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Abstract—Traditional TCP/IP fingerprinting tools (e.g., nmap)
are poorly suited for Internet-wide use due to the large amount of
traffic and intrusive nature of the probes. This can be overcome by
approaches that rely on a single SYN packet to elicit a vector of fea-
tures from the remote server. However, these methods face difficult
classification problems due to the high volatility of the features and
severely limited amounts of information contained therein. Since
these techniques have not been studied before, we first pioneer sto-
chastic theory of single-packet OS fingerprinting, build a database
of 116 OSs, design a classifier based on our models, evaluate its ac-
curacy in simulations, and then performOS classification of 37.8M
hosts from an Internet-wide scan.

Index Terms—Internet measurement, OS fingerprinting.

I. INTRODUCTION

W ITH the explosive growth and distributed nature of
computer networks, it has become progressively more

difficult to manage, secure, and identify Internet devices. One
of the approaches that greatly helps in understanding the com-
position of internal and external networks is OS fingerprinting,
which is a process that determines the operating system of
remote hosts based on peculiarities of their network-level be-
havior. This differentiation is possible due to certain freedom in
selection of default stack parameters, ambiguities in IETF RFCs
[8], [35], [36], noncompliant TCP/IP implementations, and
lacking standardization for responses to malformed requests.
Over the last 20 years, these observations have led to a variety

of methods [3]–[5], [7], [9], [17], [23], [27], [44]–[46], [49],
[50], [53], [55]–[57] that perform classification using applica-
tion-layer traffic, TCP/IP/UDP headers, ICMP packets, or some
combination thereof. These algorithms are useful not only in
network security (i.e., detection of outdated/unpatched hosts),
but also market analysis [30] and Internet characterization [18],
[24], [31], [34], [49]. However, their usage, scalability, and ac-
curacy at very large scale (i.e., millions of destinations) have
not been explored before. We aim to address this issue in the
following.

Manuscript received July 16, 2014; revised March 06, 2015; accepted June
15, 2015; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor
S. Sen. Date of publication July 06, 2015; date of current version August 16,
2016. The work of D. Loguinov was supported by the NSF under Grants CNS-
1017766 and CNS-1319984. An earlier version of the paper appeared in ACM
SIGMETRICS 2014.
Z. Shamsi and D. Loguinov are with Texas A&MUniversity, College Station,

TX 77843 USA (e-mail: zain@cs.tamu.edu; dmitri@cs.tamu.edu).
A. Nandwani is with Coinbase, Inc., San Fransisco, CA 94104 USA (e-mail:

ankur.nandwani@gmail.com).
D. Leonard is with AcxiomCorporation, Little Rock, AR 72201USA (e-mail:

dleonard@cse.tamu.edu).
Digital Object Identifier 10.1109/TNET.2015.2447492

A. Methodology and Objectives
The Internet has been the target of numerous measurement

studies, with the trend recently shifting from covering a small
subset of destinations [34], [39] to scanning the entire IP
space [12], [18], [24], [40]. This allows researchers to enu-
merate live hosts, detect vulnerabilities, and shed light on
deployment of new protocols. Over the years, network scanning
has become progressively faster—from 4 months [40] down
to 30 days [18], then 1 day [24], and now 45 min [15]. In
conjunction with these studies, low-overhead OS fingerprinting
can allow significantly better understanding of the systems
researchers interact with and improve our general knowledge
about the Internet.
OS fingerprinting consists of two approaches—passive and

active. The former [22], [57] monitors ongoing communication
(inbound and/or outbound) with remote hosts, but does not gen-
erate traffic of its own. Unless each studied device voluntarily
connects to the measurement server, this technique is difficult to
use for classifying each IP on the Internet. The latter approach,
which is the topic of this paper, actively sends packets to targets
and infers their operating system from the collected responses.
One important aspect that differentiates between the active

methods is the potential maliciousness of probing traffic,
where certain nonsensical combinations of TCP flags (e.g.,
SYN-FIN-RST-ACK) or intrusive actions (e.g., trying to delete
the root directory in HTTP fingerprinting [45]) may harm or
crash the target. Additionally, these packets are easily detected
and dropped by IDS [47], which leads to complaints against
research institutions using these methods and possibly reduced
accuracy of the results.
The second aspect is the amount of outbound traffic required

by the classifier, which ranges from a single SYN probe [4],
[53] to lengthy multipacket exchanges [27], [31], [45], [50],
[55]. Ideally, fingerprinting should be performed with no extra
overhead to scan traffic, which rules out techniques [31], [55]
that expect to reach the target on multiple open ports, using dif-
ferent protocols (e.g., ICMP, TCP, UDP), and elicit responses on
closed ports. While LAN environments can tolerate high traffic
rates and may allow multiprotocol access to each host, these
conditions are generally difficult to satisfy when scanning the
entire Internet.
The third aspect is the ability of the underlying estimator to

correctly identify the target OS under realistic network con-
ditions and without using retransmission. Since prior single-
packet techniques [4], [53] were mainly developed for local use,
they are not well provisioned to overcome high amounts of fluc-
tuation and loss in temporal features. They also lack resilience
to OS tuning, which can be applied by end-users in hopes of
optimizing network performance or obfuscating the default pa-
rameters of the stack. Either way, the modified OS features may
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exhibit little correlation to those originally present at the host,
which cripples estimation accuracy of existing tools.

B. Contributions and Implications

Given the many open issues in wide-scale fingerprinting and
lacking performance analysis in the literature, our first goal is
to formalize the estimation problem in single-packet OS clas-
sification and study the pitfalls of existing techniques. We then
develop a low-overhead framework we call Hershel1 for over-
coming the various randomization effects (i.e., queuing delays,
packet loss, manual tuning) and apply it as proof-of-concept in
a measurement study that classifies every visible Web server on
the Internet.
We next discuss the ethical implications of this work. Our

main objective is to benefit researchers studying the Internet at
wide scale and provide a solution to an interesting mathematical
problem. However, one may become concerned that intruders
can use our algorithms for detection of vulnerable operating sys-
tems and better tailor the attack payload to particular configura-
tions (e.g., patch levels) of the targets. As opposed to nmap, our
techniques require no additional bandwidth during port scan-
ning, which makes them completely stealthy against IDS and
other security monitors.
While hypothetically this may be true, we do not believe there

is great cause for concern.With modern botnets, large-scale port
scanning can be performed in a highly decentralized fashion,
with very little traffic originating from each hijacked IP. This
affords the attackers a luxury of using more verbose OS fin-
gerprinting tools (i.e., nmap) and still remaining undetected.
Researchers, on the other hand, are typically constrained to a
single subnet whose generation of disruptive volumes of highly
anomalous traffic is bound to attract negative attention.
Additionally, we are not aware of any evidence confirming

that attackers are interested in profiling discovered devices
using only SYN packets. Recent studies [58] show that once
an open port is found, bots either perform more extensive
testing of the open service or attempt all known exploits (some
outdated by decades) against the port without discrimination.
Eliminating nmap from the picture and directly interacting
with the service is much quicker and more informative in
that context. We therefore do not see OS fingerprinting as a
practical technique for increasing maliciousness of the Internet
ecosystem.

