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ABSTRACT
Recent research efforts to design better Internet transport
protocols combined with scalable Active Queue Manage-
ment (AQM) have led to significant advances in congestion
control. One of the hottest topics in this area is the design
of discrete congestion control algorithms that are asymptot-
ically stable under heterogeneous feedback delay and whose
control equations do not explicitly depend on the RTTs of
end-flows. In this paper, we show that max-min fair con-
gestion control methods with a stable symmetric Jacobian
remain stable under arbitrary feedback delay (including het-
erogeneous directional delays) and that the stability condi-
tion of such methods does not involve any of the delays.
To demonstrate the practicality of the obtained result, we
change the original controller in Kelly’s work [14] to become
robust under random feedback delay and fixed constants of
the control equation. We call the resulting framework Max-
min Kelly Control (MKC) and show that it offers smooth
sending rate, exponential convergence to efficiency, and fast
convergence to fairness, all of which make it appealing for
future high-speed networks.

Categories and Subject Descriptors
C.2.2 [Communication Networks]: Network Protocols

General Terms
Algorithms, Performance, Theory

Keywords
Discrete Congestion Control, Heterogenous Delay, Stability

1. INTRODUCTION
Over the last fifteen years, Internet congestion control has

evolved from binary-feedback methods of AIMD/TCP [2],
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[29] to the more exciting developments based on optimiza-
tion theory [22], [23], game theory [10], [18], and control the-
ory [9], [10], [24], [25]. It is widely recognized that TCP’s
congestion control in its current shape is inadequate for very
high-speed networks and fluctuation-sensitive real-time mul-
timedia. Thus, a significant research effort is currently under
way (e.g., [5], [6], [8], [11], [14], [15], [18], [27]) to better un-
derstand the desirable properties of congestion control and
develop new algorithms that can be deployed in future AQM
(Active Queue Management) networks.

One of the most important factors in the design of conges-
tion control is its asymptotic stability, which is the capacity
of the protocol to avoid oscillations in the steady-state and
properly respond to external perturbations caused by the
arrival/departure of flows, variation in feedback, and other
transient effects. Stability proofs for distributed congestion
control become progressively more complicated as feedback
delays are taken into account, which is especially true for
the case of heterogeneous delays where each user i receives
its network feedback delayed by a random amount of time
Di. Many existing papers (e.g., [4], [9], [10], [11], [16], [17],
[18], [23]) model all users with homogeneous delay Di = D
and do not take into account the fact that end-users in real
networks are rarely (if ever) synchronized. Several recent
studies [19], [24], [26] successfully deal with heterogeneous
delays; however, they model Di as a deterministic metric
and require that end-flows (and sometimes routers) dynam-
ically adapt their equations based on feedback delays, which
leads to RTT-unfairness, increased overhead, and other side-
effects (such as probabilistic stability).

In this paper, we set our goal to build a discrete conges-
tion control system that maintains both stability and fair-
ness under heterogeneously delayed feedback, allows users
to use fixed parameters of the control equation, and admits
a low-overhead implementation inside routers. We solve
this problem by showing that any max-min fair system with
a stable symmetric Jacobian remains asymptotically stable
under arbitrary directional delays and apply this result to
the original controller proposed by Kelly et al. [14]. We call
the result of these efforts Max-min Kelly Control (MKC)
and demonstrate that its stability and fairness do not de-
pend on any parameters of the network (such as delay, path
length, or the routing matrix of end-users). We also show
that with a proper choice of AQM feedback, MKC converges
to efficiency exponentially fast, exhibits stability and fair-
ness under random delays, converges to fairness almost as
quickly as AIMD, and does not require routers to estimate
any parameters of individual flows.
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By isolating bottlenecks along each path and responding
only to the most-congested resource, the MKC framework
allows for very simple stability proofs, which we hope will
lead to a better understanding of Kelly’s framework in the
systems community and eventually result in an actual im-
plementation of these methods in real networks. Our initial
thrust in this direction includes ns2 simulations of MKC,
which show that finite time-averaging of flow rates inside
each router coupled with a naive implementation of end-user
functions leads to undesirable transient oscillations, which
become more pronounced when directional delays D→i and
D←i to/from each router increase. We overcome this draw-
back with simple changes at each end-user and confirm that
the theoretically predicted monotonic convergence of MKC
is achievable in real networks, even when the routers do not
know the exact combined rate of end-flows at any time in-
stant n. We also show that our algorithms inside the router
incur low overhead (which is less than that in XCP [11] or
RED [7]) and require only one addition per arriving packet
and two variables per router queue.

The rest of this paper is organized as follows. In Section
2, we review related work. In Section 3, we study delayed
stability and steady-state resource allocation of the classic
Kelly controls. In Section 4, we present MKC and prove
its delay-independent stability. In Section 5, we evaluate
convergence properties and packet loss of MKC. In Section
6, we implement MKC in ns2 and simulate its performance
under heterogeneous delays. In Section 7, we conclude our
work and suggest directions for future research.

2. BACKGROUND
A large amount of theoretical and experimental work is

being conducted to design stable congestion controls for
high-speed networks. Such examples include FAST TCP
[8], HSTCP [5], Scalable TCP [15], BIC-TCP [28], and XCP
[11], all of which aim to achieve quick convergence to effi-
ciency, stable rate trajectories, fair bandwidth sharing, and
low packet loss. An entirely different direction in congestion
control is to model the network from an optimization or
game-theoretic point of view [10], [16], [17], [18], [23]. The
original work by Kelly et al. [13], [14] offers an economic in-
terpretation of the resource-user model, in which the entire
system achieves its optimal performance by maximizing the
individual utility of each end-user. To implement this model
in a decentralized network, Kelly et al. describe two algo-
rithms (primal and dual) and prove their global stability in
the absence of feedback delay. However, if feedback delay is
present in the control loop, stability analysis of Kelly con-
trols is non-trivial and currently forms an active research
area [4], [9], [19], [24], [26], [27].

Recall that in Kelly’s framework [14], [24], each user i ∈
[1, N ] is given a unique route ri that consists of one or more
network resources (routers). Feedback delays in the network
are heterogeneous and directional. The forward and back-
ward delays between user i and resource j are denoted by
D→ij and D←ij , respectively. Thus, the round-trip delay of
user i is the summation of its forward and backward delays
with respect to any router j ∈ ri: Di = D→ij + D←ij . Un-
der this framework, Johari et al. discretize Kelly’s primal
algorithm as follows [9]:

xi(n) = xi(n−1)+κi

�
ωi−xi(n−Di) �

j∈ri

µj(n−D←ij )�, (1)

where κi is a strictly positive gain parameter, ωi can be
interpreted as the willingness of user i to pay the price for
using the network, and µj(n) is the congestion indication
function of resource j:

µj(n) = pj

��
u∈sj

xu(n − D→uj)�, (2)

where sj denotes the set of users sharing resource j and
pj(·) is the price charged by resource j. Note that we use
a notation in which Di = 1 means immediate (i.e., most
recent) feedback and Di ≥ 2 implies delayed feedback.

