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ABSTRACT
Traditional TCP/IP fingerprinting tools (e.g., nmap) are
poorly suited for Internet-wide use due to the large amount
of traffic and intrusive nature of the probes. This can be
overcome by approaches that rely on a single SYN packet
to elicit a vector of features from the remote server; how-
ever, these methods face difficult classification problems due
to the high volatility of the features and severely limited
amounts of information contained therein. Since these tech-
niques have not been studied before, we first pioneer stochas-
tic theory of single-packet OS fingerprinting, build a database
of 116 OSes, design a classifier based on our models, evaluate
its accuracy in simulations, and then perform OS classifica-
tion of 37.8M hosts from an Internet-wide scan.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques

General Terms
Design, Measurement, Algorithms, Theory, Security

Keywords
OS Fingerprinting; OS Classification; Internet Measurement

1. INTRODUCTION
With the explosive growth and distributed nature of com-

puter networks, it has become progressively more difficult
to manage, secure, and identify Internet devices. One of the
approaches that greatly helps in understanding the compo-
sition of internal and external networks is OS fingerprinting,
which is a process that determines the operating system of
remote hosts based on peculiarities of their network-level
behavior. This differentiation is possible due to certain free-
dom in selection of default stack parameters, ambiguities
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in IETF RFCs [7], [32], [33], non-compliant TCP/IP im-
plementations, and lacking standardization for responses to
malformed requests.

Over the last 20 years, these observations have led to a va-
riety of methods [2], [3], [4], [6], [8], [16], [22], [25], [41], [42],
[43], [45], [46], [50], [52], [53], [54] that perform classifica-
tion using application-layer traffic, TCP/IP/UDP headers,
ICMP packets, or some combination thereof. These algo-
rithms are useful not only in network security (i.e., detec-
tion of outdated/unpatched hosts), but also market analysis
[28] and Internet characterization [17], [23], [29], [31], [45].
However, their usage, scalability, and accuracy at very large
scale (i.e., millions of destinations) have not been explored
before. We aim to address this issue below.

1.1 Methodology and Objectives
The Internet has been the target of numerous measure-

ment studies, with the trend recently shifting from covering
a small subset of destinations [31], [36] to scanning the entire
IP space [11], [17], [23], [37]. This allows researchers to enu-
merate live hosts, detect vulnerabilities, and shed light on
deployment of new protocols. Over the years, network scan-
ning has become progressively faster – from 4 months [37]
down to 30 days [17], then one day [23], and now 45 min-
utes [13]. In conjunction with these studies, low-overhead
OS fingerprinting can allow significantly better understand-
ing of the systems researchers interact with and improve our
general knowledge about the Internet.

OS fingerprinting consists of two approaches – passive and
active. The former [21], [54] monitors ongoing communi-
cation (inbound and/or outbound) with remote hosts, but
does not generate traffic of its own. Unless each studied
device voluntarily connects to the measurement server, this
technique is difficult to use for classifying each IP on the In-
ternet. The latter approach, which is the topic of this paper,
actively sends packets to targets and infers their operating
system from the collected responses.

One important aspect that differentiates between the ac-
tive methods is the potential maliciousness of probing traf-
fic, where certain nonsensical combinations of TCP flags
(e.g., SYN-FIN-RST-ACK) or intrusive actions (e.g., try-
ing to delete the root directory in HTTP fingerprinting [42])
may harm or crash the target. Additionally, these packets
are easily detected and dropped by IDS [44], which leads to
complaints against research institutions using these methods
and possibly reduced accuracy of the results.

The second aspect is the amount of outbound traffic re-
quired by the classifier, which ranges from a single SYN
probe [3], [50] to lengthy multi-packet exchanges [25], [29],
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[42], [46], [52]. Ideally, fingerprinting should be performed
with no extra overhead to scan traffic, which rules out tech-
niques [29], [52] that expect to reach the target on multi-
ple open ports, using different protocols (e.g., ICMP, TCP,
UDP), and elicit responses on closed ports. While LAN
environments can tolerate high traffic rates and may allow
multi-protocol access to each host, these conditions are gen-
erally difficult to satisfy when scanning the entire Internet.
The third aspect is the ability of the underlying estimator

to correctly identify the target OS under realistic network
conditions and without using retransmission. Since prior
single-packet techniques [3], [50] were mainly developed for
local use, they are not well provisioned to overcome high
amounts of fluctuation and loss in temporal features. They
also lack resilience to OS tuning, which can be applied by
end-users in hopes of optimizing network performance or ob-
fuscating the default parameters of the stack. Either way,
the modified OS features may exhibit little correlation to
those originally present at the host, which cripples estima-
tion accuracy of existing tools.

1.2 Contributions
Given the many open issues in wide-scale fingerprinting

and lacking performance analysis in the literature, our first
goal is to formalize the estimation problem in single-packet
OS classification and study the pitfalls of existing techniques.
We then develop a low-overhead framework we call Her-
shel1 for overcoming the various randomization effects (i.e.,
queuing delays, packet loss, manual tuning) and apply it
as proof-of-concept in a measurement study that classifies
every visible webserver on the Internet.

2. RELATED WORK
OS fingerprinting has roots in banner grabbing, which re-

lies on application-layer protocols (e.g., HTTP, SSH, SMTP,
FTP, telnet) to provide a textual description of the OS as
part of the communication sequence. While this worked
well 20 years ago, banner grabbing today faces many im-
pediments, including high overhead, administrator ban on
OS-identifying strings in responses, generic software (e.g.,
Apache) that can run on multiple platforms without expos-
ing the underlying OS, and purposefully incorrect banners
that aim to mislead the various fingerprinting tools.

2.1 Multiple Packets
The second wave of OS classification started in 1997 with

the release of nmap [29], which pioneered TCP/IP tricks
that would elicit different responses from different imple-
mentations. By default, it sends 1032 probes to the target,
including a vertical port scan and certain malformed packets
that trigger popular IDS such as Snort [39]. Nmap ideally
expects the target to accept a TCP connection, send ICMP
port unreachable on a closed UDP port, and respond to a
ping. Under bandwidth-optimized settings for OS classifi-
cation, nmap requires no fewer than 38 different types of
probes; however, due to mandatory retransmission, this in
practice corresponds to well over 100 packets per host.
Due to its popularity, nmap has received a great deal of

attention in the literature, which includes usage of neural
networks to differentiate between versions of a same OS [41],

1William J. Hershel is known for inventing forensic usage of
fingerprints in 1858.
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Figure 1: Retransmission timeouts (RTOs) between
SYN-ACK packets.

detection of unknown devices [24], and techniques for reduc-
ing the number of sent probes [15]. Additional work includes
fuzzy matching [52], automatic generation of OS features
that aid fingerprinting [8], [38], application of formal testing
methods to the detection problem [16], and classification
using lengthy observations (up to 100K packets) of Initial
Sequence Numbers (ISNs) from the TCP header [25].

