
Oscillations and Buffer Overflows in Video Streaming
under Non-Negligible Queuing Delay

Yueping Zhang and Dmitri Loguinov∗
Department of Computer Science

Texas A&M University, College Station, TX 77843
{yueping, dmitri}@cs.tamu.edu

ABSTRACT
In this paper, we analyze how feedback delays affect sta-
bility, oscillations, and packet loss of several classes of con-
gestion controllers used or proposed for video streaming in
the current/future Internet (including window-based AIMD,
rate-based AIMD, Scalable TCP, and TFRC). Our results
indicate that window-based protocols in this list incur sig-
nificantly less packet loss under delayed feedback than their
rate-based counterparts, which explains their better overall
performance observed in practice [12]. At the same time, we
show that even TCP’s congestion control is far from ideal
from the control-theoretic point of view and leads to ampli-
fied oscillations when queuing delays increase. We conclude
with an observation that multimedia in the future Internet is
not likely to enjoy oscillation-free congestion control unless
the network deploys some form of AQM.

Categories and Subject Descriptors
C.2.2 [Communication Networks]: Network Protocols

General Terms
Algorithms, Performance, Theory

Keywords
Buffer Overflows, Delay, Stability, Video Streaming

1. INTRODUCTION
Video streaming faces many challenges in the current In-

ternet. One of these challenges is the design of proper con-
gestion control that remains stable (small oscillations, low
packet loss, predictable behavior) under various network
conditions. While the design of control systems under im-
mediate feedback has been extensively studied in network

∗This work was supported in part by NSF grants CCR-
0306246, ANI-0312461.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’04,June 16–18, 2004, Cork, Ireland.
Copyright 2004 ACM 1-58113-801-6/04/0006 ...$5.00.

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600
time (seconds)

R
T

T
 (

m
s)

0

100

200

300

400

500

600

700

0 200 400 600
time (seconds)

ra
te

 (
kb

/s
)

Figure 1: Video streaming over 512-kb/s residential
DSL. Evolution of the RTT (left) and that of the
IP-layer sending rate (right).

literature [2] and classical control-theory [9], most practical
networks consist of resources that provide delayed feedback
to individual end-flows. Feedback delays arise for a num-
ber of reasons, two of which are propagation and queuing
delays. In this work, we aim to understand how feedback
delays of regular end-users, induced by queuing at the bot-
tleneck router, affect the behavior of streaming congestion
control commonly used in previous work. We do not address
the issue of delays arising due to large propagation delays,
or due to queuing at non-bottleneck routers.

To better understand why delay is a significant factor in
the performance of a congestion controller, consider the fol-
lowing illustration. We placed an MPEG-4 video server at
Michigan State University and used home DSL clients to
stream scalable MPEG-4 FGS video from the server. In the
case reported in this paper, the client’s access link supported
up to 512 kb/s on the physical layer, which corresponded to
approximately 450 kb/s of IP-layer throughput. As shown in
Figure 1 for one representative experiment, both the RTT of
the flow and the sending rate of the server exhibited signifi-
cant fluctuation throughout this ten-minutes streaming ses-
sion. The increase in the RTT was in response to buffering
delays at the DSL link and was directly correlated with oc-
currences of packet loss. The server used rate-based AIMD
congestion control, which frequently increased the rate to
over 600 kb/s and then dropped it below 35 kb/s in response
to significant packet loss. Clearly, this performance is unde-
sirable for many reasons, including fluctuating video quality,
high packet loss, low link utilization, and prohibitively large
retransmission delays.

Since many current video streaming protocols are TCP-
friendly in one form or another [14], [15], [17], their design

1

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (seconds)

ra
te

 (
m

b/
s)

Combined rate

Figure 2: Combined sending rate of two competing
TCP flows.

has been influenced by that of TCP, which provides a fun-
damental platform for the analysis of these mechanisms. In
what follows in this paper, we first study TCP and demon-
strate that its performance deteriorates as buffering delay
becomes large and reaches levels that are clearly unaccept-
able for video applications (i.e., high rates of oscillations
and packet loss). However, we subsequently show that TCP
has the best delayed performance among the protocols com-
monly used (or proposed) for video streaming (i.e., rate-
based AIMD, Scalable TCP, and TFRC). Combined, these
two results paint a rather bleak picture for current best-
effort streaming methods; however, they provide clear in-
sight into a long-standing question of whether window-based
protocols do in fact perform best in the current Internet.

