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ABSTRACT

Recent work in OS �ngerprinting [41], [42] has focused on over-

coming random distortion in network and user features during

Internet-scale SYN scans. These classi�cation techniques work un-

der an assumption that all parameters of the pro�led network are

known a-priori – the likelihood of packet loss, the popularity of

each OS, the distribution of network delay, and the probability of

user modi�cation to each default TCP/IP header value. However,

it is currently unclear how to obtain realistic versions of these pa-

rameters for the public Internet and/or customize them to a par-

ticular network being analyzed. To address this issue, we derive a

non-parametric Expectation-Maximization (EM) estimator, which

we call Faulds, for the unknown distributions involved in single-

probe OS �ngerprinting and demonstrate its signi�cantly higher

robustness to noise compared to methods in prior work. We apply

Faulds to a new scan of 67M webservers and discuss its �ndings.

1 INTRODUCTION

The Internet is a fascinating conglomerate of highly heterogeneous

devices, which di�er in hardware capability, security awareness,

software features, and daily usage. Measuring the amount, type,

and behavior of these devices, as well the networks they connect to,

has become an important topic [12], [13], [15], [18], [24], [27], [33],

[41], [42]. To categorize the makeup of today’s networks, research

in active OS �ngerprinting, which is our topic in this paper, aims

to determine the stack of remote hosts using their responses to

external stimuli (i.e., TCP/IP probes) [3], [4], [6], [8], [16], [22], [23],

[28], [30], [36], [40], [44], [48], [49], [52], [53], [54].

There are many uses for remote stack �ngerprinting. First, it

helps hackers in identi�cation of vulnerable hosts and general net-

work reconnaissance [47], especially during cyber-attacks that tar-

get only a speci�c OS implementation [19]. Second, OS �ngerprint-

ing is routinely deployed in security, e.g., by administrators of large

networks seeking to �nd unpatched hosts and rogue entities [1],

[29], [45]. Third, perimeter-defense systems (e.g., IDS, �rewalls)

may require the OS of the target host in order to detect certain

types of exploits (e.g., those involving reassembly of IP fragments).

In such cases, autonomous �ngerprinting of the protected network

allows these installations to function at maximum e�ectiveness
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[44], [48]. Finally, researchers/organizations use these techniques

to understand usage trends [34], [35], discover the spread of new

technologies [7], [14], [26], [38], and expose botnets [25].

Active stack �ngerprinting can be partitioned into three cate-

gories – banner-grabbing via plain-text protocols (e.g., telnet, HTTP,

FTP), multi-probe tools that elicit OS-speci�c responses from vari-

ous non-standardized combinations of �ags and/or unexpected us-

age of protocol �elds (e.g., nmap [36], xprobe [52], p0f [54]), and

single-probe methods that send a regular SYN to each host (e.g.,

Snacktime [5], RING [50], Hershel [42], Hershel+ [41]).

At large scale, banner-grabbing has several impediments – fre-

quent removal of OS-identifying strings by administrators, high

bandwidth overhead, and common interaction with non-platform-

speci�c software (e.g., apache, nginx). Multi-probe tools have their

own challenges – heavy load on the target, massive complaints

about intrusive activity, and noisy results when the destination IP

is load-balanced across a server farm. More importantly, the accu-

racy of multi-packet tools su�ers a signi�cant degradation when

�rewalls block auxiliary probes and the underlying classi�er is

not robust against unexpected feature removal/modi�cation. As

shown in [41], OS classi�cationwith nmap over the public Internet

fails in almost 30% of the cases. Furthermore, nmap sometimes pro-

duces nonsensical results and worse accuracy than the alternatives

utilizing a single probe.

Before modeling and improving multi-packet classi�ers, which

are still poorly understood, it is important to ask whether there

exists a set of algorithms for maximizing performance of single-

packet tools in Internet-wide scans. Such techniques provide amax-

imally stealthy option and may be able to bypass �rewalls/IDS

when packets loaded with “tricks" cannot. As it turns out, even

the most advanced model in single-probe literature, i.e., Hershel+

[41], leaves room for improvement. It has many built-in assump-

tions that may be violated in practice, which in turn may a�ect its

classi�cation accuracy and overall performance on such basic met-

rics as the fraction of the Internet running a particular stack. Our

motivation for this paper is to understand the limitations of exist-

ing single-probe techniques and o�er novel avenues for increasing

both the classi�cation accuracy and amount of information recov-

ered from responses to a SYN packet.

2 BACKGROUND

2.1 Nmap

Perhaps the most popular and exhaustive tool for OS �ngerprint-

ing is nmap [36]. To understand its infeasibility for wide-area us-

age, we brie�y review its outgoing tra�c and response require-

ments, as well as the matching algorithm. By default, nmap starts

with a vertical scan of the target using 1,000 well-known ports

in an attempt to �nd two TCP ports, one of which is open and
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Table 1: Feature Vectors xi (TCP Options: M = MSS, N = NOP, S = SACK, T = Timestamp, and W = Window Scale)

OS name Win TTL DF OPT MSS RST RTOs

Linux 3.2 5,792 64 1 MSTNW 1,460 0, 0, 0, 0 3, 6, 12, 24.2, 48.2

Windows 2003 16,384 128 0 MNWNNTNNS 1,380 0, 0, 0, 0 3, 6.5

Novell 6,144 128 1 MNWSNN 1,460 1, 1, 0, 1 1.4, 3.0

the other is closed, as well as a closed UDP port. It then sends 16

uniquely crafted probes – six regular TCP packets to an open port,

one valid and one invalid ICMP ping, one UDP packet to a closed

port, four malformed packets to an open TCP port, and three TCP

packets to a closed port. It retransmits all probes multiple times

to neutralize the impact of packet loss, which results in over 100

packets per host in addition to the initial port scan.

Besides overhead, running nmap against the entire Internet poses

a number of additional challenges. First, there is a low likelihood

that a port scan, combined with probes to closed ports, gets un-

noticed by the IDS. Many software packages (e.g., snort) contain

explicit rules to detect and block the rather esoteric nmap tra�c.

Certain networks take o�ense at being nmapped, which results in

swift action to block the entire subnet/AS of the scanner and com-

plaints about abusive behavior. Second, the �rewall may allow se-

lect ports to reach the target host (e.g., port 80 to a webserver);

however, there is little incentive to pass UDP or TCP packets to

other ports that do not o�er any services. Third, in similar fashion,

the OS �rewall can be con�gured (e.g., using domain group pol-

icy) to silently drop incoming packets to closed ports. In fact, Win-

dows and Mac OS X suppress outgoing ICMP port unreachables

even when an explicit rule is created to allow such packets through

the �rewall [2], [32].

Nmap expects responses to not deviate from those speci�ed in

the database (e.g., a RST to a TCP rainbow packet, ICMP port un-

reachable from a closed UDP port, ICMP echo reply to a ping).

Because it considers absence of a response to be a feature, it can

be misled into assigning large positive weights to �rewall actions,

which skews the result towards network stacks that inherently re-

spond with fewer signals. This may occur despite a complete non-

match in other features, meaning that the target may share nothing

in the packet header (e.g., TCP window size, TTL, options, MSS)

with the signature it is matched to [41]. Other issues include the

database itself, which contains signatures that are subsets of others

from completely unrelated stacks and allows special null header

�elds that can match any value in the observation. Unless the tar-

get responds to all 16 probes exactly as expected, an obscure device

with the most null �elds can trump the other alternatives, includ-

ing the correct signature.