Next, recall that for a homogeneous delay D, system (1)-
(2) is locally stable if [9]:

κi �
j∈ri

�
(pj + p′j �

u∈sj

xu) ���x∗u� < 2 sin � π

2(2D − 1)� , (3)

where x∗u is the stationary point of user u and pj(·) is as-
sumed to be differentiable at x∗u.

For heterogeneous delays, a combination of conjectures
made by Johari et al. [9], derivations in Massoulié [24], and
the proofs of Vinnicombe [26] suggest that delay D in (3)
can be simply replaced with individual delays Di to form
a system of N stability equations; however, the proof ex-
ists only for the continuous version of (1) and leads to the
following necessary stability equation [26]:

κi �
j∈ri

�
(pj + p′j �

u∈sj

xu) ���x∗u� <
π

2Di
. (4)

We should also note that Ying et al. [30] recently estab-
lished delay-independent stability conditions for a family of
utility functions and a generalized controller (1). Their work
is similar in spirit to ours; however, the analysis and pro-
posed methods are different.

3. CLASSIC KELLY CONTROL
In this section, we first discuss intuitive examples that

explain the cryptic formulas in the previous section and
demonstrate in simulation how delays affect stability of Kelly
controls (1)-(2). We then show that Kelly’s proportional
fairness [14], or any mechanism that relies on the sum of
feedback functions from individual routers, always exhibits
linear convergence to efficiency. Note that due to limited
space, we omit certain proofs and refer the reader to the
technical report [31] for more information.

3.1 Delayed Stability Example
The following example illustrates stability problems of (1)

when feedback delays are large. We assume a single-source,
single-link configuration and utilize a standard congestion
indication function, which computes the estimated packet
loss using instantaneous arrival rates:

p(n) =
x(n) − C

x(n)
, (5)

where C is the link capacity and x(n) is the flow rate at dis-
crete step n. We remark that under AQM feedback assumed
throughout the paper, we allow negative packet loss in (5),
which signals the flows to increase their sending rates when
x(n) < C. In section 5.1, we show that the negative com-
ponent of packet-loss (5) improves convergence to efficiency
from linear to exponential.
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(d) D = 4

Figure 1: Stability of Kelly control under different
feedback delays (κ = 1/2, ω = 10 mb/s, and C = 1, 000
mb/s).

Applying (5) to Kelly control (1) yields a linear end-flow
equation:

x(n) = x(n − 1) + κω − κ�x(n − D) − C�. (6)

Next, assume a particular set of parameters: κ = 1/2,
ω = 10 mb/s, and C = 1, 000 mb/s. Solving the condition
in (3), we have that the system is stable if and only if delay
D is less than four time units. As illustrated in Figure 1(a),
delay D = 1 keeps the system stable and monotonically con-
vergent to its stationary point. Under larger delays D = 2
and D = 3 in Figures 1(b) and (c), the flow exhibits pro-
gressively increasing oscillations before entering the steady
state. Eventually, as soon as D becomes equal to four time
units, the system diverges as shown in Figure 1(d).

Using the same parameter κ and reducing ω to 20 kb/s,
we examine (6) via ns2 simulations, in which a single flow
passes through a link of capacity 50 mb/s. We run the flow in
two network configurations with the round-trip delay equal
to 90 ms and 120 ms, respectively. As seen in Figure 2,
the first flow reaches its steady state after decaying oscil-
lations, while the second flow exhibits no convergence and
periodically overshoots capacity C by 200%.

Since Kelly controls are unstable unless condition (3) is
satisfied [9], a natural strategy to maintain stability is for
each end-user i to adaptively adjusts its gain parameter κi ∼
1/Di such that (3) is not violated. However, this method
depends on reliable estimation of round-trip delays Di and
leads to unfairness between the flows with different RTTs.

3.2 Stationary Rate Allocation
In this section, we examine how packet-loss function (5)

affects the resource allocation of Kelly’s proportional fair-
ness (1). Consider a network of M resources and N ho-
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Figure 2: Simulation results of the classic Kelly con-
trol under different delays (κ = 1/2, ω = 20 kb/s,
C = 50 mb/s).

mogeneous users (i.e., with the same parameters κ and ω).
Further assume that resource j has capacity Cj , user i uti-
lizes route ri of length Mi (i.e., Mi = |ri|), and packet-loss
ηi(n) fed back to user i is the aggregate feedback from all
resources in path ri. We further assume that there is no
redundancy in the network (i.e., each user sends its packets
through at least one resource and all resources are utilized
by at least one user). Thus, we can define utilization matrix
AN×M such that Aij = 1 if user i passes through resource j
(i.e., j ∈ ri) and Aij = 0 otherwise. Further denote the j-th
column of A by vector Vj . Clearly, Vj identifies the set sj

of flows passing through router j.
Let xj(n) = 〈x1(n−D→1j ), x2(n−D→2j ), · · · , xN (n−D→Nj)〉

be the vector of sending rates of individual users observed
at router j at time instant n. In the spirit of (5), the packet
loss of resource j at instant n can be expressed as:

pj(n) =
xj(n) · Vj − Cj

xj(n) · Vj
, (7)

where the dot operator represents vector multiplication. Ac-
cordingly, the end-to-end feedback ηi(n) of user i is:

ηi(n) = �
j∈ri

pj(n − D←ij ), (8)

and the control equation assumes the following shape:

xi(n) = xi(n − 1) + κi

�
ωi − xi(n − Di)ηi(n)�. (9)

Then, we have the following result.

Lemma 1. Let x∗ = 〈x∗1, x
∗
2, · · · , x∗N 〉 be the stationary

rate allocation of Kelly control (9) with packet-loss function
(7)-(8). Then x∗ satisfies:

N�
i=1

Mix
∗

i =

M�
j=1

Cj + Nω. (10)

Lemma 1 provides a connection between the stationary re-
source allocation and the path length of each flow. Note that
according to (10), the stationary rates x∗i are constrained by
the capacity of all resources instead of by that of individ-
ual bottlenecks. In fact, this observation shows an impor-
tant difference between the real network paths, which are
limited by the slowest resource, and the model of propor-
tional fairness, which takes into account the capacity of all
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Figure 3: Rate allocation of proportional fairness
(κ = 0.1 and ω = 5 mb/s).

resources in the network. This difference leads to severe
under/over-utilization of individual routers as illustrated in
the following simulation.