We conclude the paper with observations that delayed in-
stability is inherent to all AIMD-friendly classes of control
methods and that better algorithms based on AQM feed-
back may be the only alternative for improving the quality
of video streaming in the future Internet.

2. DELAYED BEHAVIOR OF AIMD

2.1 Background
Modern Internet applications desire asymptotically sta-

ble1 flow controls that deliver packets to end users without
much oscillation. In the context of Internet congestion con-
trol, stability can be interpreted as the ability of a network
system to maintain the desired overall sending rate (less
than or equal to the resource capacity) in its steady state
and to re-establish the steady state after being disturbed.
In an Internet-like network system, many disturbances are
possible, including arrival and departure of flows, feedback
noise, and various transient effects. In this paper, we con-
centrate on the ability of each flow to control its oscillations
when feedback from the routers arrives with a certain non-
negligible delay.

Existing congestion controls are broadly classified into two
categories: rate-based and window-based, where the former
is usually more desirable in video streaming. It is generally
observed that controlling rate-based flows is challenging [12],
[16] as their oscillations and packet loss exhibit worse per-
formance than those of similar window-based mechanisms;

1In this paper, we generally assume a control-theoretic no-
tion of stability, which is the ability of a flow x(t) to converge
to a stationary point x∗ as t →∞. In the context of AIMD,
“delayed stability” usually refers to the behavior of the flows
in comparison to the non-delayed case.

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

rate
1
 (mb/s)

ra
te

2 (
m

b/
s)

(a) Delay is 10 ms

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

rate
1
 (mb/s)

ra
te

2 (
m

b/
s)

(b) No Delays

trajectory
fairness line

trajectory
fairness line

Figure 3: Trajectories of two TCP flows: (a) 10 ms
delay; (b) Instantaneous feedback.

however, we are not aware of any quantitative studies that
support this statement in the context of streaming or outside
of ATM data-link literature. While all TCP-friendly con-
trols oscillate, these oscillations become more pronounced
as the delay in the feedback increases (we call this situa-
tion “increased instability”), which happens when the flows
adjust their current rates based on out-dated feedback and
then overreact to packet loss caused by the overshoot.

2.2 Delay-Related Oscillations in TCP
We first consider delayed behavior of TCP. Recall that

TCP follows the AIMD policy [2], [6] in its window adjust-
ment, where the sender additively increases its congestion
window per positive ACK and multiplicatively decreases it
upon each packet loss. When buffers sizes are large (such
as in the DSL example shown in the introduction), prop-
agation delay is less of an issue and contributes negligibly
to the delayed feedback and/or the dynamics of the whole
system. Thus, in the rest of the paper, we assume a net-
work configuration with delays arising only due to buffering
at the most congested (bottleneck) router of a given path.

In such a model, when the combined sending rate of all
flows exceeds the bottleneck capacity, TCP continues in-
creasing its window and queuing the extra data at the bot-
tleneck until congestion is detected. The delay needed for
TCP to realize that the buffer is full is directly related to
the amount of bursty packet loss the flow will suffer and the
amount of window-size reduction following the loss.

It is well known that under ideal assumption of instanta-
neous feedback, all AIMD congestion controls converge to
the fair operating point with minimal packet loss [2]. How-
ever, when large buffers in the network create delays, TCP
becomes more “unstable” and exhibits complex behavior on
small time-scales. Consider one such example. We use the
ns2 simulator and examine two competing TCP flows shar-
ing a bottleneck link with 0.2 mb/s bandwidth and 10 ms
propagation delay. The buffer size is 20 packets and the
sampling rate is 100 ms. Figure 2 depicts the combined rate
of these two flows. As seen in the figure, the average com-
bined rate is just below the link’s capacity; however, the
instantaneous combined rate reaches as high as 0.6 mb/s,
which overflows the link and leads to large bursts of packet
loss. In response to this loss, the combined rate periodi-
cally drops almost to zero, which leads to under-utilization
of network resources and amplified oscillations compared to
the non-delayed case.

