
Emulating AQM from End Hosts

Sumitha Bhandarkar ∗, A. L. Narasimha Reddy, Yueping Zhang, and Dmitri Loguinov †

Texas A&M University, College Station, TX 77843
{sumitha,reddy}@ece.tamu.edu, {yueping,dmitri}@cs.tamu.edu

ABSTRACT
In this paper, we show that end-host based congestion pre-
diction is more accurate than previously characterized. How-
ever, it may not be possible to entirely eliminate the un-
certainties in congestion prediction. To address these un-
certainties, we propose Probabilistic Early Response TCP
(PERT). PERT emulates the behavior of AQM/ECN, in
the congestion response function of end-hosts. We present
fluid-flow analysis of PERT/RED and PERT/PI, versions of
PERT that emulate router-based RED and PI controllers.
Our analysis shows that PERT/RED has better stability be-
havior than router-based RED. We also present results from
ns-2 simulations to show the practical feasibility of PERT.
The scheme presented here is general and can be used for
emulating other AQM algorithms.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols—TCP Congestion Control.

General Terms
Algorithms, design, experimentation, measurement, perfor-
mance, theory

Keywords
Congestion avoidance, early congestion response, delay-based
congestion response

1. INTRODUCTION
Congestion control in TCP is provided by an additive in-

crease multiplicative decrease algorithm. In the absence of
congestion, the congestion window is increased by one packet

∗Currently with Motorola Inc., Austin, TX.
†Supported by NSF grants CCR-0306246, ANI-0312461,
CNS-0434940, and CNS-0519442.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

per RTT to probe for available bandwidth1. When conges-
tion is perceived, the congestion window is decreased by half
to relieve the congestion. The only mechanism used by cur-
rent standard TCP variants to detect congestion is the loss
of a packet. Hence, even after the link is saturated and the
bottleneck link buffers start to fill up, the congestion window
continues to increase, until eventually the buffers overflow,
which results in packet loss.

The need for response to the onset of congestion – i.e., to
have the flows back-off from active probing when the queues
start to fill up – has been discussed abundantly in litera-
ture. Two rivaling approaches have been suggested for ad-
dressing the problem. One school of thought has been that
the routers at the bottleneck links know when the buffers are
getting full and so are in the best position to judge the onset
of congestion. Once congestion is detected, they inform the
end-host implicitly by either a binary signal (e.g., [2, 14, 16,
19, 25]) or a non-binary signal (e.g., [18, 32]) which informs
the senders of what their sending rate should be. This is the
area broadly known as Active Queue Management (AQM).

The other school of thought treats the network as a black
box and tries to detect network congestion from end-hosts.
In these schemes, the sender tries to determine the level of
congestion in the network based on information contained
in the round trip time or the observed throughput and re-
sponds to it in an effort to prevent packet losses. In this ap-
proach, the senders do not expect any support from routers.
We refer to the work in this area as end-host delay-based
congestion avoidance. Some of the representative schemes
in this area are CARD [17], TRI-S [29], DUAL [30], Vegas
[7], and CIM [21].

Both mechanisms have their advantages and disadvan-
tages. While it is true that routers are in the best posi-
tion to detect congestion in the network, deploying experi-
mental AQM mechanisms in the core routers has not been
easy. Overcoming the technical challenges related to the
implementation of these schemes in routers, while retaining
the speed and efficiency at which they operate, is probably
an easier task compared to convincing the ISPs to replace
or add these experimental routers to production networks.
Comparatively, updating the TCP stack at end-hosts is a rel-
atively easier task. But end-host delay-based schemes have
been assailed by doubts about the accuracy and effectiveness
of congestion prediction at end-hosts [21, 24, 26].

1Aggressive probing mechanisms have been proposed for im-
proving link utilization in high-speed networks, but as long
as they use loss-based probing, the discussion here remains
valid.

1

The aim of this paper is not to debate which approach
is better. Instead, we focus on evaluating and improving
congestion prediction from end-hosts. We show that such
congestion prediction is more accurate than characterized
by studies in [21, 26]. While it is possible to further im-
prove the prediction ability of end-host based congestion
estimators, it may not be possible to entirely eliminate the
noise/uncertainty in the signal. We show that this uncer-
tainty can be offset by choosing an appropriate response
function. By emulating the probabilistic marking mecha-
nism of router-based AQM schemes in the congestion re-
sponse function of end-hosts, performance and benefits sim-
ilar to router-based AQM can be obtained without actually
requiring any modifications to the routers. We support our
claim via extensive simulation on the ns-2 simulator for the
emulation of RED [14] and preliminary results for the emu-
lation of PI [16]. We study the stability of the the proposed
scheme using control theoretic analysis.

The rest of the paper is organized as follows. Section 2
inspects the existing end-host based congestion prediction
signals and some of the studies that cast doubt on their ac-
curacy. We show why some of the claims made by these
measurement studies may be inaccurate. We then proceed
to determine (a) how to further improve the prediction ef-
ficiency of end-host based estimators and (b) based on our
observations, what is the appropriate signal to be used in
our proposed scheme. In Section 3, we design the conges-
tion response function that emulates RED/ECN behavior.
Section 4 presents an extensive evaluation of PERT that em-
ulates RED/ECN using ns-2 simulations over a wide range
of network conditions. In Section 5, we present a control-
theoretic analysis of the stability of PERT that emulates
RED/ECN. Motivated by this analysis, we have started in-
specting the effectiveness of emulating PI/ECN at end-hosts
and present the analysis and preliminary results of ns-2 sim-
ulations in Section 6. Finally, in Section 7, we offer a critical
discussion of the issues that are still open and the directions
for future work, followed by conclusions in Section 8.

2. END-HOST CONGESTION DETECTION

2.1 Overview of Related Work
In 1989, Raj Jain [17] was the first to propose enhancing

TCP with delay-based congestion avoidance. The main ob-
servation is that, as the sending rate of a flow increases so
does its achieved throughput, until the knee where the link
is nearly saturated. During this time, the delay observed by
the flow will be low. Beyond the knee point, the throughput
stabilizes and the delay increases sharply. The author pro-
posed monitoring the normalized delay gradient of a flow at
the sender for determining the knee point and making the
flow operate at this point.

Ever since this proposal, several different schemes have
appeared. In TRI-S [29], the authors propose using the
normalized throughput gradient instead of the normalized
delay gradient to foresee when the bottleneck link reaches
saturation. In DUAL [30], the authors compare the current
sample of the RTT to the average of the minimum and max-
imum RTT to determine if the bottleneck link queues are
more than half full and it is time to respond. In Vegas [7],
the authors propose comparing the achieved throughput to
the expected throughput based on the minimum observed
RTT for predicting congestion. In CIM [21], the authors

propose comparing the moving average of a small number
of RTT samples to the moving average of a large number
of RTT samples for determining if there is any congestion.
In TCP-BFA [3], the authors propose monitoring the vari-
ance of the RTT for preventing the bottleneck link from
filling up. In Sync-TCP [31], the authors use the trend of
one-way delays combined with four different levels of win-
dow increase/decrease to improve on delay-based congestion
avoidance.