2.2 Single Packet
RING [50] and Snacktime [3] are the only tools that per-

form classification using a single outbound probe. As shown
in Figure 1, each measurement consists of a SYN packet,
server processing delay T needed to accept the connection,
and a stream of n SYN-ACK responses from the target OS,
followed by an optional TCP reset (RST) with its own RTO.
RING uses the n− 1 values in the RTO vector and presence
of the final RST packet in classification. Snacktime ignores
the RST feature, but instead uses the default TCP window
size and TTL carried in the SYN-ACKs, which allows it to
differentiate between 25 operating systems [3]. We analyze
its classification process in more detail later in the paper. A
simplified version of Snacktime and extension to 98 signa-
tures was offered in [19], [23]; however, no accuracy analysis,
modeling, or verified improvement was provided.

Another tool with a related capability is p0f [54]. In addi-
tion to passive fingerprinting, it can actively generate SYN
packets and profile remote network stacks based on a set of
fixed features from the SYN-ACKs (i.e., window size, TTL,
IP flags, and TCP options); however, it does not leverage
the RTOs and by default is quite verbose (i.e., sends eight
copies of the same SYN per target). The current version can
differentiate between 18 operating systems.

2.3 Common Defenses
There exist many approaches to thwart remote OS fin-

gerprinting. The most basic tools tweak Windows registry
[10] or implement plugins [4], [5], [40] for the Unix packet-
mangling module Netfilter [27]. Their objective is to modify
the fixed features of departing packets to no longer resemble
those of the underlying host. A similar direction is to deploy
network honeypots [35], [49] or standalone systems [51] that
spoof arbitrary operating systems and their services. Plac-
ing obfuscation into the network gives rise to intermediate
devices known as fingerprint scrubbers [34], [43].

While these techniques can effectively deal with static
header fields, they are not well suited for distorting the tem-
poral features of departing packets, which requires expensive
buffering of packets and per-flow state. Additionally, lack
of technical support and possibility for various side-effects
(e.g., disabling SACK in TCP may lead to significantly lower
throughput) raise questions about deployment of these tools
in production systems and/or at large-scale.
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3. STOCHASTIC MODEL
We assume a single-packet scanner similar to Snacktime

in Figure 1. While this approach has minimal intrusiveness,
lowest transmission overhead, and non-malicious operation,
it also exhibits several fundamental challenges. These arise
due to the complex ways in which the RTOs can be modi-
fied by packet traversal across wide-area networks, scarcity
of information about the target host contained in the sam-
ples, and user tuning of features, all of which has a strong
influence on one’s ability to detect the underlying OS.
It should be noted that straightforward application of

machine-learning methods [47] to our problem is difficult.
Experimentation with support vector machines, neural net-
works, and decision trees has led to the realization that they
perform poorly when the measured samples contain missing
data (i.e., the RTO vector is corrupted by packet loss). Sta-
tistical imputation [14] is a common technique for dealing
with these problems; however, it requires knowing which fea-
tures are missing and ability to accurately reconstruct the
remaining (non-missing) features. In our case, lost packets
go completely unnoticed and additionally modify the follow-
ing RTOs to produce feature vectors that have little resem-
blance to the original (see below).
Our contribution in this section is to formalize single-

packet OS fingerprinting, set forth clear goals for the clas-
sifier, study the impact of network delay and loss on the
measured samples, analyze the existing methods, and out-
line the assumptions under which the classification problem
is tractable.

3.1 Objectives
Assume a database D = (1, 2, . . . ,M) ofM ≥ 1 known op-

erating systems, where each OS j has some vector-valued fin-
gerprint yj collected during a-priori measurement of the OS.
The fingerprint consists of multiple features, which we par-
tition into those modified only by the network (e.g., RTOs)
and those only by the user (e.g., TCP window size). Suppose
the former are described by some vector δj and the latter by
another vector uj . While the length of δj normally depends
on j, that of uj is constant across all operating systems.
As both vectors undergo random modification before be-

ing observed by the scanner, the response of OS j to probe
traffic is some random variable that is a function of yj . Given
an observation x = (δ;u) from an Internet host, a typical
estimation problem is to find the most likely OS s(x) that
could have produced that vector:

s(x) : = argmax
j∈D

p(yj |x) = argmax
j∈D

p(x|yj)p(yj)
p(x)

= argmax
j∈D

p(x|yj)p(yj), (1)

where notation p(x|y) refers to the probability (or condi-
tional density, if more convenient) of x given y. Observe
that the probability p(x) that some OS in D has produced x
is constant for a given observation and can be omitted from
the optimization. If the fraction of Internet hosts p(yj) run-
ning OS j is unknown, it is common to set each value to 1/M ,
which removes this term from the optimization as well.
The more interesting component of (1) is the probability

p(x|yj) that OS j has produced the observation, or equiv-
alently that yj has become distorted into x. Before inves-
tigating this metric further, observe that network and user
modifications to the OS features can be treated as indepen-
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Figure 2: Effect of jitter on observed RTOs.

dent, from which it follows that:

p(x|yj) = p(δ|δj)p(u|uj). (2)

This means that the two terms can be dealt with sepa-
rately, which we do in the rest of the section.

3.2 Network Features: Jitter
For single-packet techniques [3], [50] in Figure 1, the vec-

tor of temporal features δj consists of individual RTOs gen-
erated by network stack j. Classification based on δj is
possible not only because some devices deviate from TCP
algorithms (e.g., exponential timer backoff), but also be-
cause RFCs that govern TCP retransmission [7], [32], [33]
do not specify the initial RTO or how many SYN-ACKs
must be generated. As a result, a wide variety of unique
RTO patterns exists.

For the time being, assume loss-free conditions. During
the measurement of sample x, suppose d is the sum of prop-
agation and transmission delays along the path from the
server back to the scanner. Note that d is a constant due to
the fixed size of SYN-ACKs. Now define Qm to be a ran-
dom queuing delay of the m-th packet in the return path.
As shown in Figure 2, the RTO vector δj undergoes distor-
tion that is independent of the forward path, server think
time T , and propagation delay d:

δ(m) = δj(m) +Qm+1 −Qm, m = 1, 2, . . . , |δj | (3)

Defining OWD (one-way delay) jitter Jm = Qm+1 − Qm

and considering that the gap between subsequent SYN-ACKs
is sufficiently large (i.e., at least several seconds), it follows
that back-to-back packets arriving from the server are not
likely to encounter the same busy period of the queues they
traverse. In that case, sequence Q1, Q2, . . . consists of inde-
pendent and identically distributed (iid) random variables.
Furthermore, since the number of hops and congestion of
the path is not affected by j, the distribution of each Qm

does not depend on the OS being profiled. This leads to:

p(δ|δj) =

{∏|δ|
m=1 f(δ(m)− δj(m)) |δ| = |δj |

0 otherwise
, (4)

where f(.) is the PDF (probability density function) or PMF
(probability mass function) of OWD jitter, depending on
whether Jm is treated as continuous or discrete. It should
also be noted that V ar[Jm] = 2V ar[Qm], while f(.) is zero-
mean and symmetric. For certain models of OWD, jitter can
be obtained in closed-form. For example, exponential Qm

produces the Laplace distribution with the same parameter
λ and Gaussian N(µ, σ2) becomes N(0, 2σ2).
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RTO1 (sec) Yj1 RTO2 (sec) Yj2 Wj

Observation δ 3.0 24.0
Fingerprint δ1 3.0 6 12.0 0 6
Fingerprint δ2 2.9 1 23.9 1 2

Table 1: Snacktime example.