We next examine how fairness between the two flows in
Figure 2 is affected by delays. As shown in Figure 3 (a),

2

when the link becomes congested, the flows persistently os-
cillate around the fairness line and do not maintain fairness
on small time-scales. Moreover, the trajectory exhibits no
noticeable regularity and appears unpredictable. In con-
trast, Figure 3 (b) depicts the behavior of two TCP flows
under immediate feedback, where the oscillations along the
fairness line are relatively small and fairness is maintained
at all times.

To understand the delayed behavior of TCP in analytical
terms, we next investigate its control equation and derive
the amount of lost data as a function of queuing delay D.

2.3 Delayed TCP
It is well known that AIMD mechanisms buffer excess data

when the bottleneck link is saturated since feedback delays
prevent the sources from adjusting their rates in a timely
manner. For sufficiently large feedback delays (i.e., large
buffers), end-users eventually overshoot the bottleneck link
and experience bursty packet losses due to the excess data
sent into the network before congestion is detected. We call
this behavior “excessive buffering” and examine its extent
in AIMD and other protocols in the rest of this paper.

We start our investigation with window-based AIMD (e.g.,
TCP) schemes. Our next result shows that as soon as the
bottleneck link is saturated, TCP automatically switches
the growth rate of its window W (t) from linear to

√
t. This

naturally leads to a more “conservative” behavior of TCP
under non-negligible buffering delays and explains its advan-
tage over the other methods studied in this paper.

Lemma 1. After the bottleneck link is saturated, the size
of TCP’s congestion window grows proportionally to

√
t.

Proof. Assume discrete time and recall that TCP’s con-
gestion window W (t) is increased by MTU2/W (t− 1) upon
each positive (non-duplicate) ACK [1]. For clarity of pre-
sentation, we express window size in units of packets instead
of bytes. Using this notation, W (t) is given by:

W (t) =

{
W (t− 1) + 1/W (t− 1) per ACK
βW (t− 1) per loss

, (1)

where β is the factor of multiplicative decrease and W (t) is
congestion window in units of packets. After the link is sat-
urated, TCP increments its window in response to a stream
of ACKs coming from the receiver at fixed average rate C
pkts/sec, where C is the bottleneck link capacity. This hap-
pens because the bottleneck continues buffering some in-
coming data, while transmitting the remaining packets to
the receiver exactly at the rate of C pkts/sec. Once these
packets arrive at the receiver, they generate a stream of
ACKs at the same packet-rate C. It is common to approxi-
mate (1) with a fluid model, in which the ACKs arrive as a
fluid at the exact rate C. Then, we can re-write (1) using a
differential equation:

dW

dt
=

C

W
. (2)

Re-organizing (2) and integrating both sides, we get:

W (t) =
√

2Ct + δ , (3)

where δ = W (0)2 is the integration constant.

We next consider an ns2 simulation to validate the conclu-
sion of Lemma 1. In this simulation, we run a single TCP

0 10 20 30 40 50
0

50

100

150

200

time (seconds)

cw
nd

 (
pa

ck
et

s)

TCP
Model

Figure 4: The congestion window of a single TCP
flows under delay.

flow over a bottleneck link with an infinitely large buffer.
The packet size is 1, 040 bytes, the bottleneck link capacity
C = 2 mb/s (244 pkts/sec), and the round-trip propagation
delay is 60 ms. Using C = 244 pkts/sec in (3), observe from
Figure 4 that ns2 simulations match the model very well.

As demonstrated above, TCP overshoots the bottleneck
link after saturation and its congestion window tends to in-
finity provided that the bottleneck queuing delay allows so.
Note, however, that the sending rate r(t) of TCP does not
grow to infinity (and in fact converges to link capacity C as
we show below) since the RTT also increases when packets
start being queued at the bottleneck link. Nevertheless, the
amount of extra data sent into the link (all of which gets
lost prior to TCP’s reaction to the actual losses) is non-
negligible as we show in the next result.

Lemma 2. The aggregated amount of lost data in window-
based AIMD during each overshoot is proportional to the
square root of the buffering delay

√
D.