Several other studies [6, 21, 24, 26] have focused on un-
derstanding whether delay-based congestion prediction can
reliably work in the real Internet. Some of the issues raised
by these studies are unique to end-host based mechanisms,
while others have received similar attention in router based
schemes. For instance, it has been pointed out that it is hard
to measure queuing delays accurately when they are very
small compared to the end-to-end RTT [21, 24, 26]. How-
ever, this is a limitation of not just end-host based schemes,
but also router-based schemes since a large RTT compared
to the queue length implies a large feedback loop. In such
cases, the router queue may fill up and result in a loss before
the sender receives and responds to this congestion feedback.
End-host based measurements of the state of the queue es-
sentially entails sampling the queue at certain times and
the fundamental limits of such measurements have been re-
cently highlighted [26, 27]. Problems of oversampling the
queue lengths in router based RED mechanisms have been
studied in [16]. It has been suggested that on highly aggre-
gated paths, the impact of the response of a single flow may
be limited [6, 21]. But if several flows respond, then the
combined effect may be sufficient to relieve the congestion
and reduce the queue lengths. In this paper, we focus on un-
derstanding the issues specific to end-host based schemes.

2.2 Accuracy of End-host Based Congestion
Estimation

In [21], the authors measured the correlation between the
observed loss rate of a flow and its round trip time samples
just before each loss, for data collected using tcpdump on
seven Internet paths. Their observation is that (a) losses
are preceded by a significant increase in RTT in very few
cases, and (b) responding to a wrong prediction can result
in severe degradation of performance. Based on their obser-
vations the authors conclude that although the RTT samples
may contain useful information, it cannot be reliably used.
Another study [26] shows similar results but over a larger
dataset and considers several of the different delay-based
prediction metrics.

In order to understand these claims better, consider a very
simple scheme that directly monitors the observed round
trip delay. Figure 1 shows a simple state diagram of the
different states and transitions for such a scheme. State A
represents the “low delay” or “low congestion” state. The
flow transitions from state A to B when higher delay is ob-
served, or the bottleneck queue is starting to get filled. If no
action is taken, the flow transitions to state C or the “packet
loss” state. In response to packet loss, when the flow reduces
its congestion window, the bottleneck queue starts to empty
out and the flow will eventually return to State A.

Next consider the other possible state transitions. If the
flow does not use an accurate method for determining the
states, or if the flow shares the bottleneck link with a lot of
cross traffic, then the duration of state B may be too short

2

Figure 1: State diagram showing the transition be-
tween different congestion states in standard TCP
flows.

and the flow may not be able to detect it at all. As a result,
before the flow can detect that the delay has increased, it
may observe a packet loss. This is the transition from state
A directly into state C. Alternately, the transitions are gov-
erned by how the protocol defines state A and state B and
what criteria is used for the transition from state A to state
B. If the protocol is very aggressive, then it may determine
the onset of congestion too early and make the transition
from state A to state B, only to find out later that it was a
false alarm and return from state B to state A. The transi-
tion from state C back into state B occurs if the flow does
not respond enough after a packet loss.

The transitions marked “4” and “5” are both harmful to a
proactive scheme. Transition “4” (state A to C) may mean
that short term congestion has occurred and the flow can-
not predict it and hence is incapable of avoiding the resulting
loss or that the protocol is simply not aggressive enough in
predicting congestion. This transition indicates the pres-
ence of “false negatives”. Transition “5” (state B to A), on
the other hand, which we will refer to as “false positive”,
will mean that the protocol is too aggressive or unreliable
in predicting congestion, and as a result may unnecessarily
reduce its sending rate and face performance degradation.

The claim made in [21, 26] is that for the congestion
predictors used in existing schemes, transition “5” happens
more often than transition “2” hence limiting the effective-
ness of congestion prediction. The authors arrive at this
conclusion by looking at a large dataset of tcpdump data of
standard TCP flows on the Internet. They then run the
algorithms used by different congestion predictors to de-
termine states A and B. The limitation of these studies,
however, is the way in which state C is defined. Owing
to the methodology used for collecting data, state C (i.e.,
losses), is observed within a single flow. When several dif-
ferent flows share a bottleneck link, the flow under obser-
vation may not necessarily be the one to face losses when
the bottleneck link is full. Hence observing high RTT that
is not followed by a loss (at a single flow) does not neces-
sarily mean that there is no congestion. It just means that
the observed flow does not suffer a packet loss (possibly be-
cause other flows have responded to losses and reduced the
congestion). In order to evaluate the usefulness of a conges-
tion prediction metric, we should consider the correlation
between the round trip time and losses at the bottleneck link.

Figure 2: Comparison of the fraction of transitions
from “High RTT” to “Loss” when the losses are
measured within a flow and at the bottleneck queue.

In order to illustrate this, we present here the results of
a very simple ns-2 simulation. The topology consists of two
routers connected by a link of capacity 100 Mbps and delay
20 ms. Several nodes are connected to both routers with
links of capacity 500 Mbps and varying delay, resulting in
different flows having different RTTs. The capacity of the
queue at the routers is set to 750 packets. We use six test
case loads denoted as case1 through case6 corresponding to
the combinations of (a) either 50 or 100 long term flows (in
both directions), and (b) 100, 500 or 1000 web sessions. One
of the long-term flows is tagged and referred as “observed”
flow. For this flow, we collect the RTT samples for every
packet over a period of 1000 seconds. The end-to-end delay
of this flow is 60 ms. Using a simple threshold of 65 ms
to indicate a state of high-RTT, we measure the fraction of
transitions from the high-RTT state into the loss state, with
losses measured at both flow level and queue level. Figure 2
shows the comparison for the six different cases mentioned
above.

While this study is not exhaustive, it clearly indicates that
the correlation between the RTT and losses observed at the
queue is significantly higher than that observed by a single
flow. In other words, delay-based indicators may be a lot
more effective in predicting congestion than what is reported
in [21, 26].

2.3 Different Congestion Predictors
In order to understand the reliability of congestion pre-

dictors used in different end-host based schemes, we applied
the algorithms used by these schemes for predicting conges-
tion on the data obtained for the six traffic cases above and
evaluated the efficiency of predicting losses (at the bottle-
neck link queue), and the fraction of false positives and false
negatives. We measure the efficiency of loss prediction by
the fraction (number of “2” transitions)/(“2” transitions +
“5” transitions). We measure the fraction of false positives
as (number of “5” transitions)/(“2” transitions + “5” tran-
sitions). Finally, we measure the rate of false negatives as
(number of “4” transitions)/(“2” transition + “4” transi-
tions). Figure 3 shows the results.

From the figure notice that among the existing schemes
for end-host congestion prediction, Vegas has the highest
prediction efficiency (which implies the lowest rate of false
positives) and the lowest percentage of false negatives. Note
that these results are not meant to be an exhaustive evalua-

3

Figure 3: Prediction efficiency, false positives and
false negatives for different predictors.

tion of the merits of the different metrics. Rather, it is meant
to guide us in our choice for a predictor. From the results,
we notice that while the accuracy of congestion prediction
may be higher than characterized by earlier measurement
studies, it leaves room for further improvement.