II. RELATED WORK

OS fingerprinting has roots in banner grabbing, which re-
lies on application-layer protocols (e.g., HTTP, SSH, SMTP,
FTP, telnet) to provide a textual description of the OS as part of
the communication sequence. While this worked well 20 years
ago, banner grabbing today faces many impediments, including
high overhead, administrator ban on OS-identifying strings in
responses, generic software (e.g., Apache) that can run on mul-
tiple platforms without exposing the underlying OS, and pur-
posefully incorrect banners that aim to mislead the various fin-
gerprinting tools.

1William J. Herschel invented forensic usage of fingerprints in 1858.

Fig. 1. Retransmission timeouts (RTOs) between SYN-ACK packets.

A. Multiple Packets

The second wave of OS classification started in 1997 with
the release of nmap [31], which pioneered TCP/IP tricks that
would elicit different responses from different implementations.
By default, it sends 1032 probes to the target, including a ver-
tical port scan and certain malformed packets that trigger pop-
ular IDS such as Snort [42]. Nmap ideally expects the target
to accept a TCP connection, send ICMP port unreachable on a
closed UDP port, and respond to a ping. Under bandwidth-op-
timized settings for OS classification, nmap requires no fewer
than 38 different probes. However, due to mandatory retrans-
mission, this in practice corresponds to well over 100 packets
per host.
Due to its popularity, nmap has received a great deal of at-

tention in the literature, which includes usage of neural net-
works to differentiate between versions of the same OS [44],
detection of unknown devices [26], and techniques for reducing
the number of sent probes [16]. Additional work includes fuzzy
matching [55], automatic generation of OS features that aid fin-
gerprinting [9], [41], application of formal testing methods to
the detection problem [17], and classification using lengthy ob-
servations (up to 100K packets) of initial sequence numbers
(ISNs) from the TCP header [27].
Besides the amount of traffic generated by multipacket tools

in large-scale scans, another problem is the prevalence of load
balancers in the Internet today. These devices, commonly
placed in front of servers, may disperse consecutive probes
to different physical machines or perform certain elements of
the handshake themselves, leading to jumbled fingerprints.
This can be avoided by scanning techniques that rely on one
outgoing packet, which we describe next.

B. Single Packet

RING [53] and Snacktime [4] are the only tools that per-
form classification using a single outbound probe. As shown in
Fig. 1, each measurement consists of a SYN packet, server pro-
cessing delay needed to accept the connection, and a stream
of SYN-ACK responses from the target OS, followed by an
optional TCP reset (RST) with its own RTO. RING uses the

values in the RTO vector and presence of the final RST
packet in classification. Snacktime ignores the RST feature, but
instead uses the default TCPwindow size and TTL carried in the
SYN-ACKs, which allows it to differentiate between 25 oper-
ating systems [4]. We analyze its classification process in more
detail later in the paper. A simplified version of Snacktime and
extension to 98 signatures was offered in [20] and [24]. How-
ever, no accuracy analysis, modeling, or verified improvement
was provided.
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Another tool with a related capability is p0f [57]. In addition
to passive fingerprinting, it can actively generate SYN packets
and profile remote network stacks based on a set of fixed fea-
tures from the SYN-ACKs (i.e., window size, TTL, IP flags,
and TCP options). However, it does not leverage the RTOs and
by default is quite verbose (i.e., sends eight copies of the same
SYN per target). The current version can differentiate between
18 operating systems.

C. Common Defenses
There exist many approaches to thwart remote OS finger-

printing. The most basic tools tweak Windows registry [11],
[32] or implement plugins [5], [6], [43] for the Unix packet-
mangling module Netfilter [29]. Their objective is to modify the
fixed features of departing packets to no longer resemble those
of the underlying host. A similar direction is to deploy network
honeypots [38], [52] or standalone systems [54] that spoof arbi-
trary operating systems and their services. Placing obfuscation
into the network gives rise to intermediate devices known as fin-
gerprint scrubbers [37], [46].
While these techniques can effectively deal with static header

fields, they are not well suited for distorting the temporal fea-
tures of departing packets, which requires expensive buffering
of packets and per-flow state. Additionally, lack of technical
support and possibility for various side-effects (e.g., disabling
SACK in TCP may lead to significantly lower throughput) raise
questions about deployment of these tools in production systems
and/or at large scale.

III. STOCHASTIC MODEL

We assume a single-packet scanner similar to Snacktime in
Fig. 1. While this approach has minimal intrusiveness, lowest
transmission overhead, and nonmalicious operation, it also ex-
hibits several fundamental challenges. These arise due to the
complex ways in which the RTOs can be modified by packet tra-
versal across wide-area networks, scarcity of information about
the target host contained in the samples, and user tuning of fea-
tures, all of which have a strong influence on one’s ability to
detect the underlying OS.
Our contribution in this section is to formalize single-packet

OS fingerprinting, set forth clear goals for the classifier, study
the impact of network delay and loss on the measured samples,
analyze the existing methods, and outline the assumptions under
which the classification problem is tractable.