We next contrast (4) with the RTO classifier in Snacktime
[3], which is a tool that is the closest to our objectives and
most advanced in single-packet OS fingerprinting. For each
RTO, this method first computes the number of matching
digits (limited to 6 decimal places of precision) between the
sample and all known fingerprints j:

Yjm = max(⌈− log10(max(|δ(m)− δj(m)|, 10−6))⌉, 0). (5)

It then assigns score Wj to OS j using the sum of these
weights across all available RTOs:

Wj =

|δ|∑
m=1

Yjm. (6)

For the example in Table 1, which exemplifies the common
pitfalls of Snacktime, (6) scores six for the first OS and two
for the second OS, indicating that jitter combination (0, 12)
is more likely than (0.1, 0.1). Taking the log of (4), our
model can also be reduced to optimizing a summation:

log p(δ|δj) =
|δ|∑

m=1

log f(δ(m)− δj(m)); (7)

however, it differs from (6) in two important ways. First,
the log is applied to the distribution function f(.) rather
than the jitter itself. Second, there is no loss of precision
due to rounding to the nearest integer or capping the jitter
at 10−6. Nevertheless, while (4) is a good starting point, it
does not work in real networks due to the lacking robustness
against packet loss. This is our next topic.

3.3 Network Features: Loss
The main problem with (4) is that loss-free conditions are

impossible to satisfy during Internet scans. Besides con-
gestion, routing loops, and various checksum violations, the
RTOs may be altered by the target server crashing or shut-
ting down during the measurement, which affects the tail of
the RTO vector and appears similar to packet loss. Since
single-packet fingerprinting by definition cannot retransmit
SYN probes, OS detection must be performed using only
the features available in observation x, which calls for more
sophistication in the model.
To exacerbate the situation, packet loss creates more dra-

matic changes to the RTO vector than delay jitter. For
example, consider a scenario with δj = (3, 6, 12), where all
delays are given in seconds. Even with a relatively large
E[Qm] = 100 ms, delay jitter remains small compared to
each RTO. On the other hand, the loss of a single packet
produces one of four dissimilar combinations – (3, 6), (3, 18),
(6, 12), or (9, 12) – while that of two packets leads to six
additional options – (3), (6), (9), (12), (18), or (21). The
RTO swing in these cases is significantly higher, which makes
mapping x to the correct OS more challenging.
We now examine how to model the combined probability

that loss and jitter transform δj into observation δ. This
will allow us to solve such dilemmas as whether δ = (3, 18)
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Figure 3: Generalized RTOs under packet loss.

is a more likely match to (3, 6, 12) with one lost packet or to
some other signature (2.6, 17.9) without any loss. To deal
with these cases, we propose to generalize the concept of
RTO. First, let τj be a vector of |δj |+1 packet-transmission
timestamps from OS j:

τj(m) =

{
0 m = 1

τj(m− 1) + δj(m− 1) m ≥ 2
(8)

and τ be the corresponding random vector observed in x
after the packets have traversed the network. Then, a gen-
eralized (m,m+ k)-RTO is the distance τj(m+ k)− τj(m),
which is illustrated in Figure 3 for m = 1 and k = 2. Note
that k = 1 produces the usual RTO and that all timestamps
are given using local clocks (i.e., τj at the server and τ at
the client).

Now suppose set Γ(τ, τj) contains all subsets of size |τ |
of integer sequence (1, 2, . . . , |τj |). We can view each γ ∈
Γ(τ, τj) as a mapping of received packets in τ to their po-
sition in the original vector τj , i.e., γ(m) = k means that
the m-th received SYN-ACK was initially in position k. For
the example in Figure 3, we have γ(1) = 1 and γ(2) = 3.
Assuming no reordering of SYN-ACKs, which is reasonable
given at least several seconds between them, each γ is a
vector of strictly increasing integers.

Armed with these definitions, we get:

p(τ |τj) =

{∑
γ∈Γ(τ,τj)

p(γ)p(τ |τj , γ) |τ | ≤ |τj |
0 otherwise

, (9)

where the number of summation terms equals the number
of ways to select |τ | objects from |τj | available options and
(9) is non-zero only if the number of received packets does
not exceed that in the fingerprint. This is in contrast to (4),
where the two vectors had to have equal length.

Again leveraging the large spacing between server respon-
ses, we can treat congestion events affecting SYN-ACKs as
independent, which allows one to approximate packet loss
as an iid Bernoulli process with some probability q. Since
each loss combination is equally likely, we trivially get:

p(γ) = q|τj |−|τ |(1− q)|τ |, (10)

which can be moved outside the summation in (9). To deal
with p(τ |τj , γ), which is the probability to observe τ from
OS j under loss pattern γ, notice that the gap between each
adjacent pair of received packets is determined by the gen-
eralized RTO:

τ(m)− τ(m− 1) = τj(γ(m))− τj(γ(m− 1)) + J ′
m, (11)

where m ≥ 2 and generalized jitter J ′
m is given by:

J ′
m = Qγ(m) −Qγ(m−1). (12)
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Rearranging the terms in (11), define the m-th jitter sam-
ple under pattern γ as:

Rγ
jm = τ(m)− τ(m− 1)− τj(γ(m)) + τj(γ(m− 1)). (13)

Noticing that J ′
m has the same distribution as Jm yields:

p(τ |τj , γ) =
|τ |∏

m=2

f(Rγ
jm). (14)

We thus get for |τ | ≤ |τj |:

p(τ |τj) = q|τj |−|τ |(1− q)|τ |
∑

γ∈Γ(τ,τj)

|τ |∏
m=2

f(Rγ
jm), (15)

which replaces p(δ|δj) in (2).
We finish this subsection by noting that Snacktime only

considers operating systems with the same number of RTOs
as the measured sample x, which automatically results in a
mismatch for observations that have sustained loss.