2.4 Improving Congestion Prediction
Note that Vegas, CARD, TRI-S, and DUAL obtain RTT

samples once per RTT which could result in under-sampling.
In order to evaluate the impact of higher sampling, we com-
puted the instantaneous RTT upon the receipt of each ac-
knowledgment2 and used a simple fixed threshold for deter-
mining that the flow is in the high congestion state. Taking
RTT samples on each packet addresses some of the concerns
raised about end-host measurements [27] and reduces sam-
pling errors. Surprisingly, as shown in the graph, the predic-
tion efficiency of this signal was higher than that of Vegas
for the six test cases of the traffic that we have considered.

While the instantaneous RTT signal is more aggressive in
predicting losses, it can be quite noisy due to the fluctua-
tions in the instantaneous queuing delays observed by the
packets, and hence false positives are quite high. In order
to eliminate the noise, we smoothed the RTT signal. Since
the aim of the prediction signal is to track changes in the
bottleneck queue, we used a moving average of 750 packets
(the size of the buffer) for smoothing the signal. This signal
was very effective in predicting losses while avoiding false
positives and false negatives. However, it is difficult for a
flow to estimate the size of buffers at the bottleneck link.
So we investigated the effectiveness of using Exponentially
Weighted Moving Average (EWMA) of the instantaneous
RTT signal, similar to that used by TCP for determining
the retransmission timeout, with a weight of 7/8 for the his-
tory sample. As seen from the graph, while this reduces the
noise (false positives) compared to the instantaneous RTT
signal, it still is not as good as the moving average signal.
We repeated the EWMA with a higher weight of 0.99 and
the signal was able to obtain high prediction efficiency with
low false positives and low false negatives.

2Current versions of the Linux operating systems (2.4.x and
above) do this for RTO calculation anyway [28].

We use the smoothed RTT signal with the weight of 0.99
for the history sample as the congestion predictor in our
scheme.3 In order to differentiate the smoothed RTT signal
that we use from that used by TCP for timeout calcula-
tions, we refer to our signal as srtt0.99. Even though the
weights used for smoothing are different, note that this sig-
nal achieves similar behavior to that in RED routers where
average queue lengths are monitored to infer congestion,
while accommodating bursty traffic by allowing fluctuations
in the instantaneous queue length.

With the srtt0.99 signal, while the false positives are low,
they are still non-zero – for the six test cases we considered,
the false positives were in the range of 0.7 − 1.5%. This
number may vary for other traffic cases. The throughput of
a TCP flow is proportional to 1/

√
p (p here will be the prob-

ability of response). Responding to even a small fraction of
false positives may result in severely degraded performance
as shown in [21]. In this paper, we take a two-step ap-
proach: (a) we improve the accuracy of prediction by using
more frequent samples and history information, and (b) we
accept that end-host prediction cannot be perfect and de-
vise mechanisms to counter/mitigate this inaccuracy. In the
next section, we discuss the design of the response function.

3. RESPONSE TO CONGESTION PREDIC-
TION AT END-HOSTS

One possible mechanism for reducing the impact of false
positives would be to keep the amount of response small. In
case of a false positive, due to the small amount of response,
the flow does not lose much throughput. This is the ap-
proach used in Vegas. Vegas uses additive decrease (by one
packet) for early congestion response. However, note that
this trades off the fairness properties of TCP in favor of
maintaining high link utilization, since it has been shown in
[8] that Additive Increase/Additive Decrease (AIAD) does
not result in fair allocation between competing flows. In
the steady-state, if congestion avoidance is successful, then
state C is not visited often and hence the flow spends most of
its time transitioning between states A and B. Using AIAD
for these transitions will result in compromising the fairness
properties of the protocol.

Additionally, since the response is small, the buildup of
the bottleneck queue may not be cleared out quickly. Hence,
compared to a flow starting earlier, a flow that starts later
may have a different idea of the minimum RTT on the path
(in this case over-estimate it). This variable is used exten-
sively in most end-host based schemes (including Vegas) to
estimate what component of the RTT is due to the propa-
gation delay and what component is due to queuing delay.
Not clearing out the bottleneck queue completely can hence
result in offering an unfair advantage to flows starting later,
and result in these flows getting more than their fair share
of bandwidth.

An alternate mechanism for reducing the impact of false
positives is to respond probabilistically. When the proba-
bility of false positives is high, the probability of response
to an early congestion signal should be low and vice versa.
Due to the probabilistic nature of the response, the protocol
can retain multiplicative decrease for early response.

3It may be possible to modify the weight for the history
sample based on the ack arrival rate. We are investigating
this as part of our future work.

4

Figure 4: Probability distribution function of nor-
malized queue length when false positives occur.

So, next we study the relationship between the false posi-
tives and the queue length at the bottleneck router. Figure 4
shows the probability distribution of the normalized queue
length when false positives are detected by the prediction
signal srtt0.99 for the six cases of traffic loads discussed ear-
lier. From the figure, notice that false positives are more
likely to occur when the queue length is smaller. Note that
the traffic load for the six different cases consists of a mix of
long term flows in both forward and reverse directions with
different RTTs and also web traffic. For these cases of traffic
load, the false positives occur mostly when the queue length
is less than 50% of the total queue size. While we may not be
able to generalize the results for all possible types of traffic
mix, it provides us an important insight: the uncertainties
in congestion prediction are more likely to occur at lower
queue lengths than at higher queue lengths, at least when
srtt0.99 is the congestion predictor.

Since the aim is to reduce the impact of false positives by
designing an appropriate response function, we argue that
when the queue size is small the response of a proactive
scheme should be small and when the queue size is large,
the response should be large. Note that this is conceptually
similar to the probabilistic response function used in the
AQM mechanism RED. Hence, for the response function, we
emulate the probabilistic response function of RED. Due to
the probabilistic nature of early response we call our scheme
Probabilistic Early Response TCP (PERT).

The probabilistic response of PERT is designed to be sim-
ilar to that of “gentle” RED. Figure 5 shows the probability
of response against the congestion detection signal srtt0.99.
Similar to RED, we define two thresholds Tmin and Tmax

and the maximum probability of response pmax. When the
value of srtt0.99 is below Tmin, the probability of response is
0. As the value of srtt0.99 increases beyond Tmin, the prob-
ability of reducing the window in response to each ACK
linearly increases until it reaches the value pmax at Tmax.
Between Tmax and 2Tmax, the probability increases from
pmax to 1. Beyond 2Tmax, the probability remains constant
at 1.4 For the parameters Tmin, Tmax and pmax we use fixed
values of (P +5 ms, P +10 ms and 0.05) respectively, where
P is the propagation delay estimated by the minimum RTT
observed by the flow. It is possible to choose these values
adaptively based on network conditions similar to the mech-

4Different response functions can be chosen. “Gentle” RED
is used here as a representative function.

Figure 5: Probabilistic response curve used by
PERT.

anisms suggested in [12] – we are looking into this as part
of our future work.

When the RTT is measured on every ACK, potentially
each ACK could indicate congestion. Since the impact of
response may not be seen until after an RTT, we limit the
early response to once per RTT.