Figure 3(a) shows the topology of the simulation, in which
there are two flows, x1 and x2, and four resources, C1-C4.
Notice that resource C2 = 20 mb/s is the bottleneck of x1

and C4 = 15 mb/s is the bottleneck of x2. The path lengths
of the two flows are, respectively, M1 = 2 and M2 = 3. Set-
ting ω = 5 mb/s and κ = 0.1, let 〈x∗1, x

∗
2〉 be the stationary

rate allocation of the system, which according to (10) must
satisfy:

2x∗1 + 3x∗2 =
4�

j=1

Ci + 2 × 5 = 95. (11)

Simulation results for this setup are depicted in Figure
3(b). As seen in the figure, the steady-state rate assignment
is 〈23.436, 16.042〉 mb/s, which indeed satisfies prediction
(11); however, notice that the combined stationary rate of
both flows is 39.5 mb/s, which exceeds C2 by 97%. As a
result, the users overshoot network capacity in the steady
state and persistently suffer from significant packet loss.

This problem is easy to understand. Observe that uncon-
gested routers C1 and C3 encourage end-flows to increase
their rates through negative feedback, while congested re-
sources C2 and C4 signal the opposite and encourage the
flows to reduce their rates. Combining this conflicting feed-
back into summation (8), each user settles in some middle
ground that keeps neither their slowest, nor their fastest re-
sources in ri fully “satisfied.” Even for a network with a
single flow, (11) shows that the stationary rate of the flow
is simply the average capacity of all resources on its path:
x∗ = (�M

j=1 Cj + ω)/M . For the example in Figure 3, x1

would converge to 27.5 mb/s, which is well in excess of its
bottleneck capacity C2.

In general, for proportional fairness (8) and similar meth-
ods that rely on the combined pricing function of all re-
sources to remain viable, no price should be charged at
routers that are not suffering any packet loss. Under these
circumstances, notice in (1) that the flows increase their
rates by κiωi at each discrete time-step before they reach
full link utilization at the slowest router. This results in
linear AIMD-like probing for new bandwidth, which is gen-
erally considered “too slow” for high-speed networks.

In the next section, we overcome both drawbacks of con-
troller (1) (i.e., instability under delay and undesirable link

utilization) by abandoning proportional fairness and focus-
ing on its max-min counterpart.

4. STABLE CONGESTION CONTROL
In this section, we propose a new version of discrete Kelly

controls, which allows negative packet-loss feedback and main-
tains stability under heterogeneous delays.

4.1 Max-min Kelly Control
We start our discussion with the following observations.

First, we notice that in the classic Kelly control (1), the end-
user decides its current rate xi(n) based on the most recent
rate xi(n − 1) and delayed feedback µj(n − D←ij ). Since
the latter carries information about xi(n − Di), which was
in effect RTT time units earlier, the controller in (1) has
no reason to involve xi(n− 1) in its control loop. Thus, the
sender quickly becomes unstable as the discrepancy between
xi(n − 1) and xi(n − Di) increases. One natural remedy
to this problem is to retard the reference rate to become
xi(n − Di) instead of xi(n − 1) and allow the feedback to
accurately reflect network conditions with respect to the first
term of (1).

Second, to avoid unfairness1 between flows, one must fix
the control parameters of all end-users and establish a uni-
form set of equations that govern the system. Thus, we cre-
ate a new notation in which κiωi = α, κi = β and discretize
the Kelly control as following:

xi(n) = xi(n − Di) + α − βηi(n)xi(n − Di), (12)

where ηi(n) is the congestion indication function of user i.
Next, to overcome the problems of proportional fairness

demonstrated in the previous section and utilize negative
network feedback, we combine (12) with max-min fairness
(this idea is not new [11]), under which the routers only feed
back the packet loss of the most-congested resource instead
of the combined packet loss (8):

ηi(n) = max
j∈ri

pj(n − D←ij ), (13)

where pj(·) is the congestion indication function of individ-
ual routers that depends only on the aggregate arrival rates
of end-users:

pj(n) = pj

��
u∈sj

xu(n − D→uj)�. (14)

We call the resulting controller (12)-(14) Max-min Kelly
Control (MKC) and emphasize that the flows congested by
the same bottleneck receive the same feedback and behave
independently of the flows congested by the other links.
Therefore, in the rest of this paper, we study the single-
bottleneck case since each MKC flow is always congested
by only one router. Implementation details of how routers
should feed back function (13) and how end-flows track the
changes in the most-congested resource are presented in the
simulation section.

4.2 Delay-Independent Stability
Before restricting our analysis to MKC, we examine a wide

class of delayed control systems, whose stability directly fol-
lows from that of the corresponding undelayed systems. We

1While “fairness” is surely a broad term, we assume its max-
min version in this paper.
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subsequently show that MKC belongs to this category and
obtain a very simple proof of its stability. First consider the
following theorem.

Theorem 1. Assume an undelayed linear system L with
N flows:

xi(n) =

N�
j=1

aijxj(n − 1). (15)

If coefficient matrix A = (aij) is real-valued and symmetric,
then system LD with arbitrary directional delays:

xi(n) =
N�

j=1

aijxj(n − D→j − D←i ), (16)

is asymptotically stable if and only if L is stable.

Proof. We first show the sufficient condition. Assume
that L is asymptotically stable. Applying the z-transform
to system (16), we obtain:

H(z) = Z1AZ2H(z), (17)

where Z1 = diag(z−D←i ) and Z2 = diag(z−D→i ) are the di-
agonal matrices of directional delays, and H(z) is the vector
of z-transforms of each flow rate xi:

H(z) = 	H1(z), H2(z), · · · , HN (z)
T . (18)

Notice that linear system (16) is stable if and only if all
poles of its z-transform H(z) are within the unit circle in
the z-plane [12]. To examine this condition, re-organize the
terms in (17):

(Z1AZ2 − I)H(z) = 0. (19)

Next notice that the poles of H(z) are simply the roots of:

det(Z1AZ2 − I) = 0. (20)

Thus, ensuring that all roots of (20) are inside the unit circle
will be both sufficient and necessary for LD to be stable. Re-
writing (20):

det(Z1AZ2 − I) = det(Z1[A − Z−1
1 IZ−1

2 ]Z2) (21)

= det(Z1)det(A − Z−1
1 Z−1

2 )det(Z2).