Additionally, certain TCP �elds are quite volatile, i.e., change

from user tweaks, underlying networkMTU, and software setsock-

opt function calls. This does not inherently change the operating

system, but creates an illusion of a di�erent stack. For example,

Server 2008 R2 accepts incoming connections with a kernel bu�er

(i.e., TCP window size) of 8,192 bytes; however, an apache web-

server can recon�gure this �eld to an arbitrary value before listen-

ing on the socket. Furthermore, this can be done on a per-socket

basis andmay vary over time depending onmemory usage or other

considerations. When faced with this type of uncertainty, nmap
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Figure 1: Half-open connections in TCP.

uses heuristic weights and thresholds that do not have rigorous

theory/veri�cation behind them. As a result, it exhibits highly un-

reliable identi�cation in certain scenarios [41].

2.2 Single-Packet Tools

For accurateOS�ngerprinting at Internet scale, low-overheadmeth-

ods resilient to volatility are preferred. Our focus in this paper is

on single-probe techniques, which generally work by sending a

TCP SYN to the target host and inducing a stream of SYN-ACK

responses, possibly with a RST at the end. Since the connection

is kept in the half-open state, the server continues retransmitting

SYN-ACKs until its internal maximum-retry threshold is exceeded.

Delays between the SYN-ACKs, known as retransmission timeouts

(RTOs), as well as their count and presence of the last RST, reveal

valuable information about the OS of the responding host. This

is illustrated in Figure 1. Coupling the RTOs with default TCP/IP

header values makes stack classi�cation possible.

Themain di�erence between priorwork [5], [24], [41], [42], [50]

lies in the features they extract from TCP/IP headers and the as-

sumed distortion model. As of this writing, Hershel+ [41] is both

the most recent e�ort in this direction and most robust to observa-

tion noise. We review its operation and formulas later in the paper.

3 LEARNING FROM OBSERVATION

Note that proofs and certain technical discussion have been omit-

ted from this paper. They can be found in [43].

3.1 General Problem

Suppose the OS database consists of n ≥ 1 known stacks (ω1, . . . ,

ωn), each with some vector-valued �ngerprint xi = (xi1, xi2, . . .).

As shown in Table 1, �ngerprints contain a combination of fea-

tures, including default header values used for new connections

and SYN-ACK retransmission timeouts (RTOs) of each OS. Further

assume a set of observations x′ = (x′1, . . . , x
′
m) obtained by scan-

ning the Internet and eliciting responses fromm live servers, where

x′j = (x ′j1, x
′
j2, . . .) is a vector of sampled features from host j. For

the type of OS �ngerprinting considered here, i.e., single-probe,

this is done by dispatching a SYN to every IP address in BGP and
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collecting SYN-ACKs/RSTs from the responding servers, as previ-

ously shown in Figure 1.

The goal of the classi�er is then to determine for each x′j the

most-likely �ngerprint in the database. This task is complicated

by the presence of distortion (also called volatility [41]) θ that ran-

domly modi�es the original features of the system before the ob-

server gets them. This may involve a change in the temporal re-

lationship between the packets (e.g., queuing delays), removal of

some features (e.g., loss of RST packets), and rewriting of TCPhead-

ers in an e�ort to optimize or obscure the end-system.

De�ne αi = p(ωi ) to be the unknown fraction of hosts in x′

with OS i and let α = (α1, . . . ,αn) be the corresponding vector.

Now suppose p(y|ωi ,θ) is the probability that the �ngerprint of

signature i has been changed into y under θ . Similarly, assume that

p(ωi |y,θ, α) is the probability that an observed vector y was pro-

duced by a host running OS i , conditioned on distortion model θ

and popularity α . Then, application of Bayes’ rule shows that the

classi�er must determine for each j the one database entry ωi with

the largest

p(ωi |x
′
j ,θ, α) =

αip(x
′
j |ωi , θ)

p(x′j |θ,α)
, (1)

where, for any vector of features y, the denominator is

p(y|θ,α) =

n
∑

i=1

αip(y|ωi ,θ). (2)

Hershel+ [41] relies on a-priori knowledge of not only α , but

also parameter θ , which consists of the probability of change in

each TCP/IP feature, average packet loss, and two distributions of

network delay. While the underlying model in Hershel+ is more

robust to distortion than those in prior approaches [5], [50], its per-

formance does depend on howwell α and θ can be estimated ahead

of time. As the Internet is highly heterogeneous and constantly

evolving, even if (α , θ) could be obtained by monitoring routers

and/or using end-to-end measurement between strategically po-

sitioned hosts (e.g., PlanetLab), it is unclear whether conditions

observed in the past or along certain paths can yield meaningful

predictions about the speci�c network being �ngerprinted (e.g., a

corporate LAN is very di�erent from the public Internet). Instead,

we argue that (α , θ) should be the output of the classi�er rather

than the input. Doing so allows the unknown parameters to be cus-

tomized to a speci�c observation x′, i.e., re�ect the OS composition

of the network being analyzed and its distortion properties.

Analysis of (1) in existing work [41], [42] assumes that α is uni-

form (i.e., αi = 1/n) and θ is �xed by oracle input. Therefore, both

αi and denominator p(x′j |θ, α) are independent of i and can be re-

moved from the optimization, leaving only p(x′j |ωi ,θ). In contrast,

our goal here is to estimate both α and θ dynamically as the classi-

�er is running, which should both increase its accuracy and yield

interesting Internet-characterization results as byproduct of classi-

�cation. Before reaching this objective, a gradual build-up of for-

malization is needed. This section deals with estimating α , the next

one covers network distortion, and the one after that focuses on

modi�cation to �xed header features.

Table 2: Network Distortion in Scenario S1

Case Forward latency (sec) One-way delay (sec) Loss

Distribution Mean Distribution Mean

S11 Erlang(2) 0.5 Exp 0.5 3.8%

S12 Pareto 0.5 Pareto 0.5 50%

S13 Reverse-exp 1.5 Erlang(2) 0.5 10%

3.2 Fingerprint Popularity

Observation vector x′ gives rise to a number of equations in the

form of (2), where the left side contains the empirical (known)

probability of observing each unique vector y ∈ x′ and the right

side is a model that embeds the unknown parameters. Extraction

of α and θ from such systems of equations commonly involves the

Expectation-Maximization (EM) method, which produces a solu-

tion using �xed-point iteration [11], [17]. At every step t , it maxi-

mizes the expected log-likelihood function conditioned on the pa-

rameters obtained during the previous iteration t−1. As long as the

number of equations exceeds the number of unknown parameters,

EM works well for many problems in practice.

For now,we treatp(x′j |ωi ,θ) as a black-box classi�er (e.g., Snack-

time, Hershel, Hershel+), which does not attempt to estimate θ , and

focus on determining α . This is the simplest (and only) case where

(2) forms a linear system of equations. Throughout the paper, su-

perscripts applied to parameters refer to the iteration number dur-

ing which they are estimated, e.g., αti approximates αi during step

t . Now notice that a sensible estimate of popularity for OS i is the

average probability with which observations map to this �nger-

print, conditioned on the previous estimate of popularity, i.e.,

αt+1i =

1

m

m
∑

j=1

p(ωi |x
′
j , θ,α

t ). (3)

While the next result is fairly straightforward, its derivation

methodology is needed for later parts of the paper.