For the early response, we use multiplicative decrease.
When the proactive congestion response is successful, the
queue lengths are expected to be maintained low. As a
result, it is not necessary to respond with a 50% window
reduction in case of early response. In [1], the authors sug-
gest that router buffers are commonly set to the Bandwidth-
Delay Product of the link since the TCP flow reduces its
window by 50%. If TCP flows were to use a factor f reduc-
tion during loss, then the relationship between the buffer
size B and the window reduction factor f can be re-written
as

B >
f

1 − f
× BDP, (1)

where BDP is the Bandwidth-Delay Product of the link.
Based on this, for a conservative value that the queue length
does not exceed half of its capacity and that the capacity
of the buffer is set to one BDP according to the rule of
thumb, we choose the window decrease factor to be 35%. If
a packet loss occurs, then the response will be similar to that
of standard TCP variants and the fast retransmit/recovery
algorithms are triggered.

Note that the choice of the amount of response is a trade
off. Since the flows respond before the bottleneck queue
is full, a large multiplicative decrease can result in lower
link utilization. On the other hand, decreasing the amount
of response could result in the bottleneck link buffers not
getting entirely cleared, leading to unfairness among flows
starting at different times, as discussed earlier.

While it has been a natural choice based on our obser-
vations to emulate the probabilistic marking of RED, it is
possible to replace the probabilistic response curve with the
algorithms used in other AQM schemes as well. In the next
section, we present an extensive evaluation of PERT that
emulates RED/ECN using ns-2 simulations. This is fol-
lowed by a control theoretic analysis of the stability of PERT
emulating RED. Based on our analysis we are motivated
to evaluate the emulation of PI/ECN in PERT, for which
we provide analysis and preliminary simulation results. As
part of our future work, we will continue to investigate the
possibility of emulating other AQM mechanisms as well.

5

4. EXPERIMENTAL EVALUATION
We have conducted extensive ns-2 simulations to evaluate

PERT. We attempt to make our evaluation realistic by sim-
ulating a wide range of network parameters. We first present
the results for a single bottleneck topology with bottleneck
link bandwidth in the range of [1 Mbps, 1 Gbps], RTT in the
range of [10 ms, 1 s], the number of long-term background
flows in the range of [1, 1000] and the number of web ses-
sions in the range of [10, 1000]. We then evaluate the impact
of multiple bottleneck links and flows of different RTTs. All
simulations are run for 400 seconds and reported results are
measured during the stable period between 100 and 300 sec-
onds to show the steady state behavior. Next, we evaluate
the dynamic behavior due to transient changes in traffic load
where sudden changes in available bandwidth are caused by
the arrival or departure of flows. For all experiments, the
bottleneck buffer size is set to the bandwidth-delay product,
with the minimum number of packets being equal to at least
twice the number of flows. When multiple flows share a link,
their start times are chosen randomly in the range (0, 50)
seconds to illustrate the impact of flows starting at different
times on the fairness as discussed in the previous section. We
present all results in comparison to (a) SACK with Droptail
queues; (b) ECN-enabled SACK with RED queues; and (c)
TCP-Vegas. For experiments with TCP-Vegas and PERT,
the bottleneck link routers use the default Droptail buffer
management.

4.1 Impact of Bottleneck Link Bandwidth
In this experiment, the bottleneck link bandwidth is var-

ied from 1 Mbps to 1 Gps. The end-to-end RTT of the flows
is set to 60 ms and the number of flows is varied such that
the link is efficiently utilized even at large bandwidth. Fig-
ure 6 shows the average bottleneck link queue length, the
bottleneck link drop rate, the link utilization and the Jain
fairness index [8] of the competing flows. From the graph,
notice that PERT’s average queue length is similar to (and
in some cases better than) that of SACK/RED-ECN. As
expected, the average queue length with SACK/Droptail
remains high for most experiments. A surprising result is
that TCP-Vegas has a higher average queue length than
SACK/Droptail in some cases. Higher drop rates observed
with SACK/Droptail relieve the congestion while Vegas’ main-
tenance of 1-3 packets in the buffer (based on the α and β
parameters) could lead to high queue lengths, while avoiding
packet losses. All the proactive mechanisms (SACK/RED-
ECN, PERT and TCP-Vegas) maintain zero losses in most
cases. The link utilization of PERT is lower than SACK in
the cases where the bottleneck link bandwidth is small re-
sulting in short buffers, but in the other cases, it is similar.
TCP-Vegas maintains a high link utilization, which comes
at the cost of fairness among competing flows. The fairness
among PERT flows is similar to that of standard TCP, with
the Jain fairness index being close to 1.

4.2 Impact of Round Trip Delays
In this experiment, the bottleneck link bandwidth is 150

Mbps and the number of flows is 50. The end-to-end delay
is varied in the range of 10 ms to 1 second. Figure 7 shows
the results. From the figure, we see that the average bot-
tleneck link queue length and the drop rate are similar for
both PERT and SACK/RED-ECN. The latter has a lower
link utilization, which is slightly better than in PERT since

Figure 6: Impact of bottleneck link bandwidth.
Note the logarithmic scale of the x-axis.

Figure 7: Impact of end-to-end RTT. Note the log-
arithmic scale of the x-axis.

we have used the adaptive RED version for the routers that
tunes the parameters according to network conditions and
PERT uses fixed thresholds. The Jain fairness index re-
mains high indicating that the throughput is shared in a
fair manner among the 50 flows.

4.3 Impact of Varying the Number of Long-
term Flows

In this experiment, the bottleneck link bandwidth is set
to 500 Mbps and the number of long-term flows is varied
from 1 to 1000. The end-to-end delay is 60 ms. Figure 8
shows the results. Again the average bottleneck link queue
length and the bottleneck link drop rate of PERT are similar
to that of SACK/RED-ECN. The Jain Index remains high
even when the number of flows is large. Link utilization
of SACK/RED-ECN is slightly higher than that of PERT.
Vegas tries to maintain a fixed number of packets in the
queue and as a result, as the number of flows increases, so
does the average queue length and the drop rates. The link
utilization of Vegas remains high, while the Jain fairness
index remains low.

6

Figure 8: Impact of varying the number of long-term
flows. Note the logarithmic scale of the x-axis.

Figure 9: Impact of varying the number of web ses-
sions. Note the logarithmic scale of the x-axis.

4.4 Impact of Web Traffic
We now consider simulations with web traffic to under-

stand the impact of bursty flows. The bottleneck link band-
width is set to 150 Mbps, the end-to-end delay is 60 ms
and the number of long term flows is 50. The number of
web sessions that share the bottleneck link is increased from
10 to 1000. For the web traffic, the parameters are cho-
sen based on the guidelines in [11]. As seen from Figure
9, as the load offered by the web traffic increases, the aver-
age link queue length remains low and as a result no packet
losses are observed for PERT, similar to SACK/RED-ECN.
The link utilization of PERT is slightly lower than that of
SACK/RED-ECN. The Jain fairness index of the long-term
flows remains high.

