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Abstract— Recent surge of interest towards congestion control
that relies on single-router feedback (e.g., XCP [12], RCP [1], [5],
MaxNet [24], EMKC [28], VCP [26]) suggests that such systems
may offer certain benefits over traditional models of additive
packet loss [13]. Besides topology-independent stability and faster
convergence to efficiency/fairness [24], it was recently shown [28]
that any stable single-router system with a symmetric Jacobian
tolerates arbitrary fixed, as well as time-varying, feedback delays.
Although delay-independence is an appealing characteristic, the
EMKC system developed in [28] exhibits undesirable equilibrium
properties and slow convergence behavior. To overcome these
drawbacks, we propose a new method called JetMax and show
that it admits a low-overhead implementation inside routers
(three additions per packet), overshoot-free transient and steady
state, tunable link utilization, and delay-insensitive flow dynam-
ics. The proposed framework also provides capacity-independent
convergence time, where fairness and utilization are reached in
the same number of RTT steps for a link of any bandwidth.
Given a 1 mb/s, 10 gb/s, or googol (10100) bps link, the
method converges to within 1% of the stationary state in 6
control intervals. We finish the paper by comparing JetMax’s
performance to that of existing methods in ns2 simulations and
discussing its Linux implementation.

Index Terms— Congestion Control, Multi-link Stability, Max-
Min Fairness, High-Speed Networks.

I. INTRODUCTION

In the light of TCP’s scalability issues in high-speed net-
works [7], explicit-feedback congestion control has gained
renewed interest in the last several years [12], [18], [27], [28].
Sometimes referred to as Active Queue Management (AQM)
congestion control, these algorithms rely on routers to provide
congestion feedback in the form of changes to the congestion
window [12], packet loss [28], single-bit congestion indication
[9], [14], [22], queuing delay [11], [23], [24], or link prices
[13], [15], [19]. This information helps end-flows converge
their sending rates to some social optimum and achieve a
certain optimization objective.

Unlike some of the largely ineffective AQM aimed at
improving the performance of TCP [3], properly designed
explicit congestion control promises to provide scalabil-
ity to arbitrary bandwidth (i.e., terabits and petabits per
second1), tunable link utilization, low delay, zero loss,
oscillation-free steady state, and exponential convergence to
fairness/efficiency, all of which suggests that such algorithms,
once deployed in the Internet, may remain in service for many
years to come. Note that the purpose of this paper is not
to settle the debate of whether or when explicit congestion
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1If network bandwidth continues to double every year, these speeds will
become mainstream in 10 and 20 years, respectively.

control will be adopted by the Internet, but to explore the
various properties of existing AQM methods, propose a new
controller we call JetMax, and compare its ns2 and Linux
performance with that of the existing methods.

The first half of the paper deals with understanding multi-
router stability and convergence performance of several re-
cently proposed AQM approaches: eXplicit Control Protocol
(XCP) [12], Exponential Max-min Kelly Control (EMKC)
[28], and a hybrid method suggested in [28] that combines
EMKC with Adaptive Virtual Queue (AVQ) [15], [16]. We
find from this analysis that XCP is prone to instability in
certain multi-link networks when the flows receive feedback
on different time scales (i.e., under heterogeneous delay). The
root of this problem lies in the oscillatory switching between
the bottlenecks (i.e., changes in the bottleneck router) and
inability of each XCP flow to permanently decide its most-
congested resource in the presence of delayed feedback. This
phenomenon in turn arises from the discontinuous nature and
non-monotonic transient properties of the feedback function
used in the control equation of XCP. Discontinuity of feed-
back follows from XCP’s algorithm for selecting the most-
congested router along its path, while non-monotonicity is
caused by the oscillatory nature of the controller when the
feedback delays of competing flows are heterogeneous.