Theorem 3.1. For a classi�er with �xed θ , (3) represents the EM

algorithm for recovering the popularity vector α .

Note that this is markedly di�erent from deciding popularity us-

ing the fraction of classi�cation decisions that go to eachOS, which

is known as hard EM and commonly used in clustering algorithms

such as k-means [20]. In fact, all previous �ngerprinting tools [5],

[6], [36], [41], [42], [52], [54] can be viewed as performing one it-

eration of hard EM, i.e., outputting the fraction of classi�cations

that belong to each OS ωi as an estimate of its popularity αi .

3.3 Discussion

We now address the question of whether (3) is su�cient for achiev-

ing good classi�cation on its own and how much of the accuracy

depends on knowing the exact distortion model θ . If the major-

ity of the bene�t is already obtained from recovering α , the extra

computational cost and modeling e�ort involved in estimating θ

may be unnecessary. For discussion purposes, we use a set of toy

databases that allow simple demonstration of the intended e�ects.

Note that the same conclusions apply to larger datasets, but �nding

the corresponding scenarios may be more time-consuming.
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Figure 2: Database and distorted observations.

Simulations below apply a forward latency to the SYN packet,

pass each SYN-ACK through a FIFO queue, which adds random

one-way delays along the return path, and drop packets using an

iid (independent and identically distributed) loss model with some

�xed probability. This is similar to the context in which prior meth-

ods [41], [42] have been tested. For the scenario we call S1, there

are four di�erent cases for the distribution of foward/reverse de-

lays and packet-loss probability. These are shown in Table 2 and

discussed in more detail next.

The �rst row matches exactly the assumed parameters θ in Her-

shel+ [41]. The second row uses Pareto delays with mean 500 ms

and 50% loss, emulating highly noisy network conditions. The next

row uses a shifted reverse-exponential forward latency with CDF

e−λ(2−x ), de�ned for−∞ < x ≤ 2, which tests contrary-to-intuition

examples where larger delays are more likely than smaller. We em-

ploy λ = 2 and truncate this distribution at zero, obtaining the

average forward SYN delay of 1.5 sec.

Our �rst databaseD1 contains truncated signatures of Linux 3.2

(ω1), Windows Server 2003 (ω2), and Novell Netware (ω3) from Ta-

ble 1. We retain the �rst two retransmission timeouts (RTOs), re-

move all �xed header features, and obtain the �ngerprints in Fig-

ure 2(a). Note that these Linux and Windows signatures are pretty

close to each other, albeit not identical; however, they are quite

di�erent from Novell. Distortion from case S13 applied to this data-

base is illustrated in sub�gure b), where we show the �rst 200 sam-

ples and remove observations with lost packets.

De�ne ρt to be the fraction of correct classi�cations for a given

method during iteration t , where t = ∞ represents the conver-

gence point of the underlying estimator (usually 20−40 iterations).

If themethod does not perform iteration, only ρ1 is meaningful. We

consider three techniques – Hershel+, hard EM with multiple iter-

ations, and soft EM in (3), all using the same function p(x′j |ωi ,θ)

and starting from uniform popularity α0i = 1/n.

Results of this process withm = 218 observations are shown in

Table 3. In the �rst row, Hershel+ performs quite well, achieving

ρ1 = 67%. Since Novell Netware is an easy-to-separate signature

from the other two, Hershel+ recovers α3 pretty accurately; how-

ever, it is utterly confused about the frequency of the other two

stacks. Applying hard EM increases accuracy, but full reconstruc-

tion of α still proves di�cult. Application of (3) solves this issue.

Swapping (α1,α2), the second simulation in Table 3 shows that

Hershel+ is essentially guessing between Linux andWindows, while

Table 3: Classi�cation Results in D1

Case α Hershel+ Hard EM EM in (3)

ρ1 α 1 ρ∞ α∞ ρ∞ α∞

S11 0.90 0.67 0.59 0.95 0.95 0.95 0.89

0.05 0.35 0.00 0.06

0.05 0.06 0.05 0.05

S12 0.05 0.48 0.45 0.06 0.98 0.89 0.11

0.90 0.41 0.00 0.82

0.05 0.12 0.02 0.07

S13 0.90 0.45 0.37 0.09 0.01 0.10 0.11

0.05 0.51 0.88 0.79

0.05 0.12 0.11 0.10
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Figure 3: Delay features (stack ωi produces observation x ′j ).

hard EM is misled into divergence, where it drops accuracy from

48% to 6%. While (3) is immune to divergence in this case, its esti-

mate of α su�ers from non-negligible errors. The last case in the

table is even more di�cult. It shows that EM can be driven into

inferior states when the assumed θ greatly deviates from that of

the underlying network. In fact, application of (3) not only fails to

obtain vectors α that resemble the true distribution, but also harms

performance of the system, i.e., ρ∞ ≪ ρ1.

4 NETWORK FEATURES

4.1 Distortion Model

Our goal in this section is to estimate unknown distortion param-

eters θ inside p(x′j |ωi ,θ). Let features xi = (di , ui ) consist of net-

work components (i.e., delays di ) and user-modi�ed header values

(i.e., ui ). Since classi�cation [41], [42] usually assumes that distor-

tion is applied to each subvector independently, it follows that

p(x′j |ωi ,θ) = p(d
′
j |ωi ,θd )p(u

′
j |ωi ,θu ), (4)

where θd ,θu are the network/user distortion models, respectively.

Each of them contains multiple PMFs (probability mass functions)

that we elaborate on below. Since in this section we consider only

the network component, we assume that p(u′j |ωi , θu ) = 1 for all

i, j, i.e., all observed user features are the same and thus perfectly

match all �ngerprints.

To understand the notation involved in expanding the �rst fac-

tor in (4), examine Figure 3 where a host with network signature

di generates an observation d′j . Measurement begins with a SYN

packet, which takes some time to get to the target, followed by

the server “think" delay before it generates the �rst SYN-ACK re-

sponse. Database feature vectors di consist of departure timestamps

from the server, where di1 = 0 for all i . Note that di,r+1−dir is the
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r -th retransmission timeout (RTO) of the stack, which was com-

monly used in early estimators [5], [50], [42]. Recently, however,

usage of absolute timestamps dir was identi�ed [41] as having cer-

tain modeling advantages, which is our approach as well.

On the client side, arrival timestamps d ′jr are measured relative

to the transmission time of the SYN. AssumeTj represents the sum

of the forward delay, server think time, and propagation/transmis-

sion delays of the reverse path, whereTj has some unknown distri-

bution fT (τ ) = P(Tj = τ ). Furthermore, let ∆j1,∆j2, . . . be iid queu-

ing delays of the return path, with another unknown distribution

f∆(δ ) = P(∆jr = δ ). Then, assuming no loss, d ′jr = Tj + dir + ∆jr .

To handle packet loss, assume that γj is a random vector that

maps the received packets in observation j to their order on the

server, i.e., γj (r ) = k means that the r -th received packet was orig-

inally in position k . In Figure 3, for example, we have γj = (1, 3).