4.5 Impact of Different RTTs
In the following experiment, a bottleneck link with 150

Mbps capacity is shared by 10 flows with end-to-end de-
lays being (12, 24, 36, . . . , 120) ms. We run 100 web sessions
in the background. Table 1 shows the normalized average
queue length (Q), bottleneck link droprate (p), bottleneck

Q p U F
PERT 0.28 3.98E-06 93.81 0.86

Sack/Droptail 0.42 7.18E-04 93.77 0.44
Sack/RED-ECN 0.41 4.95E-04 93.90 0.51

Vegas 0.07 0 99.99 0.98

Table 1: Normalized average queue length (Q), bot-
tleneck link droprate (p), bottleneck link utilization
(U) and Jain fairness index (F) when flows with dif-
ferent RTTs share the bottleneck link.

Figure 10: Topology used for understanding the im-
pact of multiple bottleneck links.

link utilization (U) and Jain fairness index (F) for the dif-
ferent schemes. From the table we see that PERT and Vegas
may reduce the RTT unfairness inherent to TCP. The link
utilization of PERT is similar to that of SACK with either
Droptail or RED/ECN, while the average queue length and
drop rate are lower.

4.6 Multiple Bottlenecks
The congestion signal in PERT measures the end-to-end

RTT, and hence conveys information about the combined
queue lengths along the path. Router based AQM schemes,
on the other hand, estimate the queue length locally, then
use ECN to convey the information end-to-end. In this ex-
periment we investigate the impact of multiple bottleneck
links. The topology, shown in Figure 10, consists of six
routers labeled R1 to R6. The links between routers have a
capacity of 150 Mbps and a delay of 5 ms. Each router is
connected to a cloud of 20 nodes with a link of capacity 1
Gbps and delay 5 ms. The nodes in each cloud send data
to the nodes in the cloud connected to the adjacent router.
Also, all the nodes in the cloud connected to router R1 also
send data to the nodes in the cloud connected to R6.

Figure 11 shows the average queue length, drop rate and
utilization of the link between each pair of routers as well
as the Jain fairness index of all flows between each pair of
routers. From the figure we see that PERT maintains low
queue length and zero drop rates across all bottleneck link
queues. Its link utilization is similar to that of SACK/RED-
ECN and the fairness among flows passing through the com-
mon set of routers is maintained.

4.7 Dynamic Protocol Behavior
In this experiment, we study the dynamic protocol behav-

ior of the different schemes. Unlike previous experiments
which focused on the steady-state behavior, the results of
the first few seconds of simulation time are not discarded to
illustrate the impact of transient dynamics. These experi-

7

Figure 11: Impact of multiple bottleneck links.

Figure 12: Response to sudden changes in respon-
sive traffic.

ments investigate the responsiveness of the different schemes
to sudden changes in traffic.

In this experiment, 25 PERT flows are started at time 0
seconds. Starting at 100 seconds, for the next 300 seconds 25
new flows are added at 100 second intervals, causing severe
contention for available bandwidth. Starting at 400 seconds,
25 flows leave the network at 100 second intervals creating
a sudden availability of bandwidth. We repeat the exper-
iment with SACK/Droptail, SACK/RED-ECN and Vegas.
Figure 12 shows the aggregate throughput of the set of flows
that start together. From the figure it is clear that the
PERT flows respond quickly to dynamic changes in network
bandwidth. Vegas exhibits previously observed unfairness
among competing flows. The results for SACK/Droptail
and SACK/RED-ECN are similar to that of PERT and are
available in [4].

We have conducted additional experiments, where dy-
namic changes in traffic were caused by non-responsive traf-
fic. The results are similar to those above. We have not
included the results here due to the lack of space. They are
available in [4].

5. MODELING AND STABILITY OF PERT

5.1 Model
Our modeling of PERT is composed of three parts: win-

dow adjustment, RED emulation, and queuing behavior. We
start with the window dynamics. Similar to [23], we consider
a single-link scenario and assume the forward propagation

delay from the source to the router is negligible and thus the
round-trip time R(t) measured by the end-user at time t is
composed of backward propagation delay Tp and queuing
delay Tq(t − R(t)), i.e.,

R(t) = Tp + Tq

`

t − R(t)
´

. (2)

Denoting by C the link’s capacity and by q(t) the queue
size at time t, queuing delay Tq(t) can be approximated by
q(t − R(t))/C. Note that delay R(t) in the last expression
is because the queuing delay perceived by the user at time t
is actually experienced by the router R(t) time units earlier.
To compare the stability of PERT to router-based RED with
standard TCP, we set window decrease factor β to 0.5 and
note that results for β = 0.35 can be similarly obtained
following the procedure below. Then, window dynamics of
a PERT end-flow is written as:

Ẇ (t) =
1

R(t)
− W (t)W

`

t − R(t)
´

2R
`

t − R(t)
´ p(t), (3)

where, at time t, W (t) is the congestion window size, R(t) is
the RTT, and p(t) is the packet dropping probability. Note
that loss rate p(t) in the last equation is an instantaneous
value as opposed to its delayed counterpart p(t−R(t)) in the
TCP/RED model obtained in [23]. This is because a PERT
user makes its dropping decision at the end-host instead of
the router.

To formulate PERT’s emulation of the RED mechanism,
assume that the propagation delay Tp is known to the end-
flow (this can be approximated by the base RTT). Then,
upon each packet arrival, the user can estimate the queuing
delay by Tq(t) = R(t) − Tp and generate the packet drop
probability p(t) as following:

p(t) =
Tq(t) − Tmin

Tmax − Tmin

pmax, (4)

where Tmin and Tmax are the maximum and minimum thresh-
olds of queuing delays and pmax is a constant.

Another component of RED emulation is the estimation
of round-trip time R(t), which is updated per-packet using
a low-pass filter (LPF) with weight α, i.e.,

R(t) = αR(t − 1) + (1 − α)R̂(t), (5)

where R̂(t) is the instantaneous RTT measured at time t
and weight α = 0.99. Following the technique used in [23],
this LPF can be approximated by the following differential
equation:

Ṙ(t) =
ln α

δ
(R(t) − R̂(t)), (6)

where δ is the sampling interval.
We next model the queuing dynamics, which can be de-

scribed by the following differential equation of queue size:

q̇(t) =
W (t)

R(t)
N(t) − C,

where N(t) is the number of flows accessing the router at
time t and term W (t)N(t)/R(t) can be interpreted as the
combined incoming rate y(t). Since Tq(t) = q(t − R(t))/C,
we re-write the last equation in terms of queuing delay Tq(t):

Ṫq(t) =
W (t − R(t))N(t − R(t))

R(t − R(t))C
− 1. (7)

8

Then, equations (2)-(7) comprise the complete system
model of PERT. It is easy to see that this model is very
similar to the TCP/RED model derived in [23]. Note that,
there are also some differences between the system models of
PERT and TCP/RED. The first one is that, in PERT, loss
rate p in (3) is not delayed by R(t) and variables for com-
puting queuing delay Tq in (7) are retarded by one RTT. As
we have mentioned earlier, this difference is because PERT
monitors queuing dynamics at the end-user, while RED does
this inside the router. The second difference is that PERT
uses queuing delay Tq(t) to determine the loss probability,
while RED uses queue length q(t). We next study stability
of PERT (2)-(7).

