to D2, the only discrepancy is the MSS, which is a highly
volatile field that depends on the MTU [25]. Judging from the
OPT and RTO features, the accuracy of these decisions is not
in doubt.

2442 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

TABLE VII

HERSHEL+ CLASSIFICATION AND FEATURES

TABLE VIII

Nmap CLASSIFICATION AND FEATURES

To explain the Nmap outcome for these IPs, we need
to review its classification technique. Suppose vector R =
(R1, . . . , Rl) consists of indicator variables such that Ri = 1
iff probe i elicits a response from the network stack. We split R
into several groups – a regular SYN to an open port (R1), four
TCP packets with extra flags (i.e., ECN, null, rainbow, ACK)
to an open port (R2 −R5), three TCP packets to closed ports
(R6 − R8), and UDP/ICMP probes (R9 − R10). For cases
with Ri = 1, suppose Fij records the j-th feature of that
packet, where Fij = ∅ indicates a missing optional header
field. A combination of vector R and corresponding matrix F
constitutes a fingerprint Φ = (R,F).

Suppose a match in Ri carries weight wi and that in feature
Fij some other weight wij . Then, Nmap computes similarity
between an observation Φ and a signature Φ′ = (R′, F ′) from
the database using the following

∑l
i=1(Yi1Ri=R′

i
wi +RiR

′
i

∑
j Zij1Fij=F ′

ij
wij)

∑l
i=1(Yiwi +RiR′

i

∑
j Zijwij)

, (32)

where variable Zij = 1 iff field j in packet i is non-empty
in both the observation and database (i.e., Fij �= ∅, F ′

ij �= ∅)
and Yi = Ri for i ∈ [6, 8] and 1 otherwise. The last rule
ignores closed-port tests unless Φ contains a response to them.
All signatures Φ′ with at least 0.85 similarity are reported as
likely matches.

This algorithm has no provisions for packet loss, which
makes it increasingly unreliable as more probes are blocked.
The issue is compounded by the usage of large weights
wi
 wij , which ensure that a mismatch in a feature carries
little impact compared to that in the receipt/non-receipt of
a packet. As a result, presence of firewalls skews the score
towards signatures Φ′ that originally had fewer responses,
regardless of their Fij . Empty features cause Zij = 0 to
remove the corresponding weight wij from consideration,
gravitating the classifier towards results with more frequent
occurrence of ∅. Finally, if the target does not respond to a
given closed-port test, i.e., Yi = 0, the denominator no longer
contains the associated weight wi. This allows Nmap to match
Ri = 0 and R′

i = 1 with no penalty for 6 ≤ i ≤ 8.

TABLE IX

POPULARITY OF Nmap SIGNATURES

Armed with this insight, consider in Table VIII the Nmap
features of S1 −S4, as well as their best matches – a network
boot card, modem jail-break firmware, a decade-old OpenBSD
4.3, and an ancient D-link switch – where S1 scores over
85% with both D1 and D2. From the table, notice that Nmap
sampled the same SYN features as Hershel+, meaning they
contacted similar network stacks. For inexplicable reasons, the
database allows ∅ for mandatory values (e.g., Win, TTL, DF),
where all four entries D1−D4 contain at least one such case.

Based on Table VIII, it is pretty clear that Nmap deci-
sions are heavily influenced by the R vector and empty
fields. Indeed, iPXE/Tomato have no features Fij in common
with S1, OpenBSD 4.3 matches S2 only in three fairly generic
fields TTL/DF/MSS, and D-Link agrees with S3/S4 in just
the DF bit. We thus find no evidence to suggest that Nmap
signatures D1 −D4 are statistically probable, let alone better
than the Hershel+ result in Table VII. In fact, D3 and S2 are
conclusively different stacks judging from their ordering of
non-NOP TCP options (i.e., MSWT vs MWST).

From a broader perspective, Table IX shows the number
of hosts for which Nmap decides that D1 − D4 exceed the
85% threshold. Remarkably, Tomato appears in 21% of the
cases and OpenBSD in 13%. These results raise questions
about Nmap’s ability to provide meaningful classification, not
just in the four cases we dissected, but generally in wide-area
networks, where R is easily distorted by IDS, host-level packet
filters, and network firewalls.