A. Objectives
Assume a database of known

operating systems, where each OS has some vector-valued
fingerprint collected during a priori measurement of the OS.
The fingerprint consists of multiple features, which we partition
into those modified only by the network (e.g., RTOs) and those
only by the user (e.g., TCP window size). Suppose the former
are described by some vector and the latter by another vector
. While the length of normally depends on , that of is

constant across all operating systems.
As both vectors undergo random modification before being

observed by the scanner, the response of OS to probe traffic
is some random variable that is a function of . Given an

Fig. 2. Effect of jitter on observed RTOs.

observation from an Internet host, a typical estima-
tion problem is to find the most likely OS that could have
produced that vector

(1)

where notation refers to the probability (or conditional
density, if more convenient) of given . Observe that the prob-
ability that some OS in has produced is constant for a
given observation and can be omitted from the optimization. If
the fraction of Internet hosts running OS is unknown, it
is common to set each value to , which removes this term
from the optimization as well.
The more interesting component of (1) is the probability

that OS has produced the observation, or equivalently
that has become distorted into . Before investigating this
metric further, observe that network and user modifications to
the OS features can be treated as independent, from which it
follows that

(2)

This means that the two terms can be dealt with separately,
which we do in the rest of the section.

B. Network Features: Jitter
For single-packet techniques [4], [53] in Fig. 1, the vector

of temporal features consists of individual RTOs generated
by network stack . Classification based on is possible not
only because some devices deviate from TCP algorithms (e.g.,
exponential timer backoff), but also because RFCs that govern
TCP retransmission [8], [35], [36] do not specify the initial RTO
or howmany SYN-ACKs must be generated. As a result, a wide
variety of unique RTO patterns exists.
For the time being, assume loss-free conditions. During col-

lection of sample , suppose is the sum of propagation and
transmission delays along the path from the server back to the
scanner. Note that is a constant due to the fixed size of SYN-
ACKs. Now define to be a random queuing delay of the th
packet in the return path. As shown in Fig. 2, the RTO vector
undergoes distortion that is independent of the forward path,

server think time , and propagation delay

(3)

Defining one-way delay (OWD) jitter
and considering that the gap between subsequent SYN-ACKs
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TABLE I
SNACKTIME EXAMPLE

is sufficiently large (i.e., at least several seconds), it follows that
back-to-back packets arriving from the server are not likely to
encounter the same busy period of the queues they traverse. In
that case, it is reasonable to assume that sequence
consists of independent and identically distributed (i.i.d.)
random variables. Furthermore, since the number of hops and
congestion of the path is not affected by , the distribution of
each does not depend on the OS being profiled. This leads
to

otherwise
(4)

where is the probability density function (PDF) or prob-
ability mass function (PMF) of OWD jitter, depending on
whether is treated as continuous or discrete. It should also
be noted that , while is zero-mean
and symmetric. For certain models of OWD, jitter can be
obtained in closed form. For example, exponential pro-
duces the Laplace distribution with the same parameter and
Gaussian becomes .
We next contrast (4) with the RTO classifier in Snacktime

[4], which is a tool that is the closest to our objectives and most
advanced in single-packet OS fingerprinting. For each RTO ,
this method first computes the number of matching digits (lim-
ited to six decimal places of precision) between the sample and
all known fingerprints

It then assigns score to OS using the sum of these
weights across all available RTOs

(5)

For the example in Table I, which exemplifies the common
pitfalls of Snacktime, (5) scores six for the first OS and two for
the second OS, indicating that jitter combination (0, 12) is more
likely than (0.1, 0.1). Taking the of (4), our model can also
be reduced to optimizing a summation

(6)

However, it differs from (5) in two important ways. First, the
is applied to the distribution function rather than the

jitter itself. Second, there is no loss of precision due to rounding
to the nearest integer or capping the jitter at .
Nevertheless, while (4) is a good starting point, it does not

work in real networks due to the lacking robustness against
packet loss. This is our next topic.

Fig. 3. Generalized RTOs under packet loss.

C. Network Features: Loss
The main problem with (4) is that loss-free conditions are

impossible to satisfy during Internet scans. Besides congestion,
routing loops, and various checksum violations, the RTOs
may be altered by the target server crashing or shutting down
during the measurement, which affects the tail of the RTO
vector and appears similar to packet loss. Since single-packet
fingerprinting by definition cannot retransmit SYN probes, OS
detection must be performed using only the features available
in observation , which calls for more sophistication in the
model.
To exacerbate the situation, packet loss creates more dramatic

changes to the RTO vector than delay jitter. For example, con-
sider a scenario with , where all delays are given
in seconds. Even with a relatively large ms, delay
jitter remains small compared to each RTO. On the other hand,
the loss of a single packet produces one of four dissimilar com-
binations—(3, 6), (3, 18), (6, 12), or (9, 12)—while that of two
packets leads to six additional options—(3), (6), (9), (12), (18),
or (21). The RTO swing in these cases is significantly higher,
which makes mapping to the correct OS more challenging.
We now examine how to model the combined probability that

loss and jitter transform into observation . This will allow
us to solve such dilemmas as whether is a more
likely match to (3, 6, 12) with one lost packet or to some other
signature (2.6, 17.9) without any loss. To deal with these cases,
we propose to generalize the concept of RTO. First, let be a
vector of packet-transmission timestamps from OS

(7)

and be the corresponding random vector observed in after
the packets have traversed the network. Then, a generalized

-RTO is the distance , which
is illustrated in Fig. 3 for and . Note that
produces the usual RTO and that all timestamps are given using
local clocks (i.e., at the server and at the client).
Now suppose set contains all subsets of size of

integer sequence .We can view each
as a mapping of received packets in to their position in the
original vector , i.e., means that the th received
SYN-ACK was initially in position . For the example in Fig. 3,
we have and . Assuming no reordering of
SYN-ACKs, which is reasonable given at least several seconds
between them, each is a vector of strictly increasing integers.
Armed with these definitions, we get

otherwise (8)
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where the number of summation terms equals the number of
ways to select objects from available options and (8) is
nonzero only if the number of received packets does not exceed
that in the fingerprint. This is in contrast to (4), where the two
vectors had to have equal length.
Again leveraging the large spacing between server responses,

we can treat congestion events affecting SYN-ACKs as inde-
pendent, which allows one to approximate packet loss as an i.i.d.
Bernoulli process with some probability . Since each loss com-
bination is equally likely, we get

(9)
which can be moved outside the summation in (8). To deal with

, which is the probability to observe from OS
under loss pattern , notice that the gap between each adjacent
pair of received packets is determined by the generalized RTO

(10)
where and generalized jitter is given by

(11)
Rearranging the terms in (10), define the th jitter sample

under pattern as

(12)
Noticing that has the same distribution as yields

(13)

We thus get for

(14)

which replaces in (2).