Proof. Assume the time starts at t = 0 when the bot-
tleneck link is about to overflow. For each received ACK
after t = 0, a TCP source sends out 1 + 1/W (t) packets,
which means that the amount of “extra” data injected into
the network is 1/W (t) packets per ACK. As discussed in the
proof of Lemma 1, the ACKs are fed back to the sender at
rate C pkts/sec. Then, the amount of extra data S(t) sent
into the link during the segment [0, t] can be modeled by a
simple recurrence:

S(t) = S(t− 1) + 1/W (t− 1), (4)

where discrete time t is given in ACKs and starts from the
point of bottleneck saturation. Converting the above into a
differential equation and shifting time to seconds:

dS(t)

dt
=

C

W (t)
, (5)

where congestion window W (t) is given in (3). Expanding
W (t):

dS(t)

dt
=

C√
2Ct + δ

, (6)

where δ = W (0)2 is again the square of the congestion
window just before the link overflows at time t = 0. Re-
organizing the terms in (6) and integrating both sides, we
have:

S(D) =

D∫

0

C√
2Ct + δ

dt. (7)

3

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

time (seconds)

ra
te

 (
m

b/
s)

Buffer Size

Lost Data S∼ D1/2

Capacity C

Delay D

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time (seconds)

ra
te

 (
m

b/
s)

Buffer Size Lost Data
S∼ D2

Capacity C

Delay D

(b)

Figure 5: (a) Rate adjustment of window-based pro-
tocols under delays. (b) Rate adjustment of rate-
based protocols under delays.

Solving this integral, we get S(D) ∼ √
2CD + δ.

We now return to the sending rate r(t) of TCP. Recall
that after the bottleneck link is saturated, TCP sends out
1 + 1/W (t) packets per ACK and ACKs arrive at rate C.
According to (3), congestion window W tends to infinity as
t becomes large. Thus, 1+1/W (t) → 1 and TCP eventually
sends out exactly one packet per ACK and converges its rate
r(t) to C as time progresses.

Consider an ns2 illustration in Figure 5 (a), where we
use the same configuration as in Figure 4 except that we
now disable slow start to better simulate TCP’s behavior in
congestion avoidance. Notice in the figure that, after the
bottleneck link becomes full, the increase in TCP’s rate is
slowed down and its r(t) eventually converges to capacity
C.

2.4 Delayed Rate-based AIMD
We next examine a class of rate-base AIMD flows, in which

the control actions take places once per RTT instead of
once per ACK. Note that both window-based and rate-based
AIMD perform essentially the same until the point at which
their sending rates start to exceed capacity C; after that,
their performance becomes drastically different. The expla-
nation of this phenomenon is simple as rate-based methods
must battle the various difficulties in accurately and timely
estimating the RTT and noticing its increase in response to
a growing buffer at the bottleneck (this information is auto-
matically supplied to window-based methods through pos-
itive ACKs). Unfortunately, a closed-form solution to the
exact queuing model coupled with end-flow control equa-
tions does not exist for both rate-based AIMD and TFRC,
even when we assume that the delay in obtaining RTT sam-
ples is negligible. The case becomes more complicated when
the RTT feedback is delayed and/or smoothed with an ex-
ponential filter.

In this paper, we only solve the simpler case of rate-
based AIMD and TFRC in which the RTT is not accurately
tracked by the source (i.e., is perceived to remain more or
less constant until packet loss is detected) and leave the more
extensive analysis of the variable RTT for the full version of
the paper.

Lemma 3. Under constant RTT, the amount of lost data
in rate-based AIMD during each overshoot is proportional to
D2.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

time (seconds)

ra
te

 (
m

b/
s)

Buffer Size Lost Data S∼ D

Capacity C

Delay D

(a)

0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

time

am
ou

nt
 o

f o
ve

rs
ho

ot

Scalable TCP
Rate−based AIMD
TCP D2

D

D1/2

(b)

Figure 6: (a) Rate adjustment of Scalable TCP un-
der delay. (b) Comparison of lost data per overshoot
in TCP, Scalable TCP, and rate-based AIMD.

Proof. The equation for rate-based AIMD is given by:

r(t) =

{
r(t−RTT) + α per RTT
βr(t−RTT) per loss

, (8)

where r(t) is the sending rate at time t. The source increases
its sending rate by constant α per RTT and reduces it by a
factor of β upon each packet loss. Taking feedback delays
into account, the increase phase of (8) can be written in the
fluid sense as following:

dr(t)

dt
=

α

RTT (t−∆)
, (9)

where ∆ is the delay needed to drain parts of the buffer
for the source to recognize the increase in the RTT and
RTT (t) = q(t)/C is the queue size at time t divided by
capacity C. Closed-form solution to this model does not
exist even when the feedback delay is zero (i.e., ∆ = 0).
We abandon this direction and study a model with constant
RTT, which often happens in practice when ∆ ≥ D and the
flow cannot realize that its RTT has increased until after
it has drained the bottleneck queue (by which time packet
loss has occurred and any attempts to adjust the rate are
too late from the control-theoretic view).