Since det(Z1) and det(Z2) are strictly non-zero for non-
trivial z, (20) reduces to:

det(A − Z−1
1 Z−1

2 ) = det�A + B(z)� = 0, (22)

where B(z) = −Z−1
1 · Z−1

2 = −diag(zDi) is the diagonal
matrix of round-trip delays. Thus, it remains to examine
whether the roots of (22) are inside the unit circle.

To bound the roots of (22), we first need the following
theorem from [20].

Theorem 2 (Li-Mathias [20]). Given N-dimensional
square matrices Q1 and Q2, whose singular values are α1 ≥
α2 ≥ · · · ≥ αN and β1 ≥ β2 ≥ · · · ≥ βN , respectively, the
following holds:

|det(Q1 + Q2)| ≥ ������
0 if [αN , α1] ∩ [βN , β1] 6= ∅

���
N�

j=1

(αj − βN−j+1) ��� otherwise
. (23)

We next apply the lower bounds given in the above theo-
rem to (22). Recall that singular values of a square matrix
X are the non-negative square roots of the eigenvalues of
the product of X and its adjoint (or equivalently, conjugate
transpose) matrix X∗ [1]. In (22) both matrices A and B(z)
are symmetric and real-valued, which means that their sin-
gular values are the absolute values of their eigenvalues. Let
{λi} be the eigenvalues of A. Then the singular values of
A are {αi|αi = |λi|}. Similarly, we get that the singular
values of a diagonal matrix B(z) are {βi|βi = |zDi |}. With-
out loss of generality, we assume that {αi} and {βi} are
ordered by their magnitude, i.e., α1 ≥ α2 ≥ · · · ≥ αN and
β1 ≥ β2 ≥ · · · ≥ βN .

Let z0 be a root of (22). Then there are two possibilities:

1) The intervals defined by {αi} and {βi} intersect, i.e.,
[αN , α1] ∩ [βN , β1] 6= ∅. This means that there must ex-
ist at least one singular value βj such that βj ∈ [αN , α1].
According to the assumption that undelayed system L in
(15) is stable, each eigenvalue λi of matrix A must satisfy
|λi| = αi < 1, which leads to 0 ≤ βj < 1. This translates

into |z
Dj

0 | < 1, for some j, and directly leads to |z0| < 1
since all delays Dj are discrete and no less than 1.

2) The two segments do not overlap, i.e., [αN , α1]∩[βN , β1] =
∅. Then, combining (22) and (23), we have:

|det�A + B(z0)�| = 0 ≥ ���
N�

j=1

(αj − βN−j+1) ���, (24)

which implies that the product in (24) must equal zero:

���
N�

j=1

(αj − βN−j+1) ���= 0. (25)

This means that there exists an index k (1 ≤ k ≤ N) such
that αk − βN−k+1 = 0, which contradicts the assumption
that intervals [αN , α1] and [βN , β1] are disjoint.

Repeating steps 1) and 2) for all roots {zi} of (22), we
obtain that they all must lie within the unit circle, which
leads to the asymptotic stability of LD in (16).

Since L is a special case of LD (i.e., all delays are 1 time
unit), stability of the latter implies that of the former and
leads to the necessary condition of the theorem.

Theorem 1 opens an avenue for inferring stability of de-
layed linear systems based on the coefficient matrices of the
corresponding undelayed systems. Moreover, it is easy to
see that Theorem 1 applies to nonlinear systems as stated
in the following corollary.

Corollary 1. Assume an undelayed N-dimensional non-
linear system N :

xi(n) = fi �x1(n − 1), x2(n − 1), · · · , xN (n − 1)�, (26)

where {fi|fi : R
N → R} is the set of nonlinear functions

defining the system. If the Jacobian matrix J of this sys-
tem is symmetric and real-valued, system ND with arbitrary
delay:

xi(n) = fi �x1(n − D→1 − D←i ), x2(n − D→2 − D←i ),

· · · , xN (n − D→N − D←i )� (27)

is locally asymptotically stable in the stationary point x∗ if
and only if N is stable in x∗.
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Based on the above principles, we next prove local stabil-
ity of MKC under heterogeneous feedback delays.

4.3 Stability of MKC
We first consider an MKC system with a generic feedback

function ηi(n) in the form of (13), which we assume is differ-
entiable in the stationary point and has the same first-order
partial derivative for all end-users. Our goal is to derive suf-
ficient and necessary conditions for the stability of (12)-(13)
under arbitrarily delayed feedback.

We approach this problem by partitioning all users into
non-overlapping sets based on their corresponding bottle-
neck routers. We assume that each set of users S is fairly sta-
ble and that the bottlenecks do not change for the duration
of this analysis. Suppose that S contains users {x1, . . . , xN}
and that the corresponding delays to/from their bottleneck
router are given by D→i and D←i . Then, we can simplify
(12)-(13) by dropping index j of the bottleneck resource and
expanding ηi(n) in (12):

xi(n) = xi(n − Di) + α − βp(n − D←i )xi(n − Di), (28)

where

p(n) = p
� N�
u=1

xu(n − D→u )� (29)

is the packet-loss function of the bottleneck router for set
S. Notice that xi(n − Di) in (28) can be represented as
xi(n−D→i −D←i ) and that controller (28)-(29) has the same
shape as that in (27).

To invoke Theorem 1, our first step is to show stability of
the following undelayed version of (28)-(29):�

xi(n) = �1 − βp(n − 1)�xi(n − 1) + α

p(n) = p
��N

u=1 xu(n)� . (30)

Theorem 3. Undelayed N-dimensional system (30) with
feedback p(n) that is common to all users has a symmetric
Jacobian and is locally asymptotically stable if and only if:

0 < βp∗ < 2, (31)

0 < βp∗ + βNx∗
∂p

∂xi

����x∗ < 2, (32)

where x∗ is the fixed point of each individual user, vector
x∗ = 〈x∗, x∗, · · · , x∗〉 is the fixed point of the entire system,
and p∗ is the steady-state packet loss.

Proof. We first derive the stationary point x∗ of each in-
dividual user. Since all end-users receive the same feedback
and activate the same response to it, all flows share the bot-
tleneck resource fairly in the steady state, i.e., xi(n) = x∗

for all i. Using simple manipulations in (30), we get the
stationary individual rate x∗ as following:

x∗ =
α

βp∗
. (33)

Linearizing the system in x∗:

∂fi

∂xi

����x∗ = �1 − βp − βxi
∂p

∂xi�����x∗ , (34)

∂fi

∂xk

����x∗ = �−βxi
∂p

∂xk�����x∗ , k 6= i, (35)

where fi(x) = (1− βp(x))xi + α. Since packet loss depends
on the aggregate rate of all users, p(n) has the same first
partial derivative evaluated in the fixed point for all users,
which implies that for any users i and k, we have:

∂p

∂xi

����x∗ =
∂p

∂xk

����x∗ . (36)

This observation leads to a simple Jacobian matrix for

MKC:

J = �����
a b · · · b
b a · · · b
...