D. User Features
OS tuning is common practice in the current Internet, with nu-

merous online guides recommending optimizations to network
settings [33], [51] and automated software offering tuning capa-
bilities to the TCP/IP stack to achieve better performance [14].
A number of fixed header parameters in general-purpose ker-
nels (e.g., Unix, Windows) can be changed through registry or
using command-line tools. Unlike jitter-induced noise, where
small distortions are generally more likely than large ones, the
main difference with OS tuning is that there may be no correla-
tion between the manually selected values of the user and those
installed in the OS by default. For example, TCP window size
may be more likely to jump from 8192 to 65 535 than to 8193.
While accurate modeling of manual modification and human

psychology is difficult, it makes sense for the analysis to at
least take into account whether a given feature under user con-
trol has been changed. Suppose that is the probability of
such modification in feature and assume that user tuning
is applied independently to each available parameter. Defining

to be an indicator of the event that the
th measured feature matches the original of OS , we get

(15)

Besides user interference, vector may be modified by
intermediate devices along the path (e.g., NAT, IDS, fingerprint
scrubbers [11], [37], [43], [46], [54]), whose actions can be
clumped under the same umbrella of (15). Since buffering
packets for periods of time comparable to RTO (i.e., 3–6 s)
and per-flow state are expensive, it is often safe to assume that
these devices do not alter the RTO pattern in significant ways
and thus leave enough features by which the OS can still be
identified. This underscores the importance of having a robust
RTO estimator.
The Snacktime algorithm for scoring user-modified features

can be generalized as a sum of weights assigned to each match

(16)

which is added to the RTO score in (5) for a final result. One
open issue, however, is selection of proper weights, which need
to be somehow correlated with feature volatility. Our model is
much simpler since directly provides this probability. To
better understand the difference between (15) and (16), assume
that for all and write

(17)

For , we get , the second term of (17)
disappears, and our model reduces to Snacktime with weights

. However, in more realistic cases of
, the second term of (17) becomes nonnegligible and serves
the role of balancing nonmatching features against those that
do match. Snacktime has no such mechanism.

E. Final Result
We now consolidate the various models into one formula.

Combining (14) and (15) in (2) and (1), dropping terms that do
not depend on , and performing straightforward manipulations,
we get

(18)

Although (18) maximizes the OS-detection probability under
the assumptions stated throughout this section, its performance
with a priori unknown , , , and is an open ques-
tion. We return to it later in the paper; in the meantime, we out-
line the various remaining issues.

F. Limitations
First, the SYN packet may be lost and never reach the

target. Since there is no way to verify this, the host will auto-
matically be considered nonresponsive and will be excluded
from fingerprinting. Not much can be done to overcome this
problem unless SYN retransmission is allowed. If we relax the
single-packet assumption, the estimator will face the problem
of determining which of the SYNs triggered which SYN-ACK
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TABLE II
SAMPLE SIGNATURES ( , , , , )

TABLE III
EXAMPLES OF TRANSFORMATIONS APPLIED BY THE OS TO TCP OPTIONS (DASHES INDICATE IMPOSSIBLE CASES)

response, without which the RTOs cannot be computed cor-
rectly. This problem can be solved in the future by encoding
the retransmission attempt into the source port of the SYN.
Second, our model allows only the network to modify the

received RTOs. However, this may not hold if users manage
to alter SYN-ACK spacing during OS tuning. This is not of
widespread concern as few optimization guides target the RTO
pattern. With enough effort, scrubbers and obfuscation tools
can disrupt inter-SYN-ACK delays. However, we do not con-
sider development of end-to-end methods to combat such ap-
proaches a fruitful objective. A related problem arises with mid-
dleboxes and caches that accept the connection on behalf of the
server [19], in which case any fingerprinting tool is bound to
classify only the visible side of the TCP stream (i.e., the OS of
the middlebox).
Third, Hershel’s accuracymay deteriorate if the network jitter

process becomes non-i.i.d. or deviates from the predicted
bounds, e.g., due to significant kernel scheduling latency during
CPU overload. Similar issues may surface if network loss de-
pends on , users modify different operating systems with dif-
ferent probability, or there is correlation in loss events within a
single stream of SYN-ACKs. Solving these problems requires a
per-OS set of parameters and multidimensional
covariance matrices for joint distributions of RTOs and indi-
vidual features modified by tuning, all sampled under realistic
load conditions. Needless to say, these are difficult to come by,
but we may consider this direction in future work.

IV. CLASSIFIER

Our next contribution is to enhance Snacktime’s feature
vector, describe a working classifier based on the theory de-
veloped in Section III, bring awareness to RTO randomization
performed by certain OSs, and explain how to collect signature
databases under these conditions.

A. Features

Snacktime uses only two non-RTO features—TCP adver-
tised window size and TTL. However, additional parameters
are readily available from the SYN-ACKs. Following Table II,

these include the Do Not Fragment (DF) flag in the IP header,
four different fields from the RST packet (more on this below),
the Maximum Segment Size (MSS) declared by TCP, the order
in which the OS assembles the option fields (OPT), SYN-ACK
RTOs (SA-RTO), and the RST RTO (R-RTO). Some of these
features are self-explanatory, but others require additional
elaboration.
First, it should be noted that the initial TTL cannot be recon-

structed exactly at the receiver. We use the common technique
of rounding this value up to the nearest “likely” boundary, which
includes four values used by the OSs in our database —32,
64, 128, and 255. Second, the reset features are quite rich. In
Table II, the binary flag RST is 1 for the fingerprints that con-
tain a reset packet, RA indicates whether the RST has the ACK
bit set, RN is 1 if the ACK sequence is nonzero, and RW records
the window of the reset packet. RST features represent peculiar-
ities of internal stack operation and cannot be modified via OS
tuning. However, fingerprint scrubbers, NAT/IDS, and kernel
recompilation can still change them.
Third, as seen in the table, support for TCP options differs

between the operating systems since no specific subset is re-
quired to be implemented [21]. More importantly, users have
the freedom to disable them as needed. As certain options are
considered security risks (e.g., timestamps), they may be dis-
abled by default, although users can still reenable them. Cer-
tain devices (e.g., printers) do not allow OPT tweaking at all,
while newer versions of popular operating systems tend to sup-
port fewer choices. For example, even though Windows 7/2008
provides registry keys to disable TCP timestamps, the modifi-
cation does not work. Similarly, SACK can be disabled only if
the entire TCP stack is offloaded to the NIC [28].
What makes OPT a good feature is not the specific string, but

rather the order in which non-padding options appear. This is
illustrated in Table III, where we progressively disable various
combinations of options and observe the resulting SYN-ACK
packets. For example, Windows XP supports four options
MWTS. Turning off W produces MTS interspersed by NOPs as
padding. Simplicity of implementation and lacking reasons to
reorder the options suggests that this phenomenon likely exists
in other stacks.
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TABLE IV
ENHANCED FEATURE VECTOR