5.2 Stability
Similar to [23], we assume that the number of flows N and

RTT R are constant in the steady state. Then, the system
becomes:

f(W, WR, Tq, p) =
1

R
− W (t)WR(t)

2R
p(t),

g(W,Tq) =
N

RC
W (t) − 1, (8)

where WR(t) = W (t − R). In the steady state, we have
W (t) = WR(t) = W ∗, p(t) = p∗, and Tq(t) = T ∗

q . Applying
this result and equating the left-hand sides of (8) to zero,
we can derive the equilibrium point (W ∗, p∗, T ∗

q) as follows:

W ∗ =
RC

N
and p∗ =

2N2

R2C2
. (9)

The following theorem states a sufficient condition for
PERT (8) to be locally stable in its stationary point. Due to
limited space, we omitted proofs of all theorems presented
in this section and refer interested readers to [5] for more
detail.

Theorem 1. Let LPERT and K be defined as follows:

LPERT =
pmax

Tmax − Tmin

, K =
ln α

δ
, (10)

and assume bounds R+ and N− satisfy the following condi-
tion:

LPERT R+3C2

(2N−)2
≤

r

w2
g

K2
+ 1, (11)

where:

wg = 0.1 min
“ 2N−

R+2C
,

1

R+

”

. (12)

Then, PERT modeled by (8) is locally stable for all N ≥ N−

and R∗ ≤ R+, where R∗ = Tp + T ∗
q is the stationary RTT.

Note that, in addition to conditions given in Theorem
1, the equilibrium condition p∗ ≤ pmax is also necessary
for the system to be stable. To examine validity of this
condition, we infer from (9) that p∗ = 2/(W ∗)2. Thus,
condition p∗ ≤ pmax holds if and only if pmax ≥ 2/(W ∗)2.
For a stationary window size W ∗ = 10 packets, we have
pmax = 2%, which is reasonable in practice.

We next investigate whether there exists a closed-form
solution of condition (11)-(12). Recalling K = ln α/δ, we
convert (11) into the following condition on δ:

δ ≥ − ln α

4(N−)2wg

q

L2
PERT R+6C4 − 16(N−)4. (13)

0 10 20 30 40 50
10−2

100

102

104

number of flows N−

sa
m

pl
in

g
in

te
rv

al
 δ

 (s
ec

)

(a) δ vs N−

0 10 20 30 40 50
0

1

2

3

4

5

time

x

x
1

x
2

x
3

(b) R = 100 ms

0 10 20 30 40 50
0

1

2

3

4

5

time

x

x
1

x
2

x
3

(c) R = 160 ms

0 10 20 30 40 50
0

2

4

6

8

time

x

x
1

x
2

x
3

(d) R = 171 ms

Figure 13: (a) Sampling interval δ as a function of
the minimum number of flows N−; (b)-(d) the fluid
model of PERT (2)-(7) under different delay R.

This equation can be used as the guideline for choosing sam-
pling interval δ given C, R+, and N−.

Moreover, we observe that given R+ and C, δ scales in-
versely proportional to N . To better see this, consider the
following simulation, where RTT R = 200 ms, packet size
s = 1250 bytes, pmax = 0.1, Tmax = 100 ms, Tmin = 50 ms,
and α = 0.99. We set C = 10 Mbps (which corresponds to
1000 pkts/s) and range N− from 1 to 50 to see the minimum
requirement of δ. As seen from Figure 13(a), the minimum δ
monotonically decreases and reaches 0.1 seconds as N− goes
to 40. We note that N− is the lower bound of N . Thus, once
a stable δ is picked given certain N−, R+, and C, stability
of the system is not affected by N or R as long as N ≥ N−

and R ≤ R+.

5.3 Simulations
We next examine Theorem 1 using Matlab simulations.

Bringing in notations R(t) = R, x1(t) = W (t), x2(t) =

R̂q(t), and x3(t) = Rq(t), the fluid model of PERT (2)-
(7) can be transformed into the following delay differential
equations (DDEs):

ẋ1(t) =
1

R
− LPERT x1(t)x1(t − R)(x3(t − R) − Tmin)

2R
,

ẋ2(t) =
N

RC
x1(t) − 1, (14)

ẋ3(t) = Kx3(t) − Kx2(t),

where K and LPERT are defined in (10).
Set link capacity C = 100 pkt/s (or 1 Mbps with packet

size 1250 bytes), δ = 0.1 ms, N = N− = 5, pmax = 0.1,
Tmax = 100 ms, Tmin = 50 ms, and α = 0.99. We keep

9

R = R+ and test stability of (14) under different values of
delay R. For all simulations, we set the initial point to be
(1, 1, 1) and the unit of x1(t) is packets and that of x2(t)
and x3(t) are both seconds. Start with R = 100 ms, which
satisfies the stability condition in Theorem 1. As illustrated
in Figure 13(b), the system is stable with monotonic tra-
jectories. We then increase R to 160 ms, which is closer to
the stability boundary, but still satisfies the stability con-
dition. As shown in Figure 13(c), the system is stable and
converges to its equilibrium (9) after decaying oscillations.
Finally, we increase R to 171 ms, which is exactly on the
stability boundary. As seen from Figure 13(d), the system
is unstable and exhibits persistent oscillations, whose am-
plitude increases with the value of R. Note that the stabil-
ity boundary derived from Theorem 1 is not exact. Even
when R is within the stability region but close enough to
the boundary, the system becomes unstable.

This discrepancy is due to the approximations W (t) =
W (t − R(t)) in the proof. To justify this reasoning, we re-
write (14) using W (t) = W (t − R(t)) and repeat the above
simulations. The simulation results demonstrate that sta-
bility of the system is guaranteed under condition (11) and
becomes unstable when R is increased to 175 ms (which ex-
ceeds the stability boundary 171 ms). Lack of necessity of
the stability condition is also pointed out in the context of
TCP/RED in [15]. However, Theorem 1 still serves as a
general guideline for choosing PERT parameters.

5.4 Discussion
We remark on two differences between Theorem 1 and [23,

Proposition 1]. The first one is that in the left-hand side of
(11), we have C2 instead of C3 as in [23, (8)]. This is because
PERT uses queuing delay Tq(t) to determine loss probability,
while RED uses queue size q(t). Applying LPERT = LREDC
in (11), it is evident that the resulting stability condition is
identical to that of RED.

The second difference is that sampling interval δ in RED
is approximately fixed to 1/C, while in PERT δ of user i
is the inter-packet arrival time 1/xi(t), which is approxi-
mately N/C. As a consequence, for fixed C, the more flows
are accessing the bottleneck link, the slower the sampling
action of each flow. Reflected in the stability condition, this
also results in less constraint on C, R+, and N− than in
RED. Thus, both differences actually increase the stability
region of PERT. On the other hand, when the frequency of
sampling action becomes extremely low, RTT estimation at
the end user may not accurately capture the queuing dy-
namics inside the router. However, we argue that this prob-
lem does not occur in practice, since the ISPs will increase
link capacity as the number of accessing flows becomes large
to decrease the packet loss rate and prevent end-flows from
starving. Thus, it can be expected that Internet flows would
normally have a sufficient number of packets within one RTT
of each flow such that the end-user has enough samples for
RTT estimation.