IX. DISCUSSION AND CONCLUSION

Network stack fingerprinting has well-known pitfalls
(e.g., scrubbers [7], [24], [22], [27], [31], traffic intercepts

SHAMSI AND LOGUINOV: UNSUPERVISED CLUSTERING UNDER TEMPORAL FEATURE VOLATILITY 2443

by middleboxes [12], load-balancers, RST injection by IDS),
but nevertheless it is fascinating that a single SYN packet can
elicit so much information about the target. With our algorithm
for automated construction of databases and robust classifica-
tion (i.e., Plata, Hershel+), single-packet tools may eventually
become a legitimate competitor to Nmap for use over the
public Internet. However, despite the recent developments in
this field, there are still many open problems and avenues for
improvement, which we discuss next.

One question is whether distortion X can include packet
loss. This seems like a viable direction, which Plata can
handle transparently in the Monte-Carlo version; however,
deriving a Hershel+ matrix in closed-form requires addi-
tional research. Another avenue that is worth investigating
is whether Hershel+ can increase accuracy by abandoning
the single-packet assumption and sending multiple SYNs to
each target IP. In these cases, it should be compared to other
tools with retransmission, including their (1−ε,X)-dimension
under a common model of distortion. For Nmap, X may
include blocking of ICMP/UDP packets to match the firewall
assumptions of Hershel+, loss of SYN-ACKs, censorship of
certain invalid flag combinations known to IDS, emulation
of load-balancers, and presence of fingerprint scrubbers [24].
All of this requires a kernel-level driver that can intercept
Nmap packets and reproduce the desired conditions, which
is yet another direction for future work.

REFERENCES

[1] H. J. Abdelnur, R. State, and O. Festor, “Advanced network fingerprint-
ing,” in Proc. RAID, Sep. 2008, pp. 372–389.

[2] P. Auffret, “SinFP, Unification of active and passive operating system fin-
gerprinting,” J. Comput. Virology, vol. 6, no. 3, pp. 197–205, Aug. 2010.

[3] T. Beardsley. (2003). Snacktime: A Perl Solution For Remote
OS Fingerprinting. [Online]. Available: http://www.planb-security.net/
wp/snacktime.html

[4] R. Beverly and A. Berger, “Server siblings: Identifying shared IPv4/IPv6
infrastructure via active fingerprinting,” in Proc. PAM, Mar. 2015,
pp. 149–161.

[5] J. Caballero et al., “FiG: Automatic fingerprint generation,” in Proc.
NDSS, Feb. 2007, pp. 27–42.

[6] Y.-C. Chen, Y. Liao, M. Baldi, S.-J. Lee, and L. Qiu, “OS fingerprinting
and tethering detection in mobile networks,” in Proc. ACM IMC,
Nov. 2014, pp. 173–180.

[7] A. Crenshaw. (2008). OSfuscate. [Online]. Available: http://www.
irongeek.com/i.php?page=security/code

[8] R. Ensafi et al., “Examining how the great firewall discovers hidden
circumvention servers,” in Proc. ACM IMC, Oct. 2015, pp. 445–458.

[9] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using
clustering algorithms,” in Proc. ACM SIGCOMM MineNet, Sep. 2006,
pp. 281–286.

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: An update,” ACM
SIGKDD Explorations News lett., vol. 11, no. 1, pp. 10–18, 2009.

[11] J. Heidemann et al., “Census and survey of the visible Internet,” in Proc.
ACM IMC, Oct. 2008, pp. 169–182.

[12] M. Honda et al., “Is it still possible to extend TCP?” in Proc. ACM
IMC, Nov. 2011, pp. 181–194.

[13] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device
fingerprinting,” IEEE Trans. Dependable Secure Comput., vol. 2, no. 2,
pp. 93–108, Apr. 2005.

[14] D. Leonard and D. Loguinov, “Demystifying service discovery: Imple-
menting an Internet-wide scanner,” in Proc. ACM IMC, Nov. 2010,
pp. 109–122.

[15] M. Luckie, R. Beverly, T. Wu, M. Allman, and K. Claffy, “Resilience
of deployed TCP to blind attacks,” in Proc. ACM IMC, Oct. 2015,
pp. 13–26.

[16] G. S. Manku, A. Jain, and A. D. Sarma, “Detecting near-duplicates for
Web crawling,” in Proc. WWW, May 2007, pp. 141–149.

[17] C. McNab, Network Security Assessment: Know Your Network.
Sebastopol, CA, USA: O’Reilly Media, Inc., 2007.