Then, if the j-th observation comes from system ωi , it follows that

d ′jr = Tj + di,γj (r ) + ∆jr , r = 1, 2, . . . , |d′j |. (5)

As in prior work [5], [41], [42], we assume no reordering due

to the large spacing between the packets (often several seconds),

which impliesγj (r+1) > γj (r ). Let Γ(i, j) be the set of all monotonic

loss vectors that start with |di | packets and �nish with |d′j |. Then,

the Hershel+ network classi�er uses p(d′j |ωi ,θd ) equal to [41]

∑

τ

fT (τ )
∑

γ ∈Γ(i, j)

pi (γ )

|d′j |
∏

r=1

f∆(d
′
jr − τ − di,γ (r )), (6)

where pi (γ ) is the probability to observe loss pattern γ under |di |

transmitted packets. For lack of a better assumption, Hershel+ uses

binomial pi (γ ), Erlang(2) fT (τ ), and exponential f∆(δ ), all with

some �xed parameters. Since θd encapsulates the set of these dis-

tributions, our next goal is to recover them using EM iteration.

4.2 Intuition

We start with a heuristic explanation of the proposed update for-

mulas, which is followed by a more rigorous treatment. Recall that

f t
T
(τ ) is an estimate of P(Tj = τ ) during iteration t . Then, one

obvious approach is to set this value to the average probability

that each observation j has experienced a forward latency τ , con-

ditioned on the previous estimates of unknown parameters, i.e.,

f t+1T (τ ) =
1

m

m
∑

j=1

P(Tj = τ |d
′
j ,θ

t
d
,αt ). (7)

Next, each database signature with k original packets admits

2k − 1 unique loss patterns γ , where k goes as high as kmax = 21

in the most recent e�ort in the �eld [41]. Estimating the probabil-

ity pi (γ ) for each possible option γ is likely to produce too many

unknown variables and lead to poor convergence of EM. Instead,

suppose that all
(k
ℓ

)

patterns of losing ℓ packets out ofk are equally

likely and de�ne the probability of this event to be qk (ℓ), where

k = 1, 2, . . . ,kmax . The resulting reduction in the number of un-

known variables is signi�cant – from roughly 2kmax+1 = 4M to

just kmax (kmax −1)/2 = 210. Despite its simplicity, the framework

of using qk (ℓ) allows more general scenarios than the traditional

iid Bernoulli model used in previous literature [41], [42].

To update distribution qk (ℓ), our approach involves computing

the probability that observations experienced loss of ℓ packets out

of k transmitted, normalized by the probability that the original

host sent k packets in the �rst place. To express this mathemati-

cally, de�ne Yj to be the number of SYN-ACKs originated by the

host in observation j. Letting 1X be an indicator of event X , we get

qt+1
k

(ℓ) =

∑m
j=1 P(Yj = k |θt

d
,αt )1 |d′j |=k−ℓ

∑m
j=1 P(Yj = k |θ

t
d
,αt )1 |d′j |≤k

, (8)

from which the estimated probability of pattern γ is given by

pti (γ ) =
qt
|di |

(|di | − |γ |)

( |di |
|γ |

)

. (9)

Finally, updates to PMF f t
∆
(δ ) involve computing the probability

that one-way delay of each received packet equals δ , normalized

by the total number of packets collected during the scan, i.e.,

f t+1
∆

(δ ) =

∑m
j=1

∑ |d′j |

s=1 P(∆js = δ |d
′
j ,θ

t
d
,αt )

∑m
j=1 |d

′
j |

. (10)

4.3 Analysis

To make the framework outlined above usable, our next task is to

express the probability of events that cannot be directly observed

(e.g., Yj = k , ∆jr = δ ) using a recurrence that depends on only the

distributions contained in θt
d
, i.e., (f t

T
, f t

∆
,qt

k
). Let

δi jτ γ r = d
′
jr − τ − di,γ (r ) (11)

be the one-way delay ∆jr conditioned on Tj = τ , loss pattern γ ,

signature ωi , and observation j. For brevity of notation, suppose
∑

i jτ γ s refers to �ve nested summations, where i goes from 1 to

n, j rolls from 1 to m, τ moves over all bins of the PMF fT (τ ), γ

iterates over all monotonic loss vectors in Γ(i, j), and s travels from

1 to |d′j |. If some of the variables are absent from the subscript, the

corresponding sums are omitted from the result. With this in mind,

de�ne

pti jτ γ := αti f
t
T (τ )p

t
i (γ )

|d′j |
∏

r=1

f t
∆
(δi jτ γ r ), (12)

βti jτ γ := p(ωi , τ ,γ |d
′
j , θ

t
d
,αt ) =

pti jτ γ
∑

iτ γ p
t
i jτ γ

(13)

and consider the next result.

Theorem 4.1. Under network distortion, estimators (3), (7), (8),

and (10) can be written as

αt+1i =

1

m

∑

jτ γ

βti jτ γ , (14)

f t+1T (τ ) =
1

m

∑

i jγ

βti jτ γ , (15)

qt
k
(ℓ) =

∑

i jτ γ βti jτ γ 1 |d′j |=k−ℓ, |di |=k
∑

i jτ γ βti jτ γ 1 |d′j |≤ |di |=k

, (16)

f t
∆
(δ ) =

∑

i jτ γ s β
t
i jτ γ 1δi jτ γ s=δ
∑

j |d
′
j |

. (17)
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Table 4: Classi�cation Results of Network EM in D1

Case ρ1 ρ∞ α∞

S11 0.67 0.95 0.90, 0.05, 0.05

S12 0.48 0.91 0.05, 0.90, 0.05

S13 0.45 0.95 0.90, 0.05, 0.05

0 1 2 3 4
seconds
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0.06

0.08

P
M

F

actual
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(a) reverse-exp fT (case S13)
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F
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(b) Erlang(2) f∆ (case S13)

Figure 4: Recovery of delay parameters in D1.

While the result of Theorem 4.1 may appear daunting due to the

number of nested summations, its implementation in practice can

be done with little extra cost compared to Hershel+. Speci�cally,

usage of (6) in (1) for all i, j already requires �ve nested loops. In

the inner-most loop of that algorithm, (17) adds one increment to

a hash table that maintains the PMF of one-way delay. Updates

in (14)-(16) are performed less frequently and, in comparison, con-

sume negligible time. The only caveat is that Hershel+ can be op-

timized [41] to remove the outer summation in (6) when fT is Er-

lang(2) and f∆ is exponential. Our approach, on the other hand,

requires a hash-table lookup for both distributions. This makes its

single iteration similar in speed to unoptimized Hershel+.

Theorem 4.2. Iteration (14)-(17) is the EM algorithm for (θd ,α).

4.4 Discussion

We revisit earlier simulations on dataset D1, run (14)-(17) over the

same input, and show the result in Table 4. Compared to Table

3, the derived EM estimator signi�cantly improves the accuracy

of both classi�cation and vector α . The accuracy of estimated de-

lay distributions is shown in Figure 4. With the exception of noise

at the points of discontinuity of each density, functions f ∞
T
, f ∞

∆

match the true parameters quite well.

Since all signatures in D1 had three packets, it was easy to �g-

ure out the number of them lost in each d′j , which led to q∞
k
being

perfectly accurate, regardless of whether (16) was used or not. In a

more interesting database, which we call D2, Linux is augmented

with a fourth packet that follows after a 3-second RTO. To experi-

ment with di�erent loss patterns, de�ne BinT(k,p) to be a binomial

distribution with parameters (k,p) truncated to the range [0,k−1].