As a result, OPT requires a more advanced classification logic
than straight comparison. Specifically, a match is registered if
the observed sample contains a feasible string, which we ex-
amine by taking an intersection of non-NOP options between
and each fingerprint, followed by verification that the order of
the resulting letters is the same. For example, MTW is a match
to Linux, VxWorks, and Juniper in Table II, but not the other
OSs.
Fourth, the reset RTO (R-RTO) helps in resolving additional

ambiguities, such as between Mac OS 10.3 and NetBSD 4.0.1
in Table II, which otherwise have identical SA-RTO patterns.
Additionally, we expand Snacktime’s default measurement time
limit from 65 to 120 s, the latter of which is the maximum seg-
ment lifetime (MSL) of TCP [36]. For instance without consid-
ering the 96-s RTO of Linux 2.0 in Table II, it might be hard to
differentiate it from Linux 2.6.
Table IV summarizes the features used in our classification

and compares them to those in nmap, p0f, andXprobe [31], [50],
[53], [55], [57]. We have four novel features and one match type
(subset) never used in fingerprinting before.

B. Stochastic Timers

Table II shows SA-RTOs from a single captured sample of
the OS. However, it turns out that many kernels naturally ex-
hibit significant RTO variation, sometimes by as much as 50%.
Two examples are shown in Fig. 4 using a 2-D scatter plot of the
first two SA-RTOs. For Server 2003 in Fig. 4(a), there are two
distinct patterns—the lower left corner, with distributed
in and frozen at 6.56, and the upper section,
with scattered in and in . Fur-
thermore, the two scenarios are not equally likely as the bottom
one occurs 68% of the time. This shows that the temporal model
must take into account not just the possible RTO regions, but
also their likelihoods.
A similar picture emerges for Linux 2.6 in Fig. 4(b). The mass

of the RTO is now concentrated on 11 distinct points, where
ranges from 3 to 4.4 s and from 6 to 6.2. Again, the

popularity of individual points is nonuniform, swinging from
2% to 16%. Note that both cases in Fig. 4 have been collected
from idle hosts over a single-hop network consisting of one
switch, which makes this behavior part of the fingerprint itself
rather than an artifact of the sampling environment.

Fig. 4. RTO randomness in TCP/IP scheduler. (a) Windows Server 2003.
(b) Linux 2.6.

Possible reasons for this fluctuation are the absence of per-
connection RTO timers during the SYN-ACK phase and dis-
cretization of retransmission delays. What these examples show
is that internal OS operation is a complex stochastic system that
requires measuring the RTO distribution (rather than a single
snapshot) during creation of the signature database. This is nec-
essary because such large variations are not taken into account
by the jitter model, which normally assumes OWDs on the order
of tens or hundreds of milliseconds, with similarly sized jitter.
Our approach is to treat RTOs as random variables, unlike

prior work that has always considered them deterministic.
Specifically, suppose OS has unique types of behavior,
each occurring with probability , where .
We call each of these types a subOS and assign it a separate
RTO vector , which updates (13) to

(19)

A simpler technique is to measure each host times and let
each obtained RTO vector be a subOS with . In
that case, (19) becomes

(20)

where is the generalized jitter of the th RTO under
subOS of OS and loss pattern . Note that summations
involving remain the same since all subOSs within a
given OS send a fixed number of SYN-ACKs. They also ex-
hibit deterministic user features, which keeps (15) unchanged.

C. Fingerprint Database

In order to produce an accurate fingerprint , the OS must be
measured in some isolated testbed with low end-to-end delays
and idle conditions at the server. To avoid loss-related bias, each
host must be sampled multiple times to determine the longest
vector of RTOs it produces, which should then be used to col-
lect loss-free samples for the database. Following these guide-
lines, we installed a variety of commodity operating systems in
our lab, determined the proper size of their RTO vectors, and
collected clean fingerprints from each. We also cap-
tured a number of embedded devices found in our department
LAN.



SHAMSI et al.: HERSHEL: SINGLE-PACKET OS FINGERPRINTING 2203

TABLE V
CLASSIFICATION ACCURACY (PERCENT) OF ISOLATED FEATURES

The final step was to perform a scan of the university net-
work for additional signatures not already in the database. Once
found, these devices were fingerprinted in a similar fashion,
producing clean samples per OS. When the owner of the
device could not be contacted and the server’s Web page did
not provide enough detail, we used nmap to identify the de-
vice. While Snacktime ships with 25 signatures and [24] uses
98, our database contains 116 network stacks. We can distin-
guish not only between different operating systems (e.g., Win-
dows, Linux, FreeBSD), but also sometimes identify their ver-
sions and patches (e.g., Windows Server 2003 with and without
SP1, MacOS 10.3 versus MacOS 10.4).

D. Hershel

Our classification method, which we call Hershel, builds
upon (18) and (20), where we treat all subOSs as de-
terministic. Common sense suggests that users, scrubbers, and
network devices are not likely to directly tweak individual RST
features RA, RN, and RW; instead, these fields (if modified at
all) will be simultaneously replaced with another set that comes
from a different OS. We thus combine all four RST values in
Table II into one atomic feature for classification purposes.
This makes vector consist of six fields—Win, TTL, DF,
MSS, OPT, and aggregated RST. Table V shows the accuracy
of individual features across the entire database (all ties are
broken uniformly randomly).
RTO vectors and include timestamps of all SYN-ACKs

and the first RST (if present). To account for resets that might be
injected by firewalls/IDS after they time out the connection, (8)
and (15) require a revision. Specifically, if the measured vector
contains a reset, but does not, the RST is removed from

prior to computing (8). To account for the mismatch in the RST
feature, (15) gets multiplied by . In the opposite case, i.e.,
contains a RST, but does not, it is important to avoid mistaking
packet loss for changes in the RST feature and improperly pe-
nalizing with . Next, if both vectors contain a reset
packet, (15) gets hit with either or depending on the
match in (RA, RN, RW). Finally, if neither vector has a RST,
then (15) enjoys multiplication by .