...
. . .

...
b b · · · a

����� , (37)

where:

a = 1 − βp∗ − βx∗
∂p

∂xi

����x∗ , b = −βx∗
∂p

∂xi

����x∗ . (38)

Clearly Jacobian matrix J is circulant2 and thus its k-th
eigenvalue λk is given by [1]:

λk = a + b(ζk + ζ2
k + ζ3

k + · · · + ζN−1
k ), (39)

where ζk = ei2πk/N (k = 0, 1, . . . , N − 1) is one of the N -th
roots of unity. We only consider the case of N ≥ 2, otherwise
the only eigenvalue is simply a. Then, it is not difficult to
get the following result:

λk = ����
a + (N − 1)b ζk = 1

a + b
ζk − ζN

k

1 − ζk
= a − b ζk 6= 1

, (40)

where the last transition holds since ζN
k = 1 for all k.

Next, recall that nonlinear system (30) is locally stable
if and only if all eigenvalues of its Jacobian matrix J are
within the unit circle [12]. Therefore, we get the following
necessary and sufficient local stability conditions:�

|a − b| < 1

|a + (N − 1)b| < 1
. (41)

To ensure that each λi lies in the unit circle, we examine
the two conditions in (41) separately. First, notice that |a−
b| = |1 − βp∗|, which immediately leads to the following:

0 < βp∗ < 2. (42)

Applying the same substitution to the second inequality in
(41), we obtain:

0 < βp∗ + βNx∗
∂p

∂xi

����x∗ < 2. (43)

Thus, system (30) is locally stable if and only if both (42)
and (43) are satisfied.

According to the proof of Theorem 3, Jacobian J of the
undelayed system (30) is real-valued and symmetric. Com-
bining this property with Corollary 1, we obtain the follow-
ing result.

2A matrix is called circulant if it is square and each of its
rows can be obtained by shifting (with wrap-around) the
previous row one column right [1].
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Corollary 2. Heterogeneously delayed MKC (28)–(29)
is locally asymptotically stable if and only if (31)-(32) are
satisfied.

Corollary 2 is a generic result that is applicable to MKC
(12) with a wide class of congestion-indicator functions ηi(n).
Further note that for a given bottleneck resource with pric-
ing function p(n) and its set of users S, conditions (31)-(32)
are easy to verify and do not depend on feedback delays,
the number of hops in each path, or the routing matrix of
all users. This is in contrast to many current studies [9],
[24], [26], [27], whose results are dependent on individual
feedback delays Di and the topology of the network.

4.4 ExponentialMKC
To understand the practical implications of the deriva-

tions above, consider a particular packet-loss function p(n)
in (29):

p(n) =
�N

u=1 xu(n − D→u ) − C�N
u=1 xu(n − D→u )

, (44)

where we again assume a set S of N users congested by a
common router of capacity C. This is a rather standard
packet-loss function with the exception that we allow it to
become negative when the link is under-utilized. As we show
in the next section, (44) achieves exponential convergence
to efficiency, which explains why we call the combination of
(28),(44) Exponential MKC (EMKC).

Theorem 4. Heterogeneously delayed EMKC (28),(44) is
locally asymptotically stable if and only if 0 < β < 2.

Proof. We first derive the fixed point of EMKC. Notice
that in the proof of Theorem 3, we established the existence
of a unique stationary point x∗i = x∗ for each flow. Then
assuming EMKC packet-loss function (44), we have:

p∗ =
Nx∗ − C

Nx∗
. (45)

Combining (45) and (33), we get the stationary point x∗ of
each end-user:

x∗ =
C

N
+

α

β
. (46)

Denoting by X(n) = �N
i=1 xi(n) the combined rate of all

N end-users at time n, the corresponding combined station-
ary rate X∗ is:

X∗ = Nx∗ = C + N
α

β
. (47)

Next, recall from Theorem 3 that stability conditions (31)-
(32) must hold for the delayed system to be stable. Con-
sequently, we substitute pricing function (44) into (32) and
obtain with the help of (47):

βp∗ + βNx∗
∂p(n)

∂x(n)
����x∗ = βp∗ +

βNx∗C

N2x∗2
= β. (48)

Thus, condition (32) becomes:

0 < β < 2. (49)

Notice that in the steady state, packet loss probability p∗

is no larger than one. Thus, condition (49) is more con-
servative than (31), which allows us to conclude that when
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(b) random Di

Figure 4: Two EMKC flows (α = 200 mb/s and
β = 0.5) share a single link of capacity 10 gb/s: (a)
constant (homogeneous) delay D = 20 time units; (b)
heterogeneous delays randomly distributed between
1 and 100 time units.

0 < β < 2, all eigenvalues of Jacobian matrix J are inside
the unit circle. Applying Corollary 2, heterogeneously de-
layed EMKC in (28),(44) is also locally asymptotically stable
if and only if 0 < β < 2.

To better understand the implication of this result, con-
sider an illustration in Figure 4, in which two EMKC flows
(α = 200 mb/s and β = 0.5) share a bottleneck link of ca-
pacity 10 gb/s. Recall that for the same setup (β = 0.5),
Kelly controls are unstable for any delay D ≥ 4 time units
(see Figure 1). In both cases shown in Figure 4, EMKC flows
approach full link utilization without oscillations and even-
tually share the resource fairly. These simulation results
support our earlier conclusion that MKC is a stable and fair
controller under random delays, which is a requirement for
any practical method in the current Internet.

5. PERFORMANCE OF EMKC

5.1 Convergence to Efficiency
In this section, we show that EMKC converges to efficiency

exponentially fast.

Lemma 2. For 0 < β < 2 and constant delay D, the
combined rate X(n) of EMKC is globally asymptotically stable
and converges to X∗ = C + Nα/β at an exponential rate.

Proof. Since delays do not affect stability of EMKC, as-
sume a constant feedback delay D and re-write (28):

xi(n) = (1 − βp(n − D))xi(n − D) + α, (50)

where p(n) is the undelayed version of (44). Taking the sum-
mation of (50) for all N flows, we get that EMKC’s combined

rate X(n) = �N
i=1 xi(n) forms a linear system:

X(n) = �1 − β
X(n − D) − C

X(n − D) �X(n − D) + Nα

= (1 − β)X(n − D) + βC + Nα. (51)

It is clear that the above linear system is stable if and
only if 0 < β < 2. Since convergence of linear systems
implies global asymptotic stability, we conclude that X(n)
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Figure 5: The speed of saturating a bottleneck link
of capacity 1 gb/s: (a) EMKC (β = 0.5 and α = 10
kb/s); (b) Scalable TCP.

is globally stable regardless of individual flow trajectories
xi(n).