In addition, it is common to assume that link capacity C
scales linearly with the number of flows N [10], i.e., C/N =
σ, where σ is constant. Then, assuming W ∗ ≥ 2, N = N−,
and R = R+, condition (11)-(12) translates into:

LPERT σ2R+ ≤ 4

r

0.04

σ2K2R+4
+ 1, (15)

which is independent of C and N− and is only a function of

R+. This property does not hold for RED due to term C3

instead of C2 in (11). As a consequence, sampling interval
δ of RED depends on (and is thus unscalable to) C even if
C/N is kept constant.

We should also note that, similar to RED, sampling in-
terval δ in PERT also depends on the link capacity C and
packet size s. Specifically, δ becomes small when C increases
or s decreases and becomes large otherwise. As pointed out
in [23], this adaptive nature of δ is harmful since small δ re-
sults in close tracking of the instantaneous queue length and
thus leads to large oscillations. On the other hand, large δ
results in increased rise time and extended initial overshoot
of the queue length. Thus, it is suggested that δ be set to
a fixed value that is independent of C, s, and N . As men-
tioned above, this requirement can be easily satisfied when
ratio C/N is kept constant. A detailed discussion of the im-
pact of δ on system performance is available in [23, Section
3.4].

6. EMULATING PI
It has been identified that RED has several drawbacks,

such as a lack of significant performance improvement for
pure web traffic [9] and mixtures of FTP, UDP and HTTP
traffic [22], difficulties in tuning RED parameters [9, 13, 23],
and the tradeoff between stability and responsiveness of the
system [23]. As pointed out in [16], the major cause of the
last drawback in the above list is the averaging mechanism of
the LPF. Thus, the authors suggest using the instantaneous
queue length and applying a PI controller to it. Simulation
results in [16] demonstrate that PI offers better performance
than RED in terms of stability and stationary queue size.
Motivated by this fact, we next seek to emulate PI inside
PERT.

The transfer function of PI is:

CPI(s) =
∆P (s)

∆Tq(s)
= K

1 + s/m

s
, (16)

where ∆P (s) and ∆Tq(s) are respectively the Laplace trans-
forms of δp(t) = p(t)−p∗ and δTq(t) = Tq(t)−T ∗

q and K and
m are constants to be determined next. Assuming p∗ = 0,
we re-write PI (16) in the time-domain as follows:

δp(t) = p(t) = K
“

δTq(t) +
1

m

Z

δTq(t)dt
”

. (17)

To implement the continuous PI (17) in PERT, we dis-
cretize it using the bilinear transform s = 2(z − 1)/δ(z + 1),
where δ is the sampling interval, and convert the s-domain
transfer function given in (16) into the following counterpart
in the z-domain:

CPI(z) =
∆P (z)

∆Tq(z)
=

γz − β

z − 1
, (18)

where γ = K/m + Kδ/2 and β = K/m − Kδ/2. Then, the
time-domain version of the PI controller becomes:

p(t) = β(Tq(t) − T ∗
q) − γ(Tq(t − 1) − T ∗

q) + p(t − 1), (19)

Thus, in the new version of PERT, the only change is to
replace RED emulation (4)-(5) with the PI controller (19).

Stability condition of PERT/PI defined by (8) and (19) is
given below.

10

Figure 14: Emulating PI at end-hosts. Note the
logarithmic scale of the x-axis.

Theorem 2. Assume:

W ∗ � 2, (20)

where W ∗ is the stationary window size. Then, PERT/PI
defined by (8) and (19) with

m =
2N−

R+2C
and K = m

˛

˛

˛

˛

˛

jR∗m + 1
R+3C2

(2N−)2

˛

˛

˛

˛

˛

, (21)

is locally stable for all flow numbers N ≥ N− and all sta-
tionary RTT R∗ ≤ R+.

Similar to Theorem 1, since PERT uses queuing delay to
determine the loss probability, in parameter K (21), we have
term C2 instead of C3 as in the original stability condition
of TCP/PI [16, Proposition 2]. In addition, it is clear that
this controller is easy to implement and does not require
a complicated tuning process of parameters such as Tmin,
Tmax, pmax and α as in RED.

6.1 Preliminary Results
In this section, we present preliminary results of ns-2 sim-

ulations for the emulation of PI [16] in PERT. Similar to
the emulation of RED in PERT, we use the srtt0.99 signal
for measuring the delay. However, the PI algorithm is used
for predicting congestion. The parameters for PERT-PI are
chosen by multiplying the parameters used in router PI by
the link capacity. The target delay is set at 3 ms. The ex-
periment is similar to that in Section 4.2. Figure 14 shows
the results.

As seen from the figure, the link utilization and average
queue length of PERT-PI is similar to router-based PI with
ECN support. Also, the PERT-PI emulation from end hosts
is very effective in avoiding packet drops. The Jain fairness
index at low RTTs is slightly worse, but at high RTTs, the
Jain fairness index is slightly better compared to the router-
based implementation. Note that these results are prelimi-
nary and have been included here to illustrate that PERT
is a general scheme and can be used for emulating different
AQM mechanisms. We are currently conducting more ex-
haustive simulations to evaluate PERT/PI in more diverse

network conditions and examining the emulation of other
AQM schemes from end-hosts.

7. DISCUSSION
While the results presented in Section 4 and 6 are highly

encouraging, we have identified some open issues, which re-
quire further study. Here, we discuss the open issues and
some of the possible solutions for addressing them.

Impact of Reverse Traffic: Similar to earlier schemes
using delay-based congestion avoidance, we use the round
trip time to predict the build-up of bottleneck queues. How-
ever, since round trip time is the sum of delays in both for-
ward and reverse direction, congestion in the reverse path
can trigger an early response. Whether congestion response
should be only for forward path congestion, like the current
versions of TCP, or for bidirectional congestion is debatable
since reverse path congestion can cause loss of acks possibly
resulting in timeouts. In this paper, we do not address this
issue. It must be noted, however, that if responding to re-
verse path congestion is not acceptable, then PERT can be
used with one-way delays to achieve similar benefits. Meth-
ods for computing one-way delays have been studied in [20,
31].

Co-existence with Non-Proactive Flows: Another
issue with end-host solutions is that of co-existence with
non-proactive flows. This problem can be addressed rela-
tively easily in router-based schemes, by dropping the pack-
ets instead of marking them when the queue length exceeds
a certain threshold forcing the non-proactive schemes to also
back off before the bottleneck link queue fills up. With an
end-host based scheme, each flow only has control over its
own congestion window and hence emulating something sim-
ilar is not possible.

We are currently investigating mechanisms for making the
pro-activeness adaptive based on the flow’s perception of
how effective early response has been. A number of pos-
sibilities exist: increasing the time for next response pro-
gressively if queue lengths persist, making the probability
of response a function of the time since the last response,
limiting the probabilistic early response to once when the
probability exceeds some threshold (say 0.75) etc. Alter-
nately, the increase function can be made more aggressive
than that in TCP in the absence of congestion to compen-
sate for the loss in throughput in the presence of congestion.
We will inspect these options as part of our continued work
in this area.