3.4 User Features
OS tuning is common practice in the current Internet,

with numerous online guides recommending optimizations
to network settings [30], [48] and automated software of-
fering tuning capabilities to the TCP/IP stack to achieve
better performance [12]. A number of fixed header param-
eters in general-purpose kernels (e.g., Unix, Windows) can
be changed through registry or using command-line tools.
Unlike jitter-induced noise, where small distortions are gen-
erally more likely that large ones, the main difference with
OS tuning is that there may be no correlation between the
manually selected values of the user and those installed in
the OS by default. For example, TCP window size may be
more likely to jump from 8192 to 65535 than to 8193.
While accurate modeling of manual modification and hu-

man psychology is difficult, it makes sense for the analysis to
at least take into account whether a given feature under user
control has been changed. Suppose that πm is the probabil-
ity of such modification in feature m and assume that user
tuning is applied independently to each available parame-
ter. Defining Ijm = 1{u(m)=uj(m)} to be an indicator of the
event that the m-th measured feature matches the original
of OS j, we get:

p(u|uj) =

|u|∏
m=1

[
(1− πm)Ijm + πm(1− Ijm)

]
. (16)

Besides user interference, vector uj may be modified by
intermediate devices along the path (e.g., NAT, IDS, finger-
print scrubbers [10], [34], [40], [43], [51]), whose actions can
be clumped under the same umbrella of (16). Since buffering
packets for periods of time comparable to RTO (i.e., 3 − 6
seconds) and per-flow state are expensive, it is often safe to
assume that these devices do not alter the RTO pattern in
significant ways and thus leave enough features by which the
OS can still be identified. This underscores the importance
of having a robust RTO estimator.
The Snacktime algorithm for scoring user-modified fea-

tures can be generalized as a sum of weights assigned to
each match:

W ′
j =

|u|∑
m=1

wmIjm =
∑

Ijm=1

wm, (17)

which is added to the RTO score Wj in (6) for a final re-
sult. One open issue, however, is selection of proper weights,
which need to be somehow correlated with feature volatility.
Our model is much simpler since πm directly provides this
probability. To better understand the difference between
(16) and (17), assume that πm > 0 for all m and write:

log p(u|uj) =
∑

Ijm=1

log(1− πm) +
∑

Ijm=0

log πm. (18)

For πm ≈ 1, we get log πm ≈ 0, the second term of
(18) disappears, and our model reduces to Snacktime with
weights wm = log(1 − πm). However, in more realistic
cases of πm ≪ 1, the second term of (18) becomes non-
negligible and serves the role of balancing non-matching fea-
tures against those that do match. Snacktime has no such
mechanism.

3.5 Final Result
We now consolidate the various models into one formula.

Combining (15) and (16) in (2) and (1), dropping terms
that do not depend on j, and performing straightforward
manipulations, we get:

s(x) = argmax
j∈D:|τ |≤|τj |

{
p(yj)q

|τj |−|τ |
∑

γ∈Γ(τ,τj)

|τ |∏
m=2

f(Rγ
jm)

×
∏

Ijm=1

(1− πm)
∏

Ijm=0

πm

}
. (19)

Although (19) maximizes the OS-detection probability un-
der the assumptions stated throughout this section, its per-
formance with a-priori-unknown q, πm, f(.), and p(yj) is an
open question that needs to be examined. We perform this
later in the paper. In the meantime, we outline the various
remaining issues.

3.6 Limitations
First, the SYN packet may be lost and never reach the

target. Since there is no way to verify this, the host will
automatically be considered non-responsive and will be ex-
cluded from fingerprinting. Not much can be done to over-
come this problem unless SYN retransmission is allowed. If
we relax the single-packet assumption, the estimator will
face the problem of determining which of the SYNs trig-
gered which SYN-ACK response, without which the RTOs
cannot be computed correctly. This problem can be solved
in the future by encoding the retransmission attempt into
the source port of the SYN.

Second, our model allows only the network to modify the
RTOs; however, this may not hold if users manage to al-
ter SYN-ACK spacing during OS tuning. This is not of
wide-spread concern as few optimization guides target the
RTO pattern. With enough effort, scrubbers and obfusca-
tion tools can disrupt inter-SYN-ACK delays; however, we
do not consider development of end-to-end methods to com-
bat such approaches a fruitful objective. A related problem
arises with middleboxes and caches that accept the connec-
tion on behalf of the server [18], in which case any finger-
printing tool is bound to classify only the visible side of the
TCP stream (i.e., the OS of the middlebox).

Third, Hershel’s accuracy may deteriorate if the network
jitter process Jm becomes non-iid or deviates from the pre-
dicted bounds, e.g., due to significant kernel scheduling la-
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Operating system Win TTL DF Reset MSS OPT SA-RTO R-RTO
RST RA RN RW

Windows 7 8192 128 1 1 0 1 0 1460 MNWST 3, 6 12
Linux 2.6 5792 64 1 0 – – – 1460 MSTNW 3.8, 5.9, 12.1, 24, 48.2 –
Linux 2.0 32736 64 0 0 – – – 1414 M 3, 6, 12, 24, 48, 96 –
Mac OS 10.3 33304 64 1 1 1 1 32768 1460 MNWNNT 2.92, 6, 12, 24 30
NetBSD 4.0.1 32768 64 1 0 – – – 1460 MNWNNTSNN 2.92, 6, 12, 24 –
VxWorks 5.4.2 8192 64 0 1 1 1 8192 512 MNW 5.58, 24 45
Juniper Netscreen 8192 64 0 1 0 0 8192 1380 M 1.67, 2, 2, 2, 2, 2, 2, 2 2

Table 2: Sample signatures (M = MSS, N = NOP, W = window scale, S = SACK, T = timestamp).

Operating system All enabled Drop S Drop T Drop W Drop ST Drop SW Drop WT Drop all
Linux 2.6 MSTNW MNNTNW MNNSNW MST MNW MNNT MNNS M
Windows XP/2003 MNWNNTNNS MNWNNT MNWNNS MNNTNNS MNW MNNT MNNS MNW
Windows 7/2008 MNWST – – MST – – – –
FreeBSD 8.2 MNWST MNWNNT – – – – MSE M
Solaris 10 NNTMNWNNS NNTMNW – – – – – –

Table 3: Examples of transformations applied by the OS to TCP options (dashes indicate impossible cases).

tency during CPU overload. Similar issues may surface if
network loss depends on j, users modify different operat-
ing systems with different probability, or there is correla-
tion in loss events within a single stream of SYN-ACKs.
Solving these problems requires a per-OS set of parame-
ters (qj , fj(.), πjm) and multi-dimensional covariance matri-
ces for joint distributions of RTOs and individual features
modified by tuning, all sampled under realistic load condi-
tions. Needless to say, these are difficult to come by, but we
may consider this direction in future work.

4. CLASSIFIER
Our next contribution is to enhance Snacktime’s feature

vector, describe a working classifier based on the theory de-
veloped in the previous section, bring awareness to RTO
randomization performed by certain OSes, and explain how
to collect signature databases under these conditions.

4.1 Features
Snacktime uses only two non-RTO features – TCP adver-

tised window size and TTL; however, additional parameters
are readily available from the SYN-ACKs. Following Ta-
ble 2, these include the Do Not Fragment (DF) flag in the
IP header, four different fields from the RST packet (more
on this below), the Maximum Segment Size (MSS) declared
by TCP, the order in which the OS assembles the option
fields (OPT), SYN-ACK RTOs (SA-RTO), and the RST
RTO (R-RTO). Some of these features are self-explanatory,
but others require additional elaboration.
First, it should be noted that the initial TTL cannot be

reconstructed exactly at the receiver. We use the common
technique of rounding this value up to the nearest “likely”
boundary, which includes four values used by the OSes in
our database D – 32, 64, 128, and 255. Second, the reset
features are quite rich. In Table 2, the binary flag RST is
1 for the fingerprints that contain a reset packet, RA in-
dicates whether the RST has the ACK bit set, RN is 1 if
the ACK sequence is non-zero, and RW records the window
of the reset packet. RST features represent peculiarities of
internal stack operation and cannot be modified via OS tun-
ing. However, fingerprint scrubbers, NAT/IDS, and kernel
recompilation can still change them.