Solving (9) with constant RTT, we obtain that the sender’s
rate is a linear function of time (i.e., r(t) ∼ t) and the
amount of lost data by time t is:

S(t) =

t∫

0

(r(u)− C)du =

t∫

0

r(u)du− Ct, (10)

where time t = 0 is again the instant when the buffer is
about to overflow. From (10), we obtain that S(t) ∼ t2 and
S(D) ∼ D2.

This situation is illustrated in Figure 5 (b), in which the
amount of overshoot S grows quadratically as a function of
time needed for the source to react to packet loss. Taking
into account variable RTT, numerical solutions to the exact
queuing model (9) show that for a certain amount of time
immediately following the overshoot of C, r(t) behaves as
a linear function; however, the remaining increase in r(t) is
only logarithmic. Nevertheless, both cases show that rate-
based AIMD grows its sending rate to infinity under a suf-
ficiently large delay.

4

Compared to window-based AIMD methods, this growth
in r(t) is clearly a problem and supports the observation
that rate-based AIMD flows experience more packet loss
and higher oscillations than their window-based counter-
parts [12], [16].

3. NEXT-GENERATION TCP
Recent research efforts to design better congestion con-

trols for high-bandwidth networks have led to the develop-
ment of next-generation TCPs – High-speed TCP (HSTCP)
[4] and Scalable TCP [10] – which incorporate simple and
easily deployable changes to classical TCP. Since HSTCP
is similar to Scalable TCP, we only consider the latter and
examine its behavior under delayed feedback.

Lemma 4. The amount of lost data in Scalable TCP dur-
ing each overshoot is proportional to D.

Proof. Recall that Scalable TCP relies on the following
binary-feedback controller [10]:

W (t) =

{
W (t− 1) + 0.01 per ACK
.875W (t− 1) per loss

, (11)

where W (t) is the size of congestion window at time t. No-
tice that after each RTT, congestion window W (t) is in-
creased by a factor of 1.01 since for each RTT, the number
of arriving ACKs is at most equal to the window size (i.e.,
Scalable TCP is an MIMD controller).

Similar to TCP, the sending rate of Scalable TCP does
not grow at the same pace as the window size because of
the increased RTT. After the bottleneck link is fully uti-
lized, the source sends out 1.01 packets per ACK (i.e., its
rate r(t) = 1.01C exceeds bottleneck capacity by a fixed
fraction). Thus, the amount of excess data sent per ACK
is fixed, i.e., 0.1 packets, and the total overshoot S grows
linearly with time, i.e., S ∼ D.

Figure 6 (a) demonstrates the buffering behavior of Scal-
able TCP in ns2. For convenience of visualization, we change
STCP’s window increase step size from 0.01 to 0.05 such that
the difference between the steady-state flow rate and capac-
ity C is easy to identify. As the figure shows, simulations
match the discussion in Lemma 4 very well.

To summarize the results, Figure 6 (b) shows a compar-
ison of the amount of lost data among all three methods.
Notice that window-based self-clocking in TCP and Scal-
able TCP are powerful mechanisms that prevent the send-
ing rates of these flows from growing to infinity when the
bottleneck link becomes saturated.

4. TFRC
TFRC (TCP-Friendly Rate Control) (e.g., [5], [14]) has

become a de-facto standard for multimedia applications. In-
stead of immediately responding to congestion in a manner
like TCP, TFRC gradually adjusts its rate if the congestion
persists. Recall that TFRC uses a discrete TCP-friendly
equation and directly adjusts its rate based on the latest
measurement of packet loss and RTT:

r(n) =
MTU√

p(n−∆1)RTT (n−∆2)
, (12)

where MTU is the maximum transmission unit, p(n) is
the long-term average packet loss computed at time n, and

RTT (n) = q(n)/C is the round trip delay seen inside the
router at time n. Since both packet loss and RTT are fed
back from the network, their values are retarded by the cor-
responding feedback delays ∆1 and ∆2.