V. SIMULATIONS

Our contribution in this section is to explain how to select
the parameters of the model and examine Hershel’s accuracy in
simulations in comparison to Snacktime.

A. Parameters

For lack of a better assumption, we suppose that all OSs are
equally likely to appear in the trace and set to be a
uniform PMF.While it is possible to consider multiple iterations
and refine this value after each pass, the resulting system some-
times exhibits instability and divergence into inferior states. We

thus leave stability analysis for future work and only perform a
single iteration in our evaluation below.
We use for RST and OPT, while keeping
for the other features. The rationale is that RST behavior and

option ordering can be changed only through kernel source-code
modifications and usage of aggressive intermediate devices, nei-
ther of which we believe is that common in today’s Internet
compared to stack tuning. For queuing delay, we use a simple
exponential distribution with CDF whose mean is set
to 0.5 s (rate ). This produces Laplace jitter density

(21)

Note that usage of is fairly pessimistic, with the ma-
jority of paths likely exhibiting significantly smaller delays. For
example, this model assumes 82% of the paths produce over
100 ms queuing delays, 37% over 500 ms, and 14% over 1 s.
For packet loss, we use Google’s study [10] to set ,
which was their highest rate of SYN-ACK loss.

B. Results
Our next goal is to examine Hershel’s robustness in the pres-

ence of OWD jitter, packet loss, and random feature modifica-
tion by the user. We also aim to assess the sensitivity of re-
sults to our choices of default parameters above. We simulate
a FIFO queue between the server and the client with a given
delay distribution. Each packet is dropped by the router with
some probability and each feature is independently mod-
ified with another probability . Since these are per-packet
and per-feature metrics, it also makes sense to examine the frac-
tion of all generated samples
that do not have any loss or feature modification, where the ex-
pectation is taken over all .
The distribution of popularity is set to Zipf

with shape parameter , which approximates the fact that
someOSs aremuchmore popular than others.We do not attempt
to make our assignment of index to each physical OS such
that its closely follows that in the Internet (which is
unknown anyway); instead, the simulation simply verifies per-
formance of the proposed estimator when the OS frequency is
highly nonuniform. For that purpose, random ordering of OSs
in the database is sufficient.
Table VI shows classification accuracy for several scenarios

of interest. We examine three types of OWD with mean
in the first column—Pareto with
and , exponential with rate , and uniform in

. We use the original Snacktime since the simplified ver-
sion from [20] performs worse. Using just the RTOs, Snacktime
in the table starts at close to 13%, but then deteriorates below
1% near the bottom. This amounts to essentially guessing across
the 116 available options (i.e., ). Augmented
with Win and later TTL, Snacktime begins at a more healthy
52%–58%, but then eventually reduces to single digits.
The next six columns show Hershel with its default
. Classifying just based on the RTO vector, Hershel doubles
Snacktime’s accuracy in the first three scenarios (i.e., the first
12 rows of the table), triples it in the next one, and improves
by an order of magnitude in the last one. As additional features
are added, Hershel becomes even better, with significant gains
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TABLE VI
CLASSIFICATION ACCURACY (PERCENT) IN SIMULATIONS OF SAMPLES

seen at the Win and OPT boundaries. This shows that unlike
DF, option strings form an orthogonal dimension to Win/TTL.
The MSS improves the result further by 3% and the RST packet
by an additional 0.5%–3%, with the impact mostly limited to
high-loss cases.
Staying with , observe that Hershel is quite insensitive

to selection of . Specifically, classification accuracy im-
proves not when equals or the PDF of real delay matches
(21), but as gets smaller or the tail of the delay gets lighter.
This can be seen by contrasting the two Pareto cases (
and ) and comparing Pareto, exponential, and uniform
cases (all with ). As the difference between the last
three scenarios is quite small, we conclude that the distribution
of network jitter, as opposed to its mean, generally has a minor
effect on accuracy. Therefore, keeping the Laplace model (21)
appears reasonable.
To shed additional light on selection of parameters, the next

column of the table reruns Hershel with all available features
and . While this slightly improves the case, this
happens only under 50% packet loss and at the expense of sig-
nificant reduction in accuracy in other rows, which suggests that

should overestimate, rather than underestimate, the real net-
work delay. To this end, our previous conservative choice
seems quite appropriate. The last column of the table reverts to

and demonstrates that the model is insensitive to selec-
tion of . We thus keep for the Internet classification
below.

VI. EXPERIMENTS

Our contribution in this section is to apply Hershel to a wide-
scale Internet scan and provide an assessment of the obtained
classification.

A. Dataset Properties

We use Internet scan data from [20], which is based on a 2010
survey of Web servers in [24]. These IPs were discovered by
sending port-80 SYN packets fromWindows Server 2008 (with
all TCP options enabled) to every address in BGP. The exper-
iment garnered 37.8M samples that contained at least one
SYN-ACK, which we later feed into Hershel. We start by ex-
amining occurrence of various features in the dataset and their
mapping to signatures in . We qualitatively group them into
four types—linux, windows, embedded (routers, modems, cam-
eras, hardware gadgets), and other (BSD, Mac, AIX, NetApp,
Big-IP, SunOS).
To first step is to ensure that packet loss has not pro-

duced totally unworkable temporal features in the dataset.
Table VII shows the number of available RTOs per destination.
It is encouraging to see that the top four spots retain enough
information for a meaningful match and the most difficult
case (i.e., single SYN-ACK) follows in sixth place. While the
average number of received packets was 5, one host transmitted
over 3M SYN-ACKs. We next analyze sanity of the remaining
features and build intuition for what to expect from Hershel
classification.
The scan contains a staggering 3815 unique window sizes,

while our fingerprint collection has only 51. While users
tuning their stacks and scrubbers modifying the OS signature
are possible reasons, we also found that the advertised window
of SYN-ACKs can be easily changed at the application layer
by resizing the socket buffer (i.e., calling with
the option) before the connection is accepted. This
highlights the need for a flexible classifier that allows features
to mismatch.
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TABLE VII
TOP RTO COUNTS (99% OF TOTAL)

TABLE VIII
TOP WINDOW SIZES (87% OF TOTAL)