Third, as seen in the table, support for TCP options dif-
fers between the operating systems since no specific subset
is required to be implemented [20]. More importantly, users
have the freedom to disable them as needed. As certain op-
tions are considered security risks (e.g., timestamps), they
may be disabled by default, although users can still re-enable
them. Certain devices (e.g., printers) do not allow OPT
tweaking at all, while newer versions of popular operating
systems tend to support fewer choices. For example, even
though Windows 7/2008 provides registry keys to disable
TCP timestamps, the modification does not work. Simi-
larly, SACK can be disabled only if the entire TCP stack is
offloaded to the NIC [26].

What makes OPT a good feature is not the specific string,
but rather the order in which non-padding options appear.
This is illustrated in Table 3, where we progressively disable
various combinations of options and observe the resulting
SYN-ACK packets. For example, Windows XP supports
four options MWTS. Turning off W produces MTS inter-
spersed by NOPs as padding. Simplicity of implementation
and lacking reasons to reorder the options suggests that this
phenomenon likely exists in other stacks.

As a result, OPT requires a more advanced classification
logic than straight comparison. Specifically, a match is reg-
istered if the observed sample x contains a feasible string,
which we examine by taking an intersection of non-NOP
options between x and each fingerprint, followed by verifica-
tion that the order of the resulting letters is the same. For
example, MTW is a match to Linux, VxWorks, and Juniper
in Table 2, but not the other OSes.

Fourth, the reset RTO (R-RTO) helps in resolving addi-
tional ambiguities, such as between Mac OS 10.3 and NetBSD
4.0.1 in Table 2, which otherwise have identical SA-RTO
patterns. Additionally, we expand Snacktime’s default mea-
surement time limit from 65 seconds to 120, the latter of
which is the MSL (Maximum Segment Lifetime) of TCP
[33]. For instance without considering the 96-second RTO
of Linux 2.0 in Table 2, it might be hard to differentiate it
from Linux 2.6.

Table 4 summarizes the features used in our classification
and compares them to those in nmap, p0f, and Xprobe [29],
[46], [50], [52], [54]. We have four novel features and one
match type (subset) never used in fingerprinting before.
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Feature Description Appeared In
Win Receiver window [3], [29], [46], [52], [54]
TTL Time-to-live field [3], [29], [46], [52], [54]
DF Do Not Fragment [29] [46] [52], [54]
SA-RTO RTO sequence [3], [46], [50]
RST True if RST packet [50]
MSS Max segment size [29], [46], [54]
OPT TCP options (exact) [29], [54]
RA ACK bit in RST New
RN ACK seq ̸= 0 in RST New
RW Window in RST New
OPT TCP options (subset) New
R-RTO RTO of RST packet New

Table 4: Enhanced feature vector.

4.2 Stochastic Timers
Table 2 shows SA-RTOs from a single captured sample of

the OS; however, it turns out that many kernels naturally
exhibit significant RTO variation, sometimes by as much as
50%. Two examples are shown in Figure 4 using a 2D scatter
plot of the first two SA-RTOs. For Server 2003 in subfigure
(a), there are two distinct patterns – the lower left corner,
with RTO1 distributed in [2.2, 3.3] and RTO2 frozen at 6.56,
and the upper section, with RTO1 scattered in [3.3, 4.6] and
RTO2 in [9.5, 9.8]. Furthermore, the two scenarios are not
equally likely as the bottom one occurs 68% of the time.
This shows that the temporal model must take into account
not just the possible RTO regions, but also their likelihoods.
A similar picture emerges for Linux 2.6 in subfigure (b).

The mass of the RTO is now concentrated on 11 distinct
points, where RTO1 ranges from 3 to 4.4 seconds and RTO2

from 6 to 6.2. Again, the popularity of individual points
is non-uniform, swinging from 2% to 16%. Note that both
cases in Figure 4 have been collected from idle hosts over
a single-hop network consisting of one switch, which makes
this behavior part of the fingerprint itself rather than an ar-
tifact of the sampling environment.
Possible reasons for this fluctuation are the absence of per-

connection RTO timers during the SYN-ACK phase and dis-
cretization of retransmission delays. What these examples
show is that internal OS operation is a complex stochas-
tic system that requires measuring the RTO distribution
(rather than a single snapshot) during creation of the signa-
ture database. This is necessary because such large varia-
tions are not taken into account by the jitter model, which
normally assumes OWDs on the order of tens or hundreds
of milliseconds, with similarly sized jitter.
Our approach is to treat RTOs as random variables, unlike

prior work that has always considered them deterministic.
Specifically, suppose OS j has wj unique types of behavior,
each occurring with probability βjr, where r = 1, 2, . . . , wj .
We call each of these types a subOS and assign it a separate
RTO vector τjr, which updates (14) to:

p(τ |τj , γ) =
wj∑
r=1

βjrp(τ |τjr, γ). (20)

A simpler technique is to measure each host w times and
let each obtained RTO vector τjr be a subOS with βjr =
1/w. In that case, (20) becomes:

p(τ |τj , γ) =
1

w

w∑
r=1

|τ |∏
m=2

f(Rγ
jrm), (21)
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Figure 4: RTO randomness in TCP/IP scheduler.

where Rγ
jrm is the generalized jitter of the m-th RTO under

subOS r of OS j and loss-pattern γ. Note that summa-
tions involving Γ(τ, τj) remain the same since all subOSes
within a given OS send a fixed number of SYN-ACKs. They
also exhibit deterministic user features, which keeps (16) un-
changed.

4.3 Fingerprint Database
In order to produce an accurate fingerprint τj , the OS

must be measured in some isolated testbed with low end-
to-end delays and idle conditions at the server. To avoid
loss-related bias, each host must be sampled multiple times
to determine the longest vector of RTOs it produces, which
should then be used to collect w loss-free samples for the
database. Following these guidelines, we installed a vari-
ety of commodity operating systems in our lab, determined
the proper size of their RTO vectors, and collected w = 50
clean fingerprints from each. We also captured a number of
embedded devices found in our department LAN.

The final step was to perform a scan of the university net-
work for additional signatures not already in the database.
Once found, these devices were fingerprinted in a similar
fashion, producing w clean samples per OS. When the owner
of the device could not be contacted and the server’s web-
page did not provide enough detail, we used nmap to identify
the device. While Snacktime ships with 25 signatures and
[23] uses 98, our database contains 116 network stacks. We
can distinguish not only between different operating systems
(e.g., Windows, Linux, FreeBSD), but also sometimes iden-
tify their versions and patches (e.g., Windows Server 2003
with and without SP1, MacOS 10.3 vs MacOS 10.4).

4.4 Hershel
Our classification method, which we call Hershel, builds

upon (19) and (21), where we treat all w = 50 subOSes as de-
terministic. Common sense suggests that users, scrubbers,
and network devices are not likely to directly tweak indi-
vidual RST features RA, RN, and RW; instead, these fields
(if modified at all) will be simultaneously replaced with an-
other set that comes from a different OS. We thus combine
all four RST values in Table 2 into one atomic feature for
classification purposes. This makes vector uj consist of six
fields – Win, TTL, DF, aggregated RST, MSS, and OPT.