Again assuming that the source maintains a constant RTT
until the first loss is detected (i.e., either because ∆2 > D
or the smoothing filter on RTT exhibits slow convergence),
TFRC’s behavior is stated in the following lemma.

Lemma 5. Under constant RTT, the amount of lost data
in TFRC during each overshoot is proportional to D2.

Proof. Assume at time t = 0 the buffer is about to over-
flow and the average long-term packet loss up to that point
is strictly positive. Let M(n) > 0 be the number of lost
packets up to time n and T (n) be the total number of trans-
mitted packets up to time n. Modeling p(n) as the long-term
average loss2, we get:

p(n) =
M(n)

T (n)
, t ≥ 0, (13)

where M(n) = M is constant since the source has not de-
tected any new buffer overflows and continues to perceive
the network as uncongested. Since the change in T (n) is
simply rate r(n), we can write the following continuous-time
model:

dT (t)

dt
= r(t), (14)

where dT/dt represents the number of packets sent per time
unit. Combining this with (12)-(13) and assuming instanta-
neous feedback, we have:

dT (t)

dt
=

ω
√

T (t)√
M

, (15)

where ω = MTU/RTT is a constant. Reorganizing (15)
and integrating both sides, we get T (t) ∼ t2 and r(t) ∼ t.
Thus, the amount of lost data also increases quadratically
with delay D.

We next explore control-theoretic stability of TFRC un-
der the assumption that an AQM-enabled router can feed
back the exact value of the most-recent packet loss p(n).
Such AQM support no longer requires TFRC to smooth the
long-term packet loss obtained from the receiver and may
potentially improve TFRC’s performance. However, as our
next lemma shows, this is not the case.

Lemma 6. Under AQM feedback and constant RTT, TFRC
can only be stabilized at points r∗ that incur no less than 33%
packet loss. For other values of packet loss, TFRC cannot
be stabilized and oscillates.

Proof. Write a TFRC control equation for a single flow
and immediate AQM feedback p(n) = (r(n)− C)+/r(n):

r(n) =
ω

√
r(n− 1)√

r(n− 1)− C
, (16)

where ω = MTU/RTT is a constant and we assume that
r(n − 1) > C. The only non-negative stationary point of
this system is given by:

r∗ =
C +

√
C2 + 4ω2

2
. (17)

2To keep the problem tractable, we simplify several aspects
in TFRC’s computation of packet loss.

5

0 2 4 6 8
1.5034

1.5034

1.5035

1.5035

1.5035

time (seconds)

ra
te

 (
m

b/
s)

(a)

0 2 4 6 8

1.46

1.48

1.5

1.52

1.54

time (seconds)

ra
te

 (
m

b/
s)

(b)

Figure 7: (a) Behavior of TFRC for different sta-
tionary points: (a) r∗ = 1.503C; (b) r∗ = 1.494C.

We next check local stability of TFRC at r∗ and derive its
average loss in the stationary state. Linearizing (16) in r∗,
we get:

∂r(n)

∂r(n− 1)

∣∣∣∣
r∗

=
−ωC

2
√

r(r − C)3/2

∣∣∣∣
r∗

=
−C

2(r∗ − C)
. (18)

Recall that system (16) is stable at r∗ if the absolute value
of (18) is less than one, which translates into | C

2(r∗−C)
| < 1

where r∗ is in (17). Solving this inequality, we have:

r∗ >
3C

2
. (19)

This means that system (16) may be stable in the stationary
point only at the expense of at least 33% of the packets being
dropped.

According to (17), the stationary point r∗ can be tuned
by properly choosing constant ω. Consider a simulation of
(16) in Figure 7 with two different stationary points. In
Figure 7(a), we set capacity C to 1 mb/s, the MTU to 1,500
bytes, and the RTT to 13.8 ms (ω = 870 kb/s). Under these
conditions, the stationary point r∗ is 1,503 kb/s and the flow
clearly converges to r∗ after decaying oscillations. In Figure
7(b), we adjust the RTT to 14 ms such that r∗ = 1, 494 kb/s.
As the figure shows, the system diverges even when started
in a close vicinity of the stationary point. Thus, within the
operating range of most applications (i.e., packet loss below
33%), AQM-TFRC cannot be stabilized.