We next show the convergence speed of X(n). Recursively
expanding the last equation, we have:

X(n) = (1 − β)
n
D (X0 − X∗) + X∗, (52)

where X0 is the initial combined rate of all flows and X∗ =
C + Nα/β is the combined stationary rate. Notice that for
0 < β < 2, the first term in (52) approaches zero exponen-
tially fast and X(n) indeed converges to X∗.

This result is illustrated in Figure 5(a) for β = 0.5 and
α = 10 kb/s, where EMKC saturates a 1 gb/s link in only
16 steps. In Figure 5(b), we show the convergence rate of
Scalable TCP [15], which is a recent method proposed for
high-speed networks. Although Scalable TCP also claims
bandwidth exponentially fast, its increase rate 1.01n is much
slower than that of EMKC. This is illustrated in the figure
where it takes Scalable TCP approximately 1,200 steps to
reach full link capacity from the same initial rate.

Additionally notice how the value of β affects the behav-
ior of EMKC. For 0 < β ≤ 1, the system monotonically
converges to the stationary point; however, for 1 < β < 2,
the system experiences decaying oscillations before reach-
ing the stationary point, which are caused by the oscillating
term (1 − β)n/D in (52). This phenomenon is illustrated in
Figure 6 for two values of β. Thus, in practical settings, β
should be chosen in the interval (0, 1], where values closer
to 1 result in faster convergence to efficiency.

5.2 Convergence to Fairness
We next investigate the convergence rate of EMKC to fair-

ness. To better understand how many steps EMKC requires
to reach a certain level of max-min fairness, we utilize a sim-
ple metric that we call ε-fairness. For a given small positive
constant ε, a rate allocation 〈x1, x2, · · · , xN 〉 is ε-fair, if:

f =
minN

i=1 xi

maxN
j=1 xj

≥ 1 − ε. (53)

Generally speaking, ε-fairness assesses max-min fairness
by measuring the worst-case ratio between the rates of any
pair of flows. Given the definition in (53), we have the fol-
lowing result.
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(b) β = 1.9

Figure 6: Behavior of EMKC for different β (C = 1
mb/s and α = 10 kb/s).

Theorem 5. Consider an EMKC network with N users
and a bottleneck link of capacity C. Assuming that the sys-
tem is started in the maximally unfair state, ε-fairness is
reached in θM steps, where:

θM =
(C + N α

β
)�log N − log ε�
Nα

+ Θ
�
Nα

C
�. (54)

A comparison of model (54) to simulation results is shown
in Figure 7(a) (note that in the figure, the model is drawn
as a solid line and simulation results are plotted as isolated
triangles). In this example, we use a bottleneck link of ca-
pacity C = 1 mb/s shared by two EMKC flows, which are
initially separated by the maximum distance, i.e., x1(0) =
0, x2(0) = C. As seen from the figure, the number of steps
predicted by (54) agrees with simulation results for a wide
range of ε.

As noted in the previous section, parameter β is responsi-
ble for the convergence speed to efficiency; however, as seen
in (54), it has little effect on the convergence rate to fairness
(since typically Nα � C). In contrast, parameter α has no
effect on convergence to efficiency in (52), but instead deter-
mines the convergence rate to fairness in the denominator of
(54). Also observe the following interesting fact about (54)
and the suitability of EMKC for high-speed networks. As C
increases, the behavior of θM changes depending on whether
N remains fixed or not. For a constant N , (54) scales lin-
early with C; however, if the network provider increases the
number of flows as a function of C and keeps N = Θ(C),
ε-fairness is reached in Θ(log C) steps. This implies expo-
nential convergence to fairness and very good scaling prop-
erties of EMKC in future high-speed networks. Both types
of convergence are demonstrated in Figure 7(b) for constant
N = 2 and variable N = dC/500e (for the latter case, C is
taken to be in kb/s). As the figure shows, both linear and
logarithmic models obtained from (54) match simulations
well.

We next compare EMKC’s convergence speed to that of
rate-based AIMD. Recall that rate-based AIMD(α, β) ad-
justs its sending rate according to the following rules as-
suming α > 0 and 0 < β < 1:

x(t) =

�
x(t − RTT ) + α per RTT

(1 − β)x(t − RTT ) per loss
. (55)
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Figure 7: (a) Verification of model (54) against
EMKC simulations (C = 1 mb/s, α = 10 kb/s, and
β = 0.5). (b) Exponential and linear rates of conver-
gence to fairness for EMKC (ε = 0.1).

Theorem 6. Under the assumptions of Theorem 5, rate-
based AIMD reaches ε-fairness in θA steps, where:

θA =
(C + N α

β
)�log N − log ε�

−Nα log(1 − β)/β
+ Θ

�Nα

C
�. (56)

Figure 8(a) verifies that model (56) is also very accurate
for a range of different ε. Notice from (54) and (56) that the
speed of convergence to fairness between AIMD and EMKC
differs by a certain constant coefficient. The following corol-
lary formalizes this observation.

Corollary 3. For the same parameters N , α, β such
that Nα � C, AIMD reaches ε-fairness θM/θA = − log(1−
β)/β times faster than EMKC.

For TCP and β = 0.5, this difference is by a factor of
2 log 2 ≈ 1.39, which holds regardless of whether N is fixed
or not as demonstrated in Figure 8(b). We should finally
note that as term Θ(Nα/C) becomes large, MKC’s perfor-
mance improves and converges to that of AIMD.

5.3 Packet Loss
As seen in previous sections, EMKC converges to the com-

bined stationary point X∗ = C + Nα/β, which is above
capacity C. This leads to constant (albeit usually small)
packet loss in the steady state. However, the advantage
of this framework is that EMKC does not oscillate or re-
act to individual packet losses, but instead adjusts its rate
in response to a gradual increase in p(n). Thus, a small
amount of FEC can provide a smooth channel to fluctuation-
sensitive applications such as video telephony and various
types of real-time streaming. Besides being a stable frame-
work, EMKC is also expected to work well in wireless net-
works where congestion-unrelated losses will not cause sud-
den reductions in the rates of end-flows.