Since the loss of all k packets cannot be observed, we avoid gener-

ating this case in the simulator. Additionally, suppose RevBin(k,p)

is the reverse binomial distribution such that X ∼ BinT(k,p) and

Y = k−1−X implies Y ∼ RevBin(k,p). With this in mind, consider

scenario S2 in Table 5, which shows qk and the average observed

loss rate among the signatures with k packets.

Table 5: Network Parameters of Scenario S2

Case Delay q3 Loss q4 Loss

S21 As in S12 BinT(3, 0.3) 28% BinT(4, 0.3) 30%

S22 As in S12 BinT(3, 0.1) 10% BinT(4, 0.8) 66%

S23 As in S12 RevBin(3, 0.1) 57% RevBin(4, 0.1) 65%

Table 6: Classi�cation Results in D2

Case α Hershel+ EM α, fT , f∆ Full EM

ρ1 α 1 ρ∞ α∞ ρ∞ α∞

S21 0.90 0.76 0.68 0.70 0.63 0.91 0.90

0.05 0.25 0.31 0.05

0.05 0.07 0.05 0.05

S22 0.90 0.45 0.34 0.13 0.06 0.97 0.90

0.05 0.47 0.84 0.05

0.05 0.19 0.10 0.05

S23 0.90 0.45 0.36 0.10 0.06 0.90 0.90

0.05 0.46 0.90 0.05

0.05 0.18 0.04 0.05

Table 6 shows classi�cation results for three methods – Her-

shel+, the partial EM framework without loss updates (16), and

the full algorithm from Theorem 4.1. Not surprisingly, Hershel+

again struggles to recover α , even when its classi�cation accuracy

is pretty high. Omission of (16) does create challenges for partial

EM, where in all three cases it produces worse results than Her-

shel+. On the other hand, the full algorithm improves accuracy

and delivers the exact α despite complex underlying network con-

ditions.

5 USER FEATURES

5.1 Distortion Model

Our goal in this section is to expand the second factor in (4) and

develop an estimator for its distortion model. This is done in iso-

lation from the network features, i.e., using p(d′j |ωi ,θd ) = 1 for

all i, j. Assume b ≥ 1 user features, where each observation j pro-

vides a constant-length vector u′j = (u ′j1, . . . ,u
′
jb
). These include

the TCP window size, IP TTL (Time to Live), IP DF (Do Not Frag-

ment �ag), TCP MSS (Maximum Segment Size), and TCP options,

for a total of b = 5 integer-valued �elds. Since RST features depend

on network loss, we delay their discussion until the next section.

Note that each �eld may be allocated a di�erent number of bits in

the TCP/IP header and the number of available options av for u ′jv
may depend on v (e.g., two for DF and 64K for Win).

Modi�cation to user features at the target host, which we model

with a set of distributions θu , can be accomplished by manually

changing default OS parameters (e.g., editing the registry), using

specialized performance-tuning software, requesting larger/smaller

receiver kernel bu�ers while waiting on sockets (i.e., using set-

sockopt), and deploying network/host scrubbers [10], [37], [39],

[46], [51] whose purpose is to obfuscate the OS of protected ma-

chines. Besides intentional feature modi�cation, distortion θu may

also accommodate unknown network stacks that build upon a doc-

umented OS, but change some of its features (e.g., new versions of

embedded Linux customized to a particular device).
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Prior work either omits formally modeling user volatility [5],

[6], [36], [52], [54], or assumes that uiv stays the same with some

probability πv and changes to another integer with probability

1 − πv [41], [42]. While the latter approach works well in certain

cases, it has limitations. Besides the fact that πv is generally un-

known, binary decision-making fails to create a distribution over

the available choices. For example, πv = 0.9 assumes that each

of the 65,534 non-default window sizes occurs with probability

0.1. Instead, a more balanced approach would be to assume a uni-

form distribution over the distortion possibilities and assign them

probability (1 − πv )/(av − 1). Second, it is likely that certain de-

vices are modi�ed less frequently than others (e.g., due to �rmware

restrictions) and individual distortions are OS-speci�c, which im-

plies that πv should depend on i . Finally, the existingmethods have

no way of tracking the location and probability mass of distortion,

which does not have to be uniform in practice (e.g., a non-default

window size 257 bytes is less likely than 64K).

To overcome these problems, assume that πiv (y) is the proba-

bility that feature v of OS i is modi�ed to become y, which gives

rise to a set of nb distributions that comprise our user-distortion

model θu . Then, the proposed classi�er can be summarized by

p(u′j |ωi ,θu ) =

b
∏

v=1

πiv (u
′
jv ), (18)

where modi�cation to features is assumed to be independent. Note

that doing otherwise does not appear tractable at this point (i.e.,

estimation of covariance matrices produces too many variables for

EM to handle).

5.2 Iteration

We begin by discussing under what conditions the problem is iden-

ti�able, despite having a large number of unknown distributions.

Assume ϕiv := πiv (uiv ) is the probability with which feature v

stays the same for OS i . Because we do not know ahead of time

the reasoning of the user for changing the features or the new val-

ues of modi�ed �elds, the estimation problem for πiv is unsolvable

unless enough of the probability mass remains at the original lo-

cation, i.e., ϕiv is above some threshold. From common sense, it is

likely that ϕiv ≥ 0.5 holds among the general population of Inter-

net hosts; however, EM converges under even weaker conditions

(e.g., when ϕiv is the largest value in each PMF πiv ). Coupling this

with an initial state that satis�es the same constraint allows EM to

discover a unique solution.

We de�ne the estimator for user distortion as the probability to

observe y in feature v across all matches against OS i , i.e.,

π t+1iv (y) =

∑m
j=1 p(ωi |u

′
j , θ

t
u ,α

t )1u′
jv=y

∑m
j=1 p(ωi |u

′
j ,θ

t
u ,α

t )
. (19)

To allow simpli�cation of this expression below, de�ne

pti j := αti p(u
′
j |ωi ,θ

t
u ,α

t ) = αti

b
∏

v=1

π tiv (u
′
jv ), (20)

βti j := p(ωi |u
′
j ,θ

t
u ,α

t ) =
pti j

∑n
i=1 p

t
i j

. (21)

Table 7: User Features of Database D3

OS Win TTL DF OPT MSS

Linux 5,792 64 1 MSTNW 1,460

Windows 16,384 128 0 MNWNNTNNS 1,380

Novell 6,144 128 1 MNWSNN 1,460

The next result follows from substitution of (20)-(21) into (3)

and (19), as well as earlier proofs of Theorems 3.1 and 4.1.

Theorem 5.1. Under user distortion, estimators (3) and (19) can

be written as

αt+1i =

1

m

m
∑

j=1

βti j , (22)

π t+1iv (y) =

∑m
j=1 β

t
i j1u′

jv=y

mαt+1i

. (23)

Furthermore, this is the EM algorithm for (θu ,α).

5.3 Discussion

To evaluate the result of Theorem 5.1, we construct a new database

D3, shown in Table 7, by switching from RTOs to user features.