5. DISCUSSION AND CONCLUSION
It is possible that eventually the Internet will adopt a

class of AQM-based mechanisms that are capable of provid-
ing asymptotically stable congestion control to end-flows. In
such a case, we find that a wide variety of algorithms, in-
cluding XCP [8] and Kelly controls [9], [11], [13], will be able
to supply video flows with rate-based, oscillation-free virtual
channels. While the issue of designing oscillation-free, rate-
based congestion control for best-effort networks remains
open, we find that window-based protocols are expected to
become more popular as they offer better (albeit far from
ideal) performance under delay and an easy-to-implement
platform being part of the TCP/IP protocol stack.

On a bigger scale, we believe that more effort should be
put into scalable extensions to control methods that are

provably stable under arbitrary delay in the control-theoretic

sense and that their presentation to the streaming commu-
nity should become more “digestible.” Our initial work in
this direction assuming AQM support is reported in [3], [7],
[18], which demonstrates that rate-based control methods
can not only be oscillation-free, but also provably stable and
fair under heterogeneous end-user feedback delays.

6. REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion
Control,” RFC 2581, April 1999.

[2] D.-M. Chiu and R. Jain, “Analysis of the Increase and
Decrease Algorithms for Congestion Avoidance in
Computer Networks,” Computer Networks and ISDN
Systems, 17(1):1–14, June 1989.

[3] M. Dai and D. Loguinov, “Analysis of Rate-Distortion
Functions and Congestion Control in Scalable Internet
Video Streaming,” ACM NOSSDAV, June 2003.

[4] S. Floyd, “High-speed TCP for Large Congestion
Windows,” RFC 3649, December 2003.

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer,
“Equation-Based Congestion Control for Unicast
Applications,” ACM SIGCOMM, August 2000.

[6] V. Jacobson, “Congestion Avoidance and Control,” ACM
SIGCOMM, August 1988.

[7] S.-R. Kang, Y. Zhang, M. Dai, and D. Loguinov,
“Multi-Layer Active Queue Management and Congestion
Control for Scalable Video Streaming,” IEEE ICDCS,
March 2004.

[8] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control
for High Bandwidth Delay Product Networks,” ACM
SIGCOMM, August 2002.

[9] F. Kelly, A. Maulloo, and D. Tan, “Rate Control for
Communication Networks: Shadow Prices, Proportional
Fairness and Stability,” Journal of the Operational
Research Society, 49(3):237–252, March 1998.

[10] T. Kelly, “Scalable TCP: Improving Performance in
High-speed Wide Area Networks,” First International
Workshop on Protocols for Fast Long-Distance Networks,
February 2003.

[11] S. Kunniyur and R. Srikant, “Analysis and Design of an
Adaptive Virtual Queue (AVQ) Algorithm for Active
Queue Management,” ACM SIGCOMM Computer
Communication Review, 31(4):123 – 134, August 2001.

[12] D. Loguinov and H. Radha, “End-to-End Rate-Based
Congestion Control: Convergence Properties and Salability
Analysis,” IEEE/ACM Transactions on Networking,
11(5):564–577, August 2003.

[13] S. H. Low and D. E. Lapsley, “Optimization Flow Control
I: Basic Algorithm and Convergence,” IEEE/ACM
Transactions on Networking, 7(6):861–874, December 1999.

[14] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose,
“Modeling TCP Throughput: A Simple Model and Its
Empirical Validation,” ACM SIGCOMM, September 1998.

[15] R. Rejaie, M. Handley, and D. Estrin, “RAP: An
End-to-End Rate-Based Congestion Control Mechanism for
Realtime Streams in the Internet,” IEEE INFOCOM,
March 1999.

[16] Y. Xiong, J.-C. Liu, K. Shin, and W. Zhao, “On the
Modeling and Optimization of Discontinuous Network
Congestion Control Systems,” IEEE INFOCOM, March
2004.

[17] Y. Yang, M. Kim, and S. Lam, “Transient Behaviors of
TCP-friendly Congestion Control Protocols,” IEEE
INFOCOM, April 2001.

[18] Y. Zhang, S.-R. Kang, and D. Loguinov, “Delayed Stability
and Performance of Distributed Congestion Control,” To
Appear in ACM SIGCOMM, August 2004.

6