RTO vectors τ and τj includes timestamps of all SYN-
ACKs and the first RST (if present). To account for resets
that might be injected by firewalls/IDS after they time out
the connection, (9) and (16) require a revision. Specifically,
if the measured vector τ contains a reset, but |τj | does not,
the RST is removed from τ prior to computing (9). To
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OWD µ Snacktime Hershel λ = 2, q = 0.038 Hershel Hershel
RTO +Win/TTL RTO +Win/TTL +DF +OPT +MSS +RST λ = 10 q = 0.1

qreal = 0, πreal = 0 (χ = 100%)
Pareto 0.5 12.6 58.3 22.1 86.2 88.5 96.2 99.72 99.72 94.62 99.69
Exp 0.5 12.8 58.3 21.9 86.9 89.4 96.5 99.92 99.94 96.21 99.82
Uniform 0.5 13.0 58.4 21.7 87.4 89.8 96.8 99.99 99.99 98.50 99.99
Pareto 0.1 16.3 62.9 33.1 94.9 96.7 99.0 99.99 99.99 99.69 99.99

qreal = 3.8%, πreal = 0 (χ = 84%)
Pareto 0.5 10.0 49.0 21.4 85.1 87.7 96.1 99.69 99.69 94.68 99.66
Exp 0.5 10.1 49.0 21.5 85.6 88.1 96.3 99.76 99.82 96.21 99.80
Uniform 0.5 10.3 49.0 21.7 86.4 89.0 96.7 99.96 99.96 98.50 99.96
Pareto 0.1 13.1 53.2 31.6 93.6 95.6 98.8 99.96 99.96 99.66 99.97

qreal = 3.8%, πreal = 10% (χ = 49%)
Pareto 0.5 10.0 44.4 21.4 77.7 78.6 91.4 94.93 95.37 90.13 95.25
Exp 0.5 10.1 44.4 21.5 78.3 79.1 91.6 95.02 95.55 91.78 95.34
Uniform 0.5 10.3 44.4 21.7 78.9 79.7 91.9 95.20 95.63 93.97 95.57
Pareto 0.1 13.1 48.5 31.6 87.3 87.7 95.0 96.54 96.92 96.67 96.87

qreal = 10%, πreal = 10% (χ = 34%)
Pareto 0.5 6.9 33.4 20.1 76.2 77.1 91.2 94.84 95.22 90.01 95.14
Exp 0.5 7.0 33.4 20.1 76.8 77.7 91.5 94.98 95.43 91.76 95.20
Uniform 0.5 7.2 33.4 20.1 77.4 78.3 91.7 95.13 95.51 93.82 95.46
Pareto 0.1 9.3 36.8 29.4 85.3 85.7 94.5 96.38 96.71 96.46 96.67

qreal = 50%, πreal = 50% (χ = 0.13%)
Pareto 0.5 0.82 2.49 10.4 28.1 35.6 53.7 56.65 59.95 58.95 60.23
Exp 0.5 0.83 2.49 10.5 28.4 35.9 53.8 56.74 60.12 60.40 60.31
Uniform 0.5 0.84 2.49 10.6 28.6 36.5 54.0 56.89 60.25 60.79 60.46
Pareto 0.1 1.11 2.95 14.4 32.0 40.5 56.8 59.45 62.68 64.84 63.06

Table 5: Classification accuracy (percent) in simulations of 218 samples.

account for the mismatch in the RST feature, (16) gets mul-
tiplied by π4. In the opposite case, i.e., |τj | contains a RST,
but |τ | does not, it is important to avoid mistaking packet
loss for changes in the RST feature and improperly penal-
izing p(u|uj) with π4. Next, if both vectors contain a reset
packet, (16) gets hit with either π4 or 1 − π4 depending on
the match in (RA, RN, RW). Finally, if neither vector has
a RST, then (16) enjoys multiplication by 1− π4.

5. SIMULATIONS
Our contribution in this section is to explain how to select

the parameters of the model, and examine Hershel’s accu-
racy in simulations in comparison to Snacktime.

5.1 Parameters
For lack of a better assumption, we suppose that all OSes

are equally likely to appear in the trace and set p(yj) = 1/M
to be a uniform PMF. While it is possible to consider mul-
tiple iterations and refine this value after each pass, the
resulting system sometimes exhibits instability and diver-
gence into inferior states. We thus leave stability analysis
for future work and only perform a single iteration in our
evaluation below.
We use πm = 0.01 for RST and OPT, while keeping

πm = 0.1 for the other features. The rationale is that RST
behavior and option ordering can be changed only through
kernel source-code modifications and usage of aggressive in-
termediate devices, neither of which we believe is that com-
mon in today’s Internet compared to stack tuning. For queu-
ing delay, we use a simple exponential distribution with CDF
1−e−λx whose mean is set to 0.5 seconds (rate λ = 2). This
produces Laplace jitter density:

f(z) =
λ

2
e−λ|z|. (22)

Note that usage of λ = 2 is fairly pessimistic, with the ma-
jority of paths likely exhibiting significantly smaller delays.
For example, this model assumes 82% of the paths produce
over 100 ms queuing delays, 37% over 500 ms, and 14% over
1 second. For packet loss, we use Google’s study [9] to set
q = 3.8%, which was their highest rate of SYN-ACK loss.

5.2 Results
Our next goal is to examine Hershel’s robustness in the

presence of OWD jitter, packet loss, and random feature
modification by the user. We also aim to assess the sensi-
tivity of results to our choices of default parameters above.
We simulate a FIFO queue between the server and the client
with a given delay distribution. Each packet is dropped by
the router with some probability qreal and each feature is in-
dependently modified with another probability πreal. Since
these are per-packet and per-feature metrics, it also makes
sense to examine the fraction χ = E[(1−qreal)

|τj |](1−πreal)
6

of all generated samples that do not have any loss or feature
modification, where the expectation is taken over all j.

The distribution of popularity preal(yj) ∼ j−α is set to
Zipf with shape parameter α = 1.2, which approximates the
fact that some OSes are much more popular than others. We
do not attempt to make our assignment of index j to each
physical OS such that its preal(yj) closely follows that in the
Internet (which is unknown anyway); instead, the simulation
simply verifies performance of the proposed estimator when
the OS frequency is highly non-uniform. For that purpose,
random ordering of OSes in the database is sufficient.

Table 5 shows classification accuracy for several scenarios
of interest. We examine three types of OWD with mean µ in
the first column – Pareto 1−(1+x/β)−α with α = 3 and β =
µ(α− 1), exponential with rate 1/µ, and uniform in [0, 2µ].
We use the original Snacktime since the simplified version
from [19] performs worse. Using just the RTOs, Snacktime
in the table starts at 13%, but then deteriorates below 1%
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RTOs Hosts Sigs Group
3 9,639,810 27 all
2 9,070,991 16 windows, embedded
5 7,834,027 23 linux, embedded, other
4 5,066,940 16 unix, embedded
1 2,669,222 1 Dell printer
0 1,992,196 0 –
6 540,042 9 linux, embedded, other

19 202,733 2 embedded
18 162,442 0 –
17 110,335 0 –

Table 6: Top RTO counts (99% of total).

near the bottom. This amounts to essentially guessing across
the 116 available options (i.e., 1/116 = 0.86%). Augmented
with Win/TTL, Snacktime begins at a more healthy 58%,
but then quickly reduces to single digits.
The next six columns show Hershel with its default λ = 2.