Note that this Linux signature ties Novell in DF and MSS, while

Windows does the same in TTL. For simplicity of presentation, we

use simulation scenarios with ϕiv = ϕv for all i , where ϕv is the

probability with which featurev stays at the default value. This re-

places matrixϕiv with a vectorϕv , which is easier to follow across

the di�erent tables.

The initial PMFs π0iv of EM are set up to include 90% of the

mass on the default value and split the remainder uniformly across

the viable alternatives. Since it is believed [42] that the order of

non-NOP options cannot be changed without rewriting the TCP/IP

stack of the OS, we initialize π0i4 to allow only candidates compat-

ible with the original ui4. For example, MST is feasible for Linux,

but not the other two signatures in Table 7. Note that any single

option (M, S, W) and the empty set are valid for all three OSes.

We use two models for generating noisy observations. The �rst

one, which we call RAND, picks uniformly from the space of pos-

sible values observed in our Internet scan, except OPT is limited

to compatible subsets/supersets of the original. We have 5,695 can-

didates for Win, four for TTL, two for DF, 266 for OPT, and 1,082

for MSS. Decisions are made independently for each feature v and

each observation j, which models users “tweaking" their OS with-

out coordinating with each other or sharing a common objective.

Even though RAND can generate 13.1 billion unique combinations

u′j , only a small subset is encountered by the classi�er in our sim-

ulations below.

The second model, which we call PATCH, selects an alternative

vector of features u′′i for each OSωi and switches the default value

uiv to u ′′iv with probability 1−ϕv , again independently for each v .

This represents deployment of software patches that change one of

the features to an updated value. The probability for a host to use

multiple patches is the product of corresponding (1 − ϕv )’s. For

example, modi�cation to both Win and OPT a�ects (1 − ϕ1)(1 −

ϕ4) fraction of hosts. Vectors u′′i are non-adversarial and do not

attempt to confuse the classi�er. We construct them by �ipping
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Table 8: Patched User Features

Vector Win TTL DF OPT MSS

u′′1 5,793 128 0 M 1,461

u′′2 16,386 32 1 M 1,382

u′′3 6,147 64 0 M 1,463

Table 9: Parameters of Scenario S3

Case Model Feature stay prob ϕv Popularity α

S31 RAND (0.3, 0.2, 0.5, 0.4, 0.4) (0.90, 0.05, 0.05)

S32 RAND (0.0, 0.0, 0.1, 0.2, 0.0) (0.90, 0.05, 0.05)

S33 PATCH (0.2, 0.2, 0.2, 0.2, 0.2) (0.7, 0.2, 0.1)

Table 10: Classi�cation Results in D3

Case Hershel+ EM

ρ1 ρ1 ρ∞ ϕ∞
v

S31 0.76 0.79 0.96 (0.30, 0.20, 0.50, 0.40, 0.40)

S32 0.29 0.32 0.91 (0.00, 0.00, 0.10, 0.20, 0.00)

S33 0.31 0.50 1 (0.20, 0.20, 0.20, 0.20, 0.20)

the DF �ag, setting OPT to M, and adding i to all remaining �elds

(modulo the max �eld value). The result is given in Table 8.

To estimate vector ϕtv in the classi�er, we use a weighted aver-

age of feature non-modi�cation across all OSes, i.e., ϕtv =
∑n
i=1 α

t
i

ϕtiv . Our next scenario S3 is detailed in Table 9 and the correspond-

ing outcome is given byTable 10.We omit vectorα∞ since itmatches

ground-truth α very accurately. Due to the new treatment of non-

default features in (18), the �rst iteration of EM in Table 10 is su-

perior to Hershel+. However, both are much worse than the last

iteration. It should be noted that the second case S32 modi�esWin,

TTL, and MSS in 100% of the samples. Identi�ability in such con-

ditions is helped by the fact that OPT is constrained to a subset

of the original string, which makes a certain fraction of randomly

generated values feasible for only one OS. This allows EM to learn

to ignore (Win, TTL, MSS) and focus decisions on (DF, OPT). Fur-

thermore, when guessing is involved, EM uses its knowledge of α

to correctly pick the most-likely OS. It is also interesting that S33
is classi�ed with 100% accuracy once EM gets a grasp on the new

values in Table 8 and their probability of occurrence.

6 COMPLETE SYSTEM

6.1 Reset Packets

Because loss of RST packets causes the corresponding user features

(i.e., ACK/RST �ags, ACK sequence number, window size [42]) to

be wiped out, there is dependency between distortion applied by

the network and the user. As a result, this case should be handled

separately. The �rst modi�cation needed is to increase the length

of network vectors di and d′j to accommodate the RST timestamp.

The second change is to add RST values into user features. Since

it is currently believed that RST �elds are unmodi�able indepen-

dently of each other [42], they can be combined into a single inte-

ger and appended to user vectors ui and u′j in position b + 1.

There are four possible scenarios for handling RST packets. They

are shown in Table 11, each with a certain probability ζ ti j that must

Table 11: Handling of RST Packets

RST present Action Multiplier ζ ti j
d′j di

yes yes – π t
i,b+1

(u′
j,b+1

)

yes no ignore RST in d′j π t
i,b+1

(u′
j,b+1

)

no yes – 1

no no – 1

be factored into the formulas developed earlier. When both the ob-

servation and candidate signature contain a RST, the only multi-

plier needed is the probability that the received feature was pro-

duced by that OS. If the sampled OS has a RST, but the signature

does not, this indicates a possible interference from an interme-

diate device (e.g., IDS after expiring connection state, scrubbers).

In this case, it is likely meaningless to use the temporal character-

istics of the RST, which is why we omit it from d′j before com-

puting the loss and delay probabilities. However, multiplication

by π t
i,b+1

(uj,b+1) is still warranted since we must assign a proper

weight to this mismatch. The third row of the table corresponds

to packet loss, which is handled automatically in pti (γ ), i.e., no ad-

ditional actions or multipliers are needed. Finally, the last row is

identical to the setup assumed in preceding sections.

6.2 Final Model

We now combine the developed network, user, and RST models

into a single framework. Rede�ning (12) as

pti jτ γ = αti ζ
t
i j

(
b
∏

v=1

π tiv (u
′
jv )

)

f tT (τ )p
t
i (γ )

|d′j |
∏

r=1

f t
∆
(δi jτ γ r ) (24)

allows us to compute βti jτ γ still via (13), as well as reuse (14)-(17).

However, (23) requires an update to

π t+1iv (y) =

∑m
j=1 1ujv=y

∑

τγ βti jτ γ

mαt+1i

, (25)

wherev = 1, 2, . . . ,b+1. The �nal classi�er, which we call Faulds1,

is applied after EM has converged and is given by

p(ωi |x
′
j , θ

∞
,α∞) =

∑

τγ

β∞i jτ γ . (26)

It is easy to generalize our earlier results to cover the complete

model, as given in the next theorem without proof.

Theorem 6.1. Under both network and user distortion, estimator

(13)-(17), (24)-(25) is the EM algorithm for (θ,α).