[18] J. P. S. Medeiros, A. M. Brito, Jr., and P. S. M. Pires, “An effective
TCP/IP fingerprinting technique based on strange attractors classi-
fication,” in Proc. Data Privacy Manage. Auto. Spontaneus Secur.,
Sep. 2009, pp. 208–221.

[19] NetApplications. Market Share Statistics for Internet Technologies,
accessed on Apr. 1, 2016. [Online]. Available: http://netmarketshare.
com/

[20] Netcraft Web Server Survey, accessed on Apr. 1, 2016. [Online].
Available: http://news.netcraft.com/

[21] Nmap, accessed on Apr. 1, 2016. [Online]. Available: http://nmap.org/
[22] G. Prigent, F. Vichot, and F. Harrouet, “IpMorph: Fingerprinting spoof-

ing unification,” J. Comput. Virology, vol. 6, no. 4, pp. 329–342,
Nov. 2010.

[23] D. Richardson, S. Gribble, and T. Kohno, “The limits of automatic OS
fingerprint generation,” in Proc. ACM AISec, Oct. 2010, pp. 24–34.

[24] G. Roualland and J.-M. Saffroy. IP Personality, accessed on
Apr. 1, 2016. [Online]. Available http://ippersonality.sourceforge.net/

[25] Z. Shamsi, A. Nandwani, D. Leonard, and D. Loguinov, “Hershel:
Single-packet os fingerprinting,” in Proc. ACM SIGMETRICS, Jun. 2014,
pp. 195–206.

[26] B. Skaggs, B. Blackburn, G. Manes, and S. Shenoi, “Network vulnera-
bility analysis,” in Proc. IEEE MWSCAS, Aug. 2002, pp. 493–495.

[27] M. Smart, G. R. Malan, and F. Jahanian, “Defeating TCP/IP stack
fingerprinting,” in Proc. USENIX Secur., Jun. 2000, pp. 229–240.

[28] G. Taleck, “SYNSCAN: Towards complete TCP/IP fingerprinting,” in
Proc. CanSecWest, Apr. 2004.

[29] THC-RUT Fingerprint Database, accessed on Apr. 1, 2016. [Online].
Available: https://www.thc.org/thc-rut/thcrut-os-fingerprints

[30] F. Veysset, O. Courtay, O. Heen, and I. R. Team. (2002). New Tool
and Technique for Remote Operating System Fingerprinting. [Online].
Available: http://www.ouah.org/ring-full-paper.pdf

[31] K. Wang. (2004). Frustrating OS Fingerprinting With Morph.
[Online]. Available: http://hackerpoetry.com/images/defcon-12/dc-12-
presentations/Wang/dc-12-wang.pdf

[32] W. Alpha. Computational Knowledge Engine, accessed on Apr. 1, 2016.
[Online]. Available http://www.wolframalpha.com

[33] F. V. Yarochkin et al., “Xprobe2++: Low, volume remote network
information gathering tool,” in Proc. IEEE/IFIP DSN, Jun. 2009,
pp. 205–210.

[34] M. Zalewski. (2012). P0f v3: Passive Fingerprinter. [Online]. Available:
http://lcamtuf.coredump.cx/p0f3

[35] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification
and application identification using machine learning,” in Proc. 30th
Anniv. IEEE Conf. Local Comput. Netw., Nov. 2005, pp. 250–257.

[36] X. Zhang, J. Knockel, and J. Crandall, “Original SYN: Finding machines
hidden behind firewalls,” in Proc. IEEE INFOCOM, Apr. 2015,
pp. 720–728.

Zain Shamsi received the B.S. degree (Hons.)
in computer science from Trinity University, San
Antonio, TX, USA, in 2008. He is currently pursuing
the Ph.D. degree in computer science with Texas
A&M University, College Station, TX, USA.

His research interests include Internet measure-
ment, network protocols, and security.

Dmitri Loguinov (S’99–M’03–SM’08) received
the B.S. degree (Hons.) in computer science from
Moscow State University, Russia, in 1995, and the
Ph.D. degree in computer science from The City
University of New York, New York, NY, USA,
in 2002.

He is currently a Professor with the Department
of Computer Science and Engineering, Texas A&M
University, College Station, TX, USA. His research
interests include P2P networks, information retrieval,
congestion control, Internet measurement,
and modeling.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