The good news is that the distribution of window size
is heavily skewed toward well-known values, as seen in
Table VIII. The most common window is unique to Linux
variants, while the most ambiguous is split across 17 operating
systems. Interestingly, window size 5760 in position #5, which
we later discovered belongs to Ubuntu, is absent not just from
ours, but also other fingerprinting databases (e.g., p0f, xprobe).
We come back to these hosts later in the section and examine
how Hershel classifies them. Ideally, unknown devices should
be mapped to the same OS family (i.e., Linux in this case).
Another peculiar case is 168K hosts with zero window size,

which in our database corresponds to a single device related
to building automation. This particular stack forces the sender
to finish the 3-packet handshake (SYN, SYN-ACK, ACK) and
wait for the window to move before sending the first GET re-
quest. Immediately after the sender’s ACK, the window ex-
pands to 12 288 B. Closed receiver windows can be an artifact of
rate-limiting firewalls or site policies related to congestion con-
trol. One notable example is a popular host craigslist.com that
prior to 2006 was completing all TCP handshakes with window
size zero [25]. Other usage of this technique comes from net-
work tarpits [2], which aim to slow down scanners by adver-
tising small windows in SYN-ACKs. All of this suggests that the
true window size may remain “hidden” from the fingerprinting
tool for reasons unrelated to users, scrubbers, or TCP socket
options.
The TTL values of received packets are plotted in Fig. 5(a),

covering 251 unique points out of the 255 possible. A vast ma-
jority of the hosts are clustered on the values just before the
initial TTL defaults 64, 128, and 255. Fig. 5(b) shows the distri-
bution of reverse hop length for each host back to the scanner,

TABLE IX
INITIAL TTL DISTRIBUTION (100% OF TOTAL)

TABLE X
BREAKDOWN OF 5.9 M HOSTS WITH RSTS

Fig. 5. Received TTL and reverse path length. (a) Received TTL. (b) Reverse
distance.

calculated by subtracting the received TTL from the nearest
well-known initial value. This distribution appears reasonable,
with less than 0.4% of the mass below 10 or above 30 hops.
This suggests the number of nonstandard initial TTLs (if any) is
small. Table IX shows the distribution seen by Hershel and the
corresponding number of signatures in .
A good number of hosts (69%) set the DF flag, indicating they

intend to perform path-MTU discovery, which matches 45% of
the signatures. Out of 37.8M responsive targets, 5.9M (16%)
send at least one reset packet (in addition to the SYN-ACKs),
which is consistent with 56 OSs. The reset window (RW) de-
viates from that in the SYN-ACK for 20.8% of the IPs and 8
fingerprints in .
Table X examines the interplay between RA and RN in reset

packets. In the most common scenario, hosts indicate that the
ACK sequence is valid and correctly acknowledge values one
larger than transmitted by the scanner in the SYN packet (which
encodes the destination IP). However, there are also 37K hosts
(last row) with broken implementations that indicate a valid
ACK, but set the field to zero. None of our signatures exhibits
this behavior.
We have 21 unique combinations of options in . How-

ever, the dataset shows 264 different strings, with the top 10
provided in Table XI. Similar to Table VIII, a few popular
cases account for the majority of IPs and Linux variants hold
a clear lead, but now the most ambiguous combination splits
across 41 embedded devices. While Akamai currently reports
137K servers [1], it seems reasonable that multiple NICs and
IP aliasing can produce 339K samples in last row.
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TABLE XI
TOP OPTIONS STRINGS (95% OF TOTAL)

TABLE XII
TOP MSS VALUES (93% OF TOTAL)

Practically every host (99.5%) supports the MSS option, with
Table XII showing the top 10 cases out of the 1021 observed
in the dataset. The most common MSS 1460 does not provide
much information about the OS, but the other values appear
useful at partitioning the dataset into small groups. On the down-
side, general-purpose OSs often set the MSS as a function of
the underlying data-link layer (i.e., ), which
creates some interesting dilemmas. For example, MSS 1452 in
third place can be classified as one of two embedded devices or
as home computers with 1492-B MTUs commonly seen over
PPP links such as DSL. This emphasizes importance of Her-
shel’s probabilistic matching (15) and explains the significantly
smaller number of unique MSS values in (i.e., only 20).

B. Classification Overview

We run Hershel on the scan dataset and obtain a nonzero
classification probability for 37.4M devices. Before showing
these results, we perform additional sanity checks by examining
how often individual features of each IP matched those in the
most-likely OS suggested by Hershel.
Starting with the first two columns of Table XIII, observe that

window size is quite volatile, with 30% of the decisions going
to signatures with a different window. This was expected given
the numerous reasons to modify this field and the large amount
of unique values seen earlier. Additionally, these 30% cover un-
known devices whose RTOs and other features maymatch some
OS in , but not the window size. Hershel remains robust in
these cases and simply identifies the closest signature based on
the available information. For example, 98.4% of Ubuntu cases

TABLE XIII
HERSHEL’S FEATURE MATCH RATE

TABLE XIV
TOP INDIVIDUAL SIGNATURES (65% OF TOTAL)

with the unknown window 5760 are classified to Linux 2.4/2.6.
These 2.6M hosts account for 25% of all window mismatch.
TTL and DF both exhibit match rates over 95%, while MSS

comes in much lower at 71%. This is not surprising in light of
its dependency on the MTU. The OPT string proves extremely
reliable, where 77.4% of the cases match exactly and 22%
are feasible subsets/supersets of the original. The five possible
cases with RST packets are shown in the other two columns of
Table XIII. Combining the first two rows, we can conclude that
91% of the hosts have a matching RST feature. The next row
with missing RSTs allows us to ballpark network packet loss at

, not too far from the model’s 3.8%. The majority
of nonmatching combinations (RA, RN, RW), responsible for
3.5% in the table, are caused by RW. Some of this behavior was
also expected since tweaking of window size causes certain
OSs to alter RW as well. Finally, we see 1% of the cases with
extra RST packets, which we suspect are injected by firewalls,
NAT boxes, and other devices as indication that they have
expired the per-flow state.