Classifying just based on the RTO vector, Hershel doubles
Snacktime’s accuracy in the first three scenarios (i.e., the
first 12 rows of the table), triples it in the next one, and
improves by an order of magnitude in the last one. As addi-
tional features are added, Hershel becomes even better, with
significant gains seen at the Win/TTL and OPT boundaries.
This shows that unlike DF, option strings form an orthog-
onal dimension to Win/TTL. The MSS improves the result
further by 3% and the RST packet by an additional 0.5−3%,
with the impact mostly limited to high-loss cases.
Staying with λ = 2, observe that Hershel is quite insensi-

tive to selection of f(z). Specifically, classification accuracy
improves not when λ equals 1/µ or the PDF of real delay
matches (22), but as µ gets smaller or the tail of the de-
lay gets lighter. This can be seen by contrasting the two
Pareto cases (µ = 0.1 and µ = 0.5) and comparing Pareto,
exponential, and uniform cases (all with µ = 0.5). As the
difference between the last three scenarios is quite small, we
conclude that the distribution of network jitter, as opposed
to its mean, generally has a minor effect on accuracy. There-
fore, keeping the Laplace model (22) for the experiments in
the next section appears reasonable.
To shed additional light on selection of parameters, the

next column of the table re-runs Hershel with all avail-
able features and λ = 10. While this slightly improves the
µ = 0.1 case, this happens only under 50% packet loss and
at the expense of significant reduction in accuracy in other
rows, which suggests that 1/λ should overestimate, rather
than underestimate, the real network delay. To this end,
our previous conservative choice λ = 2 seems quite appro-
priate. The last column of the table reverts to λ = 2 and
demonstrates that the model is insensitive to selection of q.
We thus keep q = 3.8% for the Internet classification below.

6. EXPERIMENTS
Our contribution in this section is to apply Hershel to a

wide-scale Internet scan and provide an assessment of the
obtained classification.

6.1 Dataset Properties
We use Internet scan data from [19], which is based on a

2010 survey of webservers in [23]. These IPs were discovered
by sending port-80 SYN packets to every address in BGP.
The experiment garnered 37.8M samples x that contained
at least one SYN-ACK, which we later feed into Hershel.

Window Hosts Sigs Group
5,792 10,143,772 4 linux

16,384 7,051,858 6 windows, embedded, other
8,192 4,266,370 17 windows, embedded

65,535 3,551,640 9 windows, other
5,760 2,643,274 0 –
5,840 981,136 3 embedded

16,000 781,225 5 embedded
4,096 775,473 5 embedded
1,024 758,230 4 embedded
2,800 677,211 1 TP-Link router

Table 7: Top window sizes (87% of total).
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Figure 5: Received TTL and reverse path length.

We start by examining occurrence of various features in the
dataset and their mapping to signatures in D. We quali-
tatively group them into four types – linux, windows, em-
bedded (routers, modems, cameras, hardware gadgets), and
other (BSD, Mac, AIX, NetApp, Big-IP, SunOS).

To first step is to ensure that packet loss has not produced
totally unworkable temporal features in the dataset. Table
6 shows the number of available RTOs per destination. It
is encouraging to see that the top four spots retain enough
information for a meaningful match and the most difficult
case (i.e., single SYN-ACK) follows in distant sixth place.
We next analyze sanity of the remaining features and build
intuition for what to expected from Hershel classification.

The scan contains a staggering 3,815 unique window sizes,
while our fingerprint collection D has only 51. The good
news is that the distribution of window size is heavily skewed
towards mostly well-known values, as seen in Table 7. The
most common window is unique to Linux variants, while
the most ambiguous is split across 17 operating systems.
Interestingly, window size 5760 in position #5, which we
later discovered belongs to Ubuntu, is also not present in
other fingerprinting databases (p0f, xprobe). We come back
to these hosts later in the section and examine how Hershel
classifies them. Ideally, unknown devices should be mapped
to the same OS family (i.e., Linux in this case).

The TTL values of received packets are plotted in Figure
5(a), covering 251 unique points out of the 255 possible. A
vast majority of the hosts are clustered on the values just be-
fore the initial TTL defaults 64, 128, and 255. Figure 5(b)
shows the distribution of reverse hop length for each host
back to the scanner, calculated by subtracting the received
TTL from the nearest well-known initial value. This distri-
bution appears reasonable, with less than 0.4% of the mass
below 10 or above 30 hops. This suggests the number of non-
standard initial TTLs (if any) is small. Table 8 shows the
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TTL Hosts Sigs Group
64 26,275,301 70 linux, embedded, other

128 7,129,667 17 windows, embedded, other
255 4,214,927 22 linux, embedded, other
32 190,697 7 embedded

Table 8: Initial TTL distribution.

Feature Hosts Sigs Group
RA= 1, RN= 1 4,368,098 35 embedded, other
RA= 0, RN= 1 1,167,761 11 windows, embedded
RA= 0, RN= 0 367,915 10 embedded
RA= 1, RN= 0 37,113 0 –

Table 9: Breakdown of 5.9M hosts with RSTs.

distribution seen by Hershel and the corresponding number
of signatures in D.
A good number of hosts (69%) set the DF flag, indicating

they intend to perform path-MTU discovery, which matches
45% of the signatures. Out of 37.8M responsive targets,
5.9M (16%) send at least one reset packet (in addition to
the SYN-ACKs), which is consistent with 56 OSes. The
reset window (RW) deviates from that in the SYN-ACK for
20.8% of the IPs and 8 fingerprints in D.
Table 9 examines the interplay between RA and RN in

reset packets. In the most common scenario, hosts indicate
that the ACK sequence is valid and correctly acknowledge
values one larger than transmitted by the scanner in the
SYN packet (which encodes the destination IP); however,
there are also 37K hosts (last row) with broken implemen-
tations that indicate a valid ACK, but set the field to zero.
None of our signatures exhibit this behavior.
We have 21 unique combinations of options in D; how-

ever, the dataset shows 264 different strings, with the top
10 provided in Table 10. Similar to Table 7, a few popu-
lar cases account for the majority of IPs and Linux variants
hold a clear lead, but now the most ambiguous combination
splits across 41 embedded devices. While Akamai currently
reports 137K servers [1], it seems reasonable that multiple
NICs and IP aliasing can produce 339K samples in last row.
Practically every host (99.5%) supports the MSS option,

with Table 11 showing the top 10 cases out of the 1,021 ob-
served in the dataset. The most common MSS 1460 does
not provide much information about the OS, but the other
values appear useful at partitioning the dataset into small
groups. On the downside, general-purpose OSes often set
the MSS as a function of the underlying data-link layer (i.e.,
MSS = MTU – 40), which creates some interesting dilem-
mas. For example, MSS 1452 in third place can be classified
as one of two embedded devices or as home computers with

Options Hosts Sigs Group
MSTNW 13,156,171 8 linux
MNWNNT 6,214,837 18 embedded, other
MNWNNTNNS 5,579,866 12 windows, other
M 5,431,682 41 embedded
MNW 2,656,342 5 linux, embedded, other
MNWST 1,107,935 2 windows, unix
MNWNNTSEE 762,593 4 other
MNNSWNNNT 412,602 0 –
MST 370,699 1 Windows Vista/7
MNNSNW 339,215 1 Akamai linux

Table 10: Top options strings (95% of total).