Also notice that EMKC’s steady-state packet loss p∗ =
Nα/(Cβ + Nα) increases linearly with the number of com-
peting flows, which causes problems in scalability to a large
number of flows. However, it still outperforms AIMD, whose
increase in packet loss is quadratic as a function of N [21].
Furthermore, if the network provider keeps N = Θ(C),
EMKC achieves constant packet loss in addition to exponen-
tial convergence to fairness.
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Figure 8: (a) Verification of model (56) against
AIMD simulations (C = 1 mb/s, α = 10 kb/s, and
β = 0.5). (b) Ratio θM/θA for fixed and variable N .

Finally, observe that if the router is able to count the
number of flows, zero packet loss can be obtained by adding
a constant ∆ = Nα/(βC) to the congestion indication func-
tion [3]. However, this method is impractical, since it needs
non-scalable estimation of the number of flows N inside each
router. Hence, it is desirable for the router to adaptively
tune p(n) so that the system is free from packet loss. One
such method is AVQ (Adaptive Virtual Queue) proposed in
[16], [19]. We leave the analysis of this approach under het-
erogeneous delays and further improvements of EMKC for
future work.

6. SIMULATIONS
We next examine how to implement scalable AQM func-

tions inside routers to provide proper feedback to MKC flows.
This is a non-trivial design issue since the ideal packet loss
in (44) relies on the sum of instantaneous rates xi(n), which
are never known to the router. In such cases, a common
approach is to approximate model (44) with some time-
average function computed inside the router. However, as
mentioned in the introduction, this does not directly lead to
an oscillation-free framework since directional delays of real
networks introduce various inconsistencies in the feedback
loop and mislead the router to produce incorrect estimates
of X(n) = �i xi(n).

In what follows in this section, we provide a detailed de-
scription of various AQM implementation issues and simu-
late EMKC in ns2 under heterogeneous feedback delays.

6.1 Packet Header
As shown in Figure 9, the MKC packet header consists

of two parts – a 16-byte router header and a 4-byte user
header. The router header encapsulates information that is
necessary for the router to generate precise AQM feedback
and subsequently for the end-user to adjust its sending rate.
The rid field is a unique label that identifies the router that
generated the feedback (e.g., its IP address). This field is
used by the flows to detect changes in bottlenecks, in which
case they wait for an extra RTT before responding to con-
gestion signals of the new router. The seq field is a local
variable incremented by the router each time it produces a
new value of packet loss p (see below for more). Finally, the
∆ field carries the length of the averaging interval used by
the router in its computation of feedback.

9



IP header Router header 
�� : router ID (4) 
��� : router sequence number (4) 
� : packet loss (4) 
� : interval length (4) 

User header 
��	 : custom user field (4) 

Data 
 

… 

16 bytes 

4 bytes 

 

Figure 9: Packet format of MKC.

The user header is necessary for the end-flows to deter-
mine the rate xi(n − Di) that was in effect RTT time units
earlier. The simplest way to implement this functionality is
to inject the value of xi(n) into each outgoing packet and
then ask the receiver to return this field in its acknowledg-
ments. A slightly more sophisticated usage of this field is
discussed later in this section.

6.2 The Router
Recall that MKC decouples the operations of users and

routers, allowing for a scalable decentralized implementa-
tion. The major task of the router is to generate its AQM
feedback and insert it in the headers of all passing pack-
ets. However, notice that the router never knows the exact
combined rate of incoming flows. Thus, to approximate the
ideal computation of packet loss, the router conducts its
calculation of p(n) on a discrete time scale of ∆ time units.
For each packet arriving within the current interval ∆, the
router inserts in the packet header the feedback information
computed during the previous interval ∆. As a consequence,
the feedback is retarded by ∆ time units inside the router
in addition to any backward directional delays D←i . Since

MKC is robust to feedback delay, this extra ∆ time units
does not affect stability of the system. We provide more
implementation details below.

During interval ∆, the router keeps a local variable S,
which tracks the total amount of data that has arrived into
the queue (counting any dropped packets as well) since the
beginning of the interval. Specifically, for each incoming
packet k from flow i, the router increments S by the size of
the packet: S = S + si(k). In addition, the router examines
whether its locally recorded estimate p̃ of packet loss (which
was calculated in the previous interval ∆) is larger than
the one carried in the packet. If so, the router overrides the
corresponding entries in the packet and places its own router
ID, packet loss, and sequence number into the header. In
this manner, after traversing the whole path, each packet
records information from the most congested link.3

At the end of interval ∆, the router approximates the com-
bined arriving rate X(n) = �N

i=1 xi(n − D→i ) by averaging
S over time ∆:

X̃ =
S

∆
. (57)

Based on this information, the router computes an estimate
of packet loss p(n) as following:

p̃ =
X̃ − C

X̃
, (58)

3Note that multi-path routing is clearly a problem for this
algorithm; however, all AQM congestion control methods
fail when packets are routed in parallel over several paths.
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Figure 10: Naive EMKC implementation: (a) one ns2

flow (α = 100 kb/s, β = 0.9, and ∆ = 50 ms) passes
through a bottleneck link of capacity 10 mb/s; (b)
inconsistent feedback and reference rate.

where C is the capacity of the outgoing link known to the
router (these functions are performed on a per-queue basis).

After computing p̃, the router increments its packet-loss
sequence number (i.e., seq = seq + 1) and resets variable S
to zero. Newly computed values seq and p̃ are then inserted
into qualified packets arriving during the next interval ∆
and are subsequently fed back by the receiver to the sender.
The latter adjusts its sending rate as we discuss in the next
section.

6.3 The User
MKC employs the primal algorithm (12)-(13) at the end-

users who adjust their sending rates based on the packet loss
generated by the most congested resources of their paths.
However, to properly implement MKC, we need to address
the following issues.

First, notice that ACKs carrying feedback information
continuously arrive at the end-user and for the most part
contain duplicate feedback (assuming ∆ is sufficiently large).
To prevent the user from responding to redundant or some-
times obsolete feedback caused by reordering, each packet
carries a sequence number seq, which is modified by the bot-
tleneck router and is echoed by the receiver to the sender.
At the same time, each end-user i maintains a local variable
seqi, which records the largest value of seq observed by the
user so far. Thus, for each incoming ACK with sequence
seq, the user responds to it if and only if seq > seqi. This
allows MKC senders to pace their control actions such that
their rate adjustments and the router’s feedback occur on
the same timescale.

Second, recall from (12)-(13) that MKC requires both the
delayed feedback ηi(n) and the delayed reference rate xi(n−
Di) when deciding the next sending rate. Thus, the next
problem to address is how to correctly implement the control
equation (12). We develop two strategies for this problem
below.