6.3 Scaling the Database

Due to the large number of features it combines, Faulds is not chal-

lenged by the previous toy databases. We therefore switch to a

more realistic set of signatures created by Plata in [41]. We call

this databaseD4 and note that it contains 420 stacks, among which

some have the same exact RTO vector and others overlap in all

1Henry Faulds was a Scottish scientist who extended the ideas of William Herschel
and proposed the �rst usable forensic �ngerprint-identi�cation method in 1880.
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Figure 5: Results in D4.

user features. The database was constructed to ensure that signa-

tures were su�ciently unique under delay distortion, but packet

loss and user modi�cations were not taken into account. As a re-

sult, the database contains a number of entries that would be di�-

cult to distinguish under the types of heavy distortion considered

in this paper. Nevertheless, these tests should indicate how well

Faulds scales to larger databases and whether its recovery of the

unknown parameters (α ,θ) is a�ected by an increased uncertainty

during the match.

We set popularity α to the Zipf distribution with shape param-

eter 1.2 and continue usingm = 218 observations, which gives us

64K samples from the most common OS and just 49 from the least.

We borrow the delay from case S13 (i.e., reverse-exponential T with

mean 1.5 sec, Erlang(2) ∆ with mean 0.5) and packet loss from S23
(i.e., reverse-binomial). Finally, we use RANDwith stay probability

ϕv = 0.8.

The �rst iteration of Faulds produces a respectable ρ1 = 0.42.

This is gradually improved with each step, until convergence to

a more impressive ρ∞ = 0.70. To make sense out of α∞, we sort

all signatures in rank order from the most popular to the least and

plot the result in Figure 5(a). There is a strong match in the top-100,

while the random noise in the tail is explained by the scarcity of

these OSes in the observation (i.e., below 250 samples each). For

comparison, the outcome of Hershel+ is displayed in part (b) of

the �gure. To complete the big picture, sub�gures (c)-(d) show esti-

mates of fT and f∆. Despite an overall 30% classi�cation mismatch,

these PMFs are no worse than previously observed in Figure 4,

which indicates that incorrect decisions overwhelmingly went to

signatures with similar RTO vectors as the true OS.

Instead of scrutinizing 21 di�erent loss PMFs, suppose we com-

pute a single metric – the fraction of packets dropped within the

entire observation x′, conditioned on at least one packet surviving.
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Figure 6: Internet delay distributions.

To this end, de�ne during step t

Lt
k
=

k−1
∑

ℓ=1

ℓqt
k
(ℓ) (27)

to be the average number of lost replies in signatures with k pack-

ets. Then, taking an estimated ratio of all dropped packets to the

total transmitted yields the expected loss rate

pt
loss
=

∑n
i=1 α

t
i L

t
|di |

∑n
i=1 α

t
i |di |

. (28)

Recall that the simulation allowed loss to a�ect at most k − 1

packets in OSes with |di | = k . Therefore, its ground-truth packet

loss should represent the same quantity as (28). Traces show that

70.1%of the packets were dropped,whichmatches quitewell against

p∞
loss
= 69.3%.

Since ϕv = 0.8 was a constant in this simulation, it makes

sense to compare it against feature-modi�cation estimates aver-

aged across all �elds and all OSes, i.e.,

E[ϕtv ] =
1

b + 1

b+1
∑

v=1

ϕtv =
1

b + 1

b+1
∑

v=1

n
∑

i=1

αiϕ
t
iv . (29)

Results show that E[ϕ∞v ] = 0.802, which is very close to the

actual value. While there is some variation in individual ϕiv , it is

of little concern due to the small number of samples seen by Faulds

from these OSes. For a discussion of unknown devices and their

impact on EM, see [43].

7 INTERNET MEASUREMENT

7.1 Overview

On December 14, 2016, we conducted a port-80 SYN scan of all

BGP-reachable IPv4 addresses on the Internet. Of the 2.8B IPs con-

tacted,we gathered responses from 67.6Mhosts. In large-scale clas-

si�cation, such as the one attempted here, Faulds produces a huge

volume of information in the form of various PMFs and estimates.

We start with basic sanity checks of the estimated distortion θ and

then delve into classi�cation result α .

7.2 Network Distortion

Figure 6(a) shows the recovered distribution fT using bin size 30

ms. Delays below 60 ms (29%) represent unloaded servers in close

proximity to the scanner, most likely within the continental US.
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Figure 7: Internet packet-loss PMFs.

Those in the 120−200 ms range (40%) indicate targets whose RTTs

are consistent with destinations in Europe andAsia. The remaining

cases covers longer paths, OS scheduling delays, non-trivial CPU

load on the server, and involvement of various backend databases

to set up the connection. Overall, we obtain E[Tj ] = 148 ms, 80%

of the samples below 200 ms, and 99.2% below 450 ms. Figure 6(b)

plots the distribution of one-way delay f∆, in which 92% of the

mass concentrates below 30ms and 97% below 100ms. The average

queuing delay E[∆jr ] = 15 ms also sounds quite reasonable.

To examine packet loss, de�ne ηt
k
=

∑n
i=1 α

t
i 1 |di |=k to be the

estimated fraction of observations that use an OS with k packets.

The top values of k are four (η∞4 = 0.42, 112 stacks in Plata data-

base D4), six (η∞6 = 0.31, 80 stacks), three (η∞3 = 0.07, 72 stacks),

and �ve (η∞5 = 0.04, 54 stacks). Figure 7 plots the recovered loss

PMFs for these values of k , each �tted with an iid binomial model

and accompanied by the average loss rate L∞
k
/k from (27). First, it

is interesting that the loss rate is heterogeneous, ranging from 0.3%

in q6 to 12.6% in q5. This phenomenon may be inherent to the sig-

natures that map to each k (e.g., certain printers cut the SYN-ACK

sequence when their tiny SYN backlog queue over�ows [41]), the

load on the corresponding OSes, and host location on the Internet,

all of which suggests there is an extra bene�t to estimating qk in-

dependently for di�erent k . Second, while in a few of the plots the

binomial model shows a reasonable �t, this does not universally

hold. Finally, computing (28) for the Internet scan yields an aver-

age loss rate of 3.3% across all observations. This is consistent with

3.8% found in a Google study of SYN-ACK retransmission rates [9].

7.3 User Distortion

Computing (29), we obtain E[ϕ∞v ] = 0.81, i.e., the average proba-

bility to encounter a non-default value was 19%. Faulds produced

420 × 6 = 2,520 distributions of user features, among which we
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Figure 8: Internet distributions πi1 and πi5 (default values

have an asterisk).

highlight several interesting cases, focusing on the twomost volatile

�elds – Win and MSS – and limiting all PMFs to values above the

1% likelihood. Since MSS sometimes depends on the MTU of the

underlying data-link layer and/or tunneling protocol (e.g., IPv6),

this �eld may experience �uctuation even if the OS does not allow

explicit means for changing this value.

We expected devices with �rmware restrictions that prevent

user access to the con�guration of SYN-ACK parameters to ex-

hibit high ϕiv . One example is shown in Figure 8(a) for a popular

Dell printer. Among 976K occurrences on the Internet, this device

keeps the default window with probability 1. Intuition also sug-

gests that general-purposes OSes are more susceptible to modi�ca-

tion and/or existence of alternatively patched versions. One exam-

ple is 21M hosts with Ubuntu Linux, where Figure 8(b) shows that

Faulds discovers 31% of the cases with window size exactly half of

the default (i.e., 14,480 instead of 28,960). A more dispersed case

is Mac OS X Server in part (c), which exhibits noticeable variation

in both Win and MSS. Its default values remain with probability

73% and 89%, respectively. Finally, in sub�gure (d), CentOS (enter-

prise Linux) has its original combination (17,896, 8,960) occurring

in only 1% of the cases. We conjecture that the Plata database [41],

which was constructed from production devices in a large campus

network, captured a non-standard version of this stack with jumbo

Ethernet frames enabled. Since this is an inherent property of any

database, it is important to allow great �exibility in the match pro-

cess to accommodate such scenarios.