C. Results
Having verified the general soundness of Hershel’s output, we

show it in Table XIV. Linux attracts the most classification de-
cisions, accounting for nearly a quarter of the Web servers. This
signature is quite unique, which makes accidental lumping of
unknown devices or misclassified hosts into this category highly
unlikely. In second and fourth place is VxWorks, which is an
embedded OS extensively used in routers, modems, cameras,
and printers. Interestingly, Windows 2003 is third, well above
Server 2008 in seventh position. More Linux, home routers/
modems, and Server 2003/XP make up the remaining OSs.
Table XV groups fingerprints by type. Linux not just takes

the first spot, but it dominates all other types of unix combined
by a factor of 6. Embedded systems continue in second place,
while windows is firmly in third. Interestingly, these results
differ quite a bit from those in prior application of Snacktime
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TABLE XV
COMMON FAMILIES OF OPERATING SYSTEMS

TABLE XVI
MANUAL VERIFICATION

to this dataset [24], with the most noticeable difference being
9M hosts moving from windows to embedded. This is not sur-
prising as Snacktime’s ability to overcome noise, packet loss,
and feature corruption is quite weak. Furthermore, as shown
above,Microsoft OSs often share the window size and TTLwith
embedded devices, making this distinction even more difficult
for Snacktime.
To better understand the difference between these methods,

we carry out comparison using manual analysis of 1000 random
targets for which we had an HTTP header from a separate down-
load process that grabbed the root page of each replying IP (this
was done in real time during the 2010 scan). Table XVI shows
the result. The first category in the table breaks down 429 hosts
on which both methods produce the same exact OS. Out of
these, 424 are correct matches, 3 incorrect, and 2 indeterminate.
The last option occurs for devices inadequately represented in
the database (i.e., no resemblance to any signature) or when
multiple OSs appear to be probable (e.g., due to extensive packet
loss or missing/ambiguous “Server:” field in the HTTP response
header). Among the 571 disputed hosts, Hershel delivers 476
correct results and Snacktime 9.
We can make a decision for 918 cases, out of which Hershel’s

accuracy is 98% and Snacktime’s is 47%. The 9 cases where
Hershel is wrong, but Snacktime is right, are caused by bogus
RSTs, which Snacktime ignores, but Hershel takes into account.
Overall, we find that when the two methods disagree, Hershel
is overwhelmingly more accurate.

D. World View

Next, we use the MaxMind GeoIP database [13] to glean
trends in OS usage around the globe. Table XVII shows the top
countries in the measurement. The US leads the list, accounting
for almost half of the discovered Web servers (i.e., 16M out of
37M) and exceeding China in second place by a factor of 8. The
distribution of OS popularity is quite diverse, with only Italy
and Brazil exhibiting similar vectors. Interestingly, Linux pre-
vails over Windows in all countries except China; Spain stands
out with 90% Linux, far more than any other locale in the list;

TABLE XVII
TOP COUNTRIES RUNNING WEB SERVERS (71% OF TOTAL)

and the US has the highest fraction of embedded devices among
the entries in the table.
Table XVIII breaks down the data by AS, shedding ad-

ditional light on the results. Home access providers in the
US (i.e., Comcast, Time Warner, Cox) are full of embedded
devices, likely consumer routers and modems. In combination,
these 4.8M boxes represent 30% of the discovered servers in
the US, which helps explain the high percentage of embedded
stacks seen earlier. Similarly, Telefonica de Espana, a large
telecommunications provider in Spain and South America, is
responsible for 50% of Spanish Web servers in our dataset.
This company is known for collaborations with RedHat and a
cloud-computing emphasis [48]. Its 92% bias toward Linux is
consistent with an earlier observation that Spain is dominated
by this operating system. China’s propensity toward Windows
may stem from lax software piracy laws, with 67% of its
devices coming from two ISPs in Table XVIII, each replete
with Microsoft OSs.

E. Scrubbers
While the Hershel’s main purpose is large-scale measure-

ment, where OS scrubbing is not likely to be prevalent, it still
makes sense to examine its performance in such scenarios.
Table XIX lists four obfuscators mentioned in existing literature
and available for testing.
The first is Linux iptables, part of the packet-filtering frame-

work called netfilter [29]. It is commonly used to inspect
packets, modify routing tables, and configure the kernel fire-
wall. It has extensions that “mangle” packets and change certain
header fields. However, the only ones of interest to Hershel
are TTL and MSS. OSfuscate [11] is a Windows scrubber that
thwarts fingerprinting tools by changing the registry. It can
modify Win, TTL, MSS, and certain options (i.e., drop SACK
and timestamps). Along similar lines, TCP Optimizer [32] gives
its users ability to change the same five registry values, in hopes
of improving TCP transfer speed. Finally, IPPersonality [43],
built on top of the netfilter framework, is the most sophisticated
scrubber in the list. It can modify all Hershel features except
RST and RTO.
To evaluate performance against scrubbers, we simulate

the worst-case scenario—IPPersonality with an adversary
who mimics the signature with the closest RTO vector from
another OS family (i.e., windows, linux, embedded, other).
Table XX shows the result using Pareto OWDs s
and the Zipf setup from Table VI. Snacktime stays in the single
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TABLE XVIII
TOP ASS RUNNING WEB SERVERS (22% OF TOTAL)

TABLE XIX
CAPABILITY OF OS OBFUSCATION TOOLS

TABLE XX
SCRUBBED ACCURACY (PERCENT) AMONG ALL OSS

TABLE XXI
SCRUBBED ACCURACY (PERCENT) AMONG WINDOWS/LINUX

digits, showing performance slightly below that of using just
the RTOs. Hershel with only the fixed features from previous
literature (i.e., all except RTO and RST) produces the expected
0% match rate. Adding the RTO pushes accuracy to 6%–12%,
but this far from impressive—the RTO alone works better,
achieving 10%–22%. Employing all Hershel features almost
doubles the result. However, the real winner in this comparison
is the combination, which reaches as high as 47%.
Limiting the simulation to 26 Windows/Linux signatures that

the scrubber modifies using the same rules produces a more
challenging case outlined in Table XXI. There is an accuracy
reduction in all categories, but the scrubber-resilient version of
Hershel still manages to correctly pinpoint over 41% of the sam-
ples that sustain no loss.

VII. CONCLUSION
We modeled the problem of single-packet OS fingerprinting

and developed novel approaches for tackling delay jitter, packet
loss, and user modification to SYN-ACK features. Based on this

theory, we created a classification method that significantly in-
creased the accuracy of existing techniques, both in simulation
and the real Internet.
Future work involves multipass extraction of jitter,

packet-loss, and OS-popularity models from the observed sam-
ples, which should improve estimation accuracy even further.
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