6.3.1 Naive Implementation
One straightforward option is to directly follow (12) based

on the rate that was in effect exactly Di time units earlier.
Since round-trip delays fluctuate, the most reliable way to
determine xi(n−Di) is to carry this information in the usr
field of each packet (see Figure 9). When the receiver echoes
the router field to the sender, it also copies the user field
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Figure 11: Proper EMKC implementation: (a)
graphical explanation of the algorithm; (b) result of
ns2 simulations with one EMKC flow (α = 100 kb/s,
β = 0.9, and ∆ = 50 ms) over a link of capacity 10
mb/s.

into the acknowledgment. We show the performance of this
strategy via ns2 simulations in Figure 10(a), in which a sin-
gle MKC flow passes through a bottleneck link of capacity
10 mb/s. We set α to 100 kb/s, β to 0.9, packet size to
200 bytes, and router sampling interval ∆ to 50 ms. As
seen from Figure 10(a), the sending rate converges to its
stationary point in less than 2 seconds and does not exhibit
oscillations in the steady state; however, the flow exhibits
transient oscillations and overshoots C by over 200% in the
first quarter of a second. Although this transient behavior
does not affect stability of the system, it is greatly undesir-
able from the practical standpoint.

6.3.2 Proper Implementation
To remove the transient oscillations, we first need to un-

derstand how they are created. Notice from (57)-(58) that
since the router calculates the packet loss based on the aver-
age incoming rate over interval ∆, it is possible that packets
of different sending rates xi(n1) and xi(n2) arrive to the
router during the same interval ∆. Denote by Ti(n) the
time when user i receives the n-th non-duplicate feedback
p(n). Since the user responds to each feedback only once, it
computes new sending rates xi(n) at time instances Ti(n).
To better understand the dynamics of a typical AQM con-
trol loop, consider the illustration in Figure 10(b). In the
figure, the router generates feedback p(n − 1) and p(n) ex-
actly ∆ units apart. This feedback is randomly delayed by
D←i time units and arrives to the user at instances Ti(n−1)
and Ti(n), respectively. In response to the first feedback, the
user changes its rate from xi(n−2) to xi(n−1); however, the
router observes the second rate only at time Ti(n−1)+D→i .
At the end of the n-th interval ∆, the router averages both
rates xi(n − 2) and xi(n − 1) to produce its feedback p(n)
as shown in the figure.

When the control loop is completed, the user is misled to
believe that feedback p(n) refers to a single rate x(n−1) and
is forced to incorrectly compute x(n). This inconsistency is
especially pronounced in the first few control steps during
which the flows increase their rates exponentially and the
amount of error between the actual rate and the reference
rate is large.

Instead of changing the router, we modify the end-users
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Figure 12: Four EMKC flows (α = 100 kb/s and
β = 0.9) with heterogeneous feedback delays share
a bottleneck link of capacity 10 mb/s.

to become more sophisticated in their processing of network
feedback. The key is to allow end-users to accurately esti-
mate their own contribution to X̃ and determine their av-
erage rates seen by the router during interval ∆. For each
outgoing packet k, MKC sender i places the packet’s sequence
number k in the usr field and records in local memory the
size of the packet si(k) and its sequence number k. Upon
arrival of the n-th non-duplicate feedback at time Ti(n),
the end-flow extracts the usr field from the acknowledgment
and records its value in variable zi(n), which is the sequence
number of the packet that generated feedback p(n). To com-
pute the new rate xi(n), the user calculates the amount of
data that it has transmitted between packets zi(n − 1) and
zi(n)−1 and normalizes the sum by ∆, which is exactly the
average rate used by the router in generation of p(n).

To visualize this description, consider Figure 11(a), in
which the end-flow is about to decide its sending rate xi(n)
at time Ti(n). Notice in the figure that feedback p(n) is
based on all packets of flow i with sequence numbers be-
tween zi(n− 1) and zi(n)− 1. Through the use of zi(n), we
obtain a projection of the time-interval used by the router
in its computation of p(n) onto the sequence-number axis
of the end user.4 Given the above discussion, the user com-
putes its average rate as:

x̄i(n) =
1

∆

zi(n)−1�
k=zi(n−1)

si(k), (59)

and utilizes it in its control equation:

xi(n) = x̄i(n) + α − βηi(n)x̄i(n). (60)

Next, we turn our attention to the ns2 simulation in Fig-
ure 11(b) and examine the performance of this strategy with
a single flow. The figure shows that (59)-(60) successfully
eliminates transient oscillations and offers fast, monotonic
convergence to the steady state. Our next example shows
the performance of the new method (59)-(60) with multiple
flows. The simulation topology of this example is illustrated
in Figure 12(a): four EMKC flows identical to that in Figure
10(a) share the same bottleneck link of capacity 10 mb/s.
The round trip delays of the four flows are 50 ms, 60 ms, 70
ms, and 80 ms, respectively, and the sampling intervals ∆

4Note that this approach is robust to random delays, but
may be impeded by severe packet loss at the router.
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of routers C1-C5 are 120 ms, 140 ms, 160 ms, 180 ms, and
100 ms, respectively. At time 0, the first flow starts at 125
kb/s and monotonically converges to bottleneck capacity in
less than 0.4 seconds as seen in Figure 12(b). Five seconds
later, the second flow joins at initial rate 150 kb/s. The
figure shows that the system is immediately re-stabilized in
the new stationary point and the individual flows quickly
converge to fairness without oscillations. This behavior is
repeated when the other two flows join the network and the
system regains stability and fairness with ideal performance
(i.e., monotonically).

7. CONCLUSION
This paper investigated the properties of Internet conges-

tion controls under non-negligible directional feedback de-
lays. We focused on the class of control methods with sym-
metric Jacobians and showed that all such systems are stable
under heterogeneous delays. To construct a practical con-
gestion control system with a symmetric Jacobian, we made
two changes to the classic discrete Kelly control and created
a max-min version we call MKC. Combining the latter with a
negative packet-loss feedback, we developed a new controller
EMKC and showed in theory and simulations that it offers
smooth sending rate and fast convergence to efficiency. Fur-
thermore, we demonstrated that EMKC’s convergence rate
to fairness is exponential when the network provider scales
the number of flows N as Θ(C) and linear otherwise. From
the implementation standpoint, EMKC places very little bur-
den on routers, requires only two local variables per queue
and one addition per arriving packet, and allows for an easy
implementation both in end-to-end environments and under
AQM support. Our future work involves improvement of the
convergence speed to fairness and design of pricing schemes
for EMKC to achieve loss-free performance regardless of the
number of flows N .
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