Other Key Differences between Router-Based AQM
and End-host Emulation: In the case of router-based
AQM, end-hosts receive congestion information only when
the marking algorithm used by the AQM scheme marks the
packets of its flow. With end-host AQM, potentially all the
end-hosts will be able to identify the onset of congestion at
the same time. This can lead to more options in designing
the response function.

Even though the long term average probability of response
is similar for the two approaches, distributions of probabili-
ties at individual flows could be different. These differences
may lead to a slightly different choice of parameters at end-
hosts than at routers.

Some of the algorithms used in AQM schemes need an
estimation of the round trip time of the flow to determine
the feedback [18, 32] to the end-host. The routers use an
average value for this purpose. With an end-host based

11

emulation, the flow knows its RTT, providing options for
different new designs.

End-host based emulation uses end-to-end delay as a con-
gestion measure and hence can ensure that delays have a
tighter bound end-to-end, compared to the router-based AQM
where each router can offer bounds only locally.

8. CONCLUSIONS
In this paper, we showed that congestion prediction at end

hosts is more accurate than characterized by previous stud-
ies based on flow-level measurements. We showed that while
it was necessary to further improve the accuracy of end-host
delay-based congestion predictors, the impact of any inac-
curacies could be mitigated by the choice of an appropriate
response function. We have presented here a scheme called
PERT, which emulates the behavior of AQM in the con-
gestion response function. PERT is shown to offer benefits
similar to using router-based schemes with ECN marking,
but without requiring router support. Our results, based
on a wide array of network conditions, indicate that PERT
can efficiently maintain low queue lengths and almost zero
losses, while retaining a high degree of fairness. PERT’s link
utilization is similar to that of router-based schemes. The
proposed scheme is flexible in the sense that other AQM
schemes can be potentially emulated at the end-host.

9. REFERENCES
[1] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router

buffers. In Proc. ACM SIGCOMM, pages 281–292,
August/September 2004.

[2] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin. REM:
Active queue management. IEEE Network, 15(3):48–53,
May/June 2001.

[3] A. A. Awadallah and C. Rai. TCP-BFA: Buffer fill
avoidance. In Proc. IFIP High Performance Networking
Conference, pages 575–594, September 1998.

[4] S. Bhandarkar. Congestion Control Algorithms of TCP in
Emerging Networks. PhD thesis, Texas A&M University,
August 2006.

[5] S. Bhandarkar, A. L. N. Reddy, Y. Zhang, and D. Loguinov.
Emulating AQM from end hosts. Technical Report
TAMU-ECE-2007-03, Texas A&M University, June 2007.

[6] S. Biaz and N. Vaidya. Is the round-trip time correlated
with the number of packets in flight? In Proc.
USENIX/ACM IMC, pages 273–278, October 2003.

[7] L. Brakmo, S. O’Malley, and L. Peterson. TCP vegas: New
techniques for congestion detection and avoidance. In Proc.
ACM SIGCOMM, pages 24–35, August 1994.

[8] D.-M. Chiu and R. Jain. Analysis of the increase and
decrease algorithms for congestion avoidance in computer
networks. Computer Networks and ISDN Systems,
17(1):1–14, June 1989.

[9] M. Christiansen, K. Jeffay, D. Ott, and F. Smith. Tuning
RED for web traffic. In Proc. ACM SIGCOMM, pages
139–150, August 2000.

[10] A. Dhamdhere, H. Jiang, and C. Dovrolis. Buffer sizing for
congested Internet links. In Proc. IEEE INFOCOM, pages
1072–1083, March 2005.

[11] A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger.
Dynamics of IP traffic: A study of the role of variability
and the impact of control. In Proc. ACM SIGCOMM,
pages 301–313, September 1999.

[12] W. Feng, D. Kandlur, D. Saha, and K. Shin. A
self-configuring RED gateway. In Proc. IEEE INFOCOM,
pages 1320–1328, March 1999.

[13] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An
algorithm for increasing the robustness of RED’s active
queue management. Technical report, ICIR, August 2001.

[14] S. Floyd and V. Jacobson. Random early detection
gateways for congestion control. IEEE/ACM Transactions
on Networking, 1(4):397–412, August 1993.

[15] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong. A
control theoretical analysis of RED. In Proc. IEEE
INFOCOM, pages 1510–1519, April 2001.

[16] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong. On
designing improved controllers for AQM routers supporting
TCP flows. In Proc. IEEE INFOCOM, pages 1726–1734,
April 2001.

[17] R. Jain. A delay based approach for congestion avoidance
in interconnected heterogeneous computer networks. ACM
Computer Communication Review, 19(5):56–71, October
1989.

[18] D. Katabi, M. Handley, and C. Rohrs. Congestion control
for high bandwidth-delay product networks. In Proc. ACM
SIGCOMM, pages 89–102, August 2002.

[19] S. Kunniyur and R. Srikant. Analysis and design of an
adaptive virtual queue algorithm for active queue
management. In Proc. ACM SIGCOMM, pages 123–134,
August 2001.

[20] A. Kuzmanovic and E. W. Knightly. TCP-LP: A
distributed algorithm for low priority data transfer. In
Proc. IEEE INFOCOM, pages 1691–1701, April 2003.

[21] J. Martin, A. Nilsson, and I. Rhee. Delay-based congestion
avoidance for TCP. IEEE/ACM Transactions on
Networking, 11(3):356–369, June 2003.

[22] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not to
deploy RED. In Proc. IEEE/IFIP IWQoS, pages 260–262,
June 1999.

[23] V. Misra, W.-B. Gong, and D. Towsley. A fluid-based
analysis of a network of AQM routers supporting TCP
flows with an application to RED. In Proc. ACM
SIGCOMM, pages 151–160, August 2000.

[24] R. S. Prasad, M. Jain, and C. Dovrolis. On the effectiveness
of delay-based congestion avoidance. In Proc. PFLDNet,
pages 3–4, February 2004.

[25] K. Ramakrishnan, S. Floyd, and D. Black. The addition of
explicit congestion notification (ECN) to IP. RFC 3168,
Internet Engineering Task Force, September 2001.

[26] S. Rewaskar, J. Kaur, and D. Smith. Why don’t
delay-based congestion estimators work in the real-world?
Technical Report TR06-001, Department of Computer
Science, UNC Chapel Hill, July 2005.

[27] M. Roughan. Fundamental bounds on the accuracy of
network performance measurements. In Proc. ACM
SIGMETRICS, pages 253–264, June 2005.

[28] P. Sarolahti and A. Kuznetsov. Congestion control in linux
TCP. In Proc. USENIX, pages 49–62, June 2002.

[29] Z. Wang and J. Crowcroft. A new congestion control
scheme: Slow start and search (Tri-S). ACM Computer
Communication Review, 21(1):32–43, January 1991.

[30] Z. Wang and J. Crowcroft. Eliminating periodic packet
losses in 4.3–Tahoe BSD TCP congestion control. ACM
Computer Communication Review, 22(2):9–16, April 1992.

[31] M. C. Weigle, K. Jeffay, and F. D. Smith. Delay-based
early congestion detection and adaptation in TCP: Impact
on web performance. Computer Communications,
28(8):837–850, May 2005.

[32] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman.
One more bit is enough. In Proc. ACM SIGCOMM, pages
37–48, August 2005.

12