7.4 Classi�cation Results

We de�ne Faulds to be successful for sample j if the denominator

of (1) is non-zero, i.e., p(xj |θ
t ,αt ) > 0. This means that at least

one OS matches x′j with a non-zero probability. Using the Plata
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Table 12: Faulds Classi�cation at Iteration 1 (left) and 100 (right)

OS α 1 Count

Ubuntu / Redhat / CentOS 0.224 14,098,093

Ubuntu / SUSE / CentOS 0.111 8,896,622

Embedded Linux 0.082 6,326,349

Windows 7 / 2008 / 2012 0.047 2,942,254

Ubuntu / Redhat / SUSE 0.037 2,408,386

Schneider / APC Embedded 0.022 1,587,396

Windows XP / 2003 0.021 1,314,967

Redhat / CentOS / SUSE 0.018 1,254,797

Embedded Linux 0.015 1,044,028

Windows 2008 R2 / 2012 0.013 907,167

−→

OS α 100 Count Change

Ubuntu / Redhat / CentOS 0.334 21,361,956 0.52

Embedded Linux 0.103 6,467,303 0.02

Windows 7 / 2008 / 2012 0.056 3,669,372 0.25

Schneider / APC Embedded 0.055 3,632,638 1.29

Ubuntu / Redhat / SUSE 0.031 2,001,329 −0.17

Windows XP / 2003 0.018 1,248,619 −0.05

Redhat / CentOS / SUSE 0.016 1,046,567 −0.17

Dell Laser / Xerox WorkCenters 0.015 976,717 0.25

Windows 2008 R2 / 2012 0.014 837,466 −0.08

Cisco Embedded 0.013 824,039 2.29

Table 13: Types of Devices Running Webservers

Device Type Count Fraction

General purpose 42,277,294 67%

Switch/router/gateway/network controller 8,854, 290 14%

No label in database 7,038, 785 11%

Printers 2,813, 292 4.5%

RAID controller/NAS 1,348, 895 2.1%

Video conferencing/telepresence 603,035 1.0%

Cyberphysical systems 91,033 0.14%

IP phones 61,400 0.10%

database with 420 network stacks [41], Faulds successfully classi-

�ed 63.1M hosts (i.e., 93%). From a pure statistical point of view,

the remaining 4.5M devices should be assigned to the OS with the

highest α∞i . But it is also likely these cases come from unknown

stacks or observations with toomuch packet loss, in which case ex-

cluding them from classi�cation might be prudent as well, which

is our approach below.

The left side of Table 12 shows the top ten OSes after one iter-

ation of Faulds. Note that the Plata database was auto-generated

from a pool of devices found at a university network. Even though

this process [41] produced only a high-level description of each

OS, additionalmanual e�ort can be used to provide each signature

with amore speci�c kernel version and/or physical device. We con-

sider this issue orthogonal to the topic of the paper since Faulds

operates on TCP/IP signatures and its accuracy does not depend

on the name a�liated with each �ngerprint xi .

The dominance of Linux and embedded devices in Table 12 (left)

matches the statistics reported in prior work [24], [41], [42], al-

though a more interesting result is the amount of relative change

occurring in the classi�cation as Faulds goes through its iterations.

Table 12 (right) shows the α vector after 100 steps. The top Linux

signature gains 52%, Windows 7 in third place increases by 25%,

and two other Linux stacks drop 17% each. Further down the list,

there is signi�cant movement as well, where certain embedded

systems, such as Schneider APC (data-center hardware solutions),

Dell printers, and Cisco, increase their membership by 25 − 229%.

There is even more shu�e outside the top-10, which underscores

the importance of using proper algorithms for estimating α .

Table 13 splits all classi�ed hosts into eight categories. The top

two signatures are desktop/server OSes and various stacks from

network-device manufacturers (i.e., switches and routers). In third

Table 14: Unprotected Industrial and Enterprise Devices

Device Count Type

Polycom HDX 8000 HD 266,565 Telepresence

Hickman ITV 450D 67,091 Telepresence

Cisco Uni�ed IP Phone 7900 Series 27,151 IP Phone

AVTech RoomAlert/Rockwell Automation 21,756 Cyberphysical

Loytec L-DALI Lighting Control Systems 20,517 Cyberphysical

Codian Telepresence MCU 20,036 Telepresence

Polycom RealPresence Server 4000 18,977 Telepresence

AdTran IP Phone Manager 11,909 IP Phone

HWg-STE: Ethernet thermometer 11,826 Cyberphysical

D-Link DCS Series Internet Camera 9,279 Telepresence

place, there are 7M hosts with no label, which means Faulds �nds

a matching signature for each of them, but Plata does not know

what these devices are. The bottomhalf of the table, with a substan-

tial count of cyber-physical systems and o�ce equipment, is more

alarming. These oftentimes run on defaultmanufacturer passwords

and allow recon�guration using a built-in webserver. Investigat-

ing further, Table 14 shows the top-ten signatures from these cate-

gories, which include camera systems, building lighting controllers,

and temperature monitors. They present high security risks to or-

ganizations because malicious actors may be able to use these sys-

tems to gain access to workplace audio/video recordings, printed

documents, and environmental settings of critical infrastructure

(e.g., cooling in data-centers).

With the recent leaks of NSA exploits and massive world-wide

infection by ransomwareWannaCry [21], [31], outdated operating

systems (i.e., Windows XP/Server 2003) gained renewed attention.

In Table 15, we show several signatures that have reached the end

of support and are no longer being patched to keep up with the

latest vulnerabilities. These are obvious security threats; however,

we �nd over 1.8M old Windows hosts still visible over the public

Internet, 500K FreeBSD, and 78K Solaris. Faulds not only allows

for a timely measurement of such devices, but also paves the way

for scalable, low-overhead Internet characterization, robust device

identi�cation, and better modeling of distortion θ experienced by

the numerous hardware artifacts found on the Internet.

8 CONCLUSION

In this work, we developed novel theory and algorithms for im-

proving OS-classi�cation accuracy in single-probe �ngerprinting,
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Table 15: OSes with Expired Support Life Cycles

OS Count Released

Windows 2000 / XP / 2003 1,512,725 2000 / 2001 / 2003

FreeBSD 7.3 / 8.0 433,978 2010 / 2009

Windows Server 2003 SP1 SP2 195,169 2005 / 2007

Windows Server 2000 SP4/XP SP3 146,421 2003 / 2008

FreeBSD 6.4 71,190 2008

Solaris 9 / Solaris 10 78,269 2003 / 2005

Mac OS X 10.4 36,834 2005

Windows 2000/XP SP1 9,623 2001 / 2002

Novell Netware OES 2 SP1 1,108 2005

measuring one-way Internet path properties, and extracting latent

distributions of feature distortion. Simulations showed exceptional

robustness of our EM techniques against various types of noise.

Applied to Internet scans, this methodology can be used to detect

vulnerable devices, as well as estimate stack popularity, network

delays, packet loss, and header-tuning probabilities.
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