MSS Hosts Sigs Group
1460 21,969,799 70 all
512 3,523,272 9 embedded

1452 3,512,626 2 embedded
1380 1,633,852 3 windows, embedded
1440 1,472,969 2 linux, embedded
1400 1,074,502 2 embedded
536 620,013 7 embedded

1448 562,961 0 –
1420 431,720 1 Avocent KVM switch
768 419,326 2 embedded

Table 11: Top MSS values (93% of total).

Feature Fraction RST possibilities Fraction
Win 70.3% Neither has RST 80.9%
TTL 95.2% Both have RST, match 10.4%
DF 96.2% Missing RST 4.2%
MSS 70.6% Both have RST, non-match 3.5%
OPT 99.4% Bogus extra RST 1.0%

Table 12: Hershel’s feature match rate.

1492-byte MTUs commonly seen over PPP links such as
DSL. This emphasizes importance of Hershel’s probabilistic
matching (16) and explains the significantly smaller number
of unique MSS values in D (i.e., only 20).

6.2 Classification
We run Hershel on the scan dataset and obtain a non-zero

classification probability for 37.4M devices. Before showing
these results, we perform additional sanity checks by exam-
ining how often individual features of each IP matched those
in the most-likely OS suggested by Hershel.

Starting with the first two columns of Table 12, observe
that window size is quite volatile, with 30% of the decisions
going to signatures with a different window. This was ex-
pected given the willingness of end-users to experiment with
this field and the large amount of unique values seen earlier.
Additionally, these 30% cover unknown devices whose RTOs
and other features may match some OS in D, but not the
window size. Hershel remains robust in these cases and sim-
ply identifies the closest signature based on the available
information. For example, 98.4% of Ubuntu cases with the
unknown window 5760 are classified to Linux 2.4/2.6. These
2.6M hosts account for 1/4 of all window mismatch.

TTL and DF both exhibit match rates over 95%, while
MSS comes in much lower at 71%. This is not surprising in
light of its dependency on the MTU. The OPT string proves
extremely reliable, where 77.4% of the cases match exactly
and 22% are feasible subsets/supersets of the original. The
five possible cases with RST packets are shown in the other
two columns of Table 12. Combining the first two rows,
we can conclude that 91% of the hosts have a matching
RST feature. The next row with missing RSTs allows us
to ballpark network packet loss at qreal = 4.2%, not too
far from the model’s 3.8%. The majority of non-matching
combinations (RA, RN, RW), responsible for 3.5% in the
table, are caused by RW. Some of this behavior was also
expected since user tweaking of window size causes some
OSes to alter RW as well. Finally, we see 1.0% of the cases
with an extra RST packet, which we suspect are injected by
firewalls, NAT boxes, and other devices as indication that
they have expired the per-flow state.
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OS Count
Linux 2.6 / 2.4 9,610,732
VxWorks embedded systems 4,179,583
Windows Server 2003 SP1 SP2 2,316,590
VxWorks 5.4.2 / Xerox embedded 1,890,585
Linux 2.6 / Debian / CentOS / SonicWall 1,196,143
Embedded Linux / Mikrotik routers 1,190,102
Windows Server 2008 SP1 SP2 R2 / Vista / 7 1,146,609
TP-Link / Iball / Huawei home routers 1,046,985
Windows Server 2003 / 2000 / XP SP1 1,001,343
Cisco / Scientific Atlanta cable modems 827,285

Table 13: Top individual signatures.

Having verified the general soundness of Hershel’s out-
put, we show it in Table 13. Linux attracts the most clas-
sification decisions, accounting for nearly a quarter of the
webservers. This signature is quite unique, which makes ac-
cidental lumping of unknown devices or misclassified hosts
into this category highly unlikely. In second and fourth place
is VxWorks, which is an embedded OS extensively used
in routers, modems, cameras, and printers. Interestingly,
Windows 2003 is third, well above Server 2008 in seventh
position. More Linux, home routers/modems, and Server
2003/XP make up the remaining OSes.
Table 14 groups fingerprints by type. Linux not just takes

the first spot, but it dominates all other types of unix com-
bined by a factor of 6. Embedded systems continue in sec-
ond place, while windows is firmly in third. Interestingly,
these results differ quite a bit from those in prior applica-
tion of Snacktime to this dataset [23], with the most no-
ticeable difference being 9M hosts moving from windows to
embedded. This is not surprising as Snacktime’s ability to
overcome noise, packet loss, and feature corruption is quite
weak. Further, as shown above, Microsoft OSes often share
the window size and TTL with embedded devices, making
this distinction even more difficult for Snacktime.
To shed additional light on this issue, we carry out com-

parison between the two methods using manual analysis of
1000 random targets. Table 15 shows the result. The first
category in the table breaks down 429 hosts on which both
methods produce the same exact OS. Out of these, 424 are
correct matches, 3 incorrect, and 2 indeterminate. The last
option occurs for devices inadequately represented in the
database (i.e., no resemblance to any signature) or when
multiple OSes appear to be probable. Among 571 disputed
hosts, Hershel delivers 476 correct results and Snacktime 9.
Out of the 918 cases for which we can make a decision,

Hershel’s accuracy is 98% and Snacktime’s is 47%. The 9
cases where Hershel is wrong, but Snacktime is right, are
caused by bogus RSTs, which Snacktime ignores, but Her-
shel takes into account. Overall, we find that when the two
methods disagree, Hershel is overwhelmingly more accurate.

7. CONCLUSION
We modeled the problem of single-packet OS fingerprint-

ing and developed novel approaches for tackling delay jitter,
packet loss, and user modification to SYN-ACK features.
Based on this theory, we developed a classification method
that significantly increased the accuracy of existing tech-
niques, both in simulation and the real Internet.
Future work involves multi-pass extraction of the jitter

distribution, packet loss probability, and OS popularity from
the observed samples, which should improve estimation ac-

Group Count
Linux 13,882,999
Embedded 13,590,803
Windows 7,561,839
Other 2,396,455

Table 14: Common families of operating systems.

Category Result Count Total
Both correct 424

Consensus Neither correct 3
Indeterminate 2 429
Hershel correct 476

Disagreement Snacktime correct 9
Neither correct 6
Indeterminate 80 571

Table 15: Manual verification.

curacy even further. We also plan to develop better result-
verification techniques for wide-scale use.
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