To further understand the reasons for XCP’s instability in
multi-link networks, we analyze the problem of bottleneck
oscillation in more depth and show that only consistent (i.e.,
agreed upon by every flow) bottleneck assignment allows one
to reduce stability analysis of max-min protocols in multi-
link networks to that of the single-link case studied in prior
work [5], [12], [24], [28]. In all other cases, max-min methods
require a much more complicated analysis not available within
the current framework of congestion control. We additionally
observe that feedback that remains monotonic when a flow
changes its most-congested resource allows the protocol to
achieve a consistent bottleneck assignment and thus remain
stable. This partially explains EMKC’s stability in multi-link
networks observed in simulations.

Although EMKC remains stable in multi-link topologies,
we find that its transient and equilibrium properties (such as
linear convergence to fairness and steady-state packet loss)
are potential drawbacks for its use in practice. The problem
of EMKC’s equilibrium packet loss can be overcome using
EMKC-AVQ; however, the resulting method exhibits unde-
sirable oscillations and transient overshoot of link’s capacity.
Combined with a large number of flows, transient overshoot
leads to long-lasting packet loss and non-negligible increase
in queuing delay, both of which are highly undesirable.
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Our conclusion from the first half of the paper is that
any new designs of max-min AQM congestion control should
decouple feedback delay from control equations and converge
to stationarity monotonically. Thus, the second part of the
paper designs a new method we call JetMax that satisfies these
criteria while offering additional features:
• Capacity-independent convergence time. The algorithm

reaches fairness and efficiency in the same number of
RTT steps regardless of link’s capacity.

• Zero packet loss. Loss-free operation is ensured both in
the transient and stationary state.

• Tunable link utilization. Each router can be independently
configured to control its steady-state link utilization.

• RTT-independent max-min fairness. Resource allocation
is max-min fair regardless of end-user delays.

• Global multi-link stability under consistent bottleneck
assignment for all types of delay. Flows converge to
the equilibrium and maintain their steady-state rates in
generic networks regardless of any fluctuation in the RTT
as long as end-users can correctly choose their bottleneck
links (see below for more).

• Low overhead. The AQM algorithm requires only three
additions per arriving packet and no per-flow state infor-
mation inside routers.

We finish the paper by repeating the same ns2 simulations
that earlier highlighted the limitations of existing methods and
demonstrate that JetMax outperforms its predecessors using a
number of metrics such as multi-link stability, convergence
rate, transient overshoot, and steady-state rate allocation. We
also show that JetMax can be easily integrated into the
Linux router kernel and present the results of several Linux
experiments with JetMax running over 1 gb/s links, both in
single- and multi-bottleneck topologies.

The rest of the paper is organized as follows. We review
the existing explicit congestion control algorithms in Section
II and identify their problems in Section III. We then highlight
the importance of studying multi-link stability of max-min
systems in Section IV. Following that, we introduce JetMax
in Section V and discuss its implementation issues in Section
VI. We then demonstrate JetMax’s performance through ns2
simulations and Linux experiments in Sections VII and VIII,
respectively. We conclude the paper in Section IX.

II. BACKGROUND

We start by describing the notation used throughout the
paper. Assume N users in the network whose rates at time t
are given by {xr(t)}N

r=1. Further assume that the RTT of each
flow is denoted by Dr(t) and the forward/backward delays of
user r to/from router l by D→

r,l(t) and D←
r,l(t), respectively.

The aggregate arrival rate of all users at router l is written as
yl(t) =

∑
r∈l xr(t), where r ∈ l is the set of flows r passing

through link l. Similarly, notation l ∈ r refers to the set of
routers l used by flow r.

Since its appearance in 2002, XCP [12] has become a de-
facto standard for explicit congestion control in IP networks
[6]. XCP is a window-based framework, in which routers
continuously estimate aggregate flow characteristics (e.g., ar-
rival rate, average RTT) and feed back the desired changes to

the congestion window to each bottlenecked flow through its
packet headers. Stability of XCP under heterogeneous delay
is unknown at this time; however, for homogeneous delay, the
paper shows that the combined rate yl(t) is stable if control
parameters α and β satisfy 0 < α < π/4

√
2 and β = α2

√
2.

XCP’s design goals [12] include max-min fairness and high
link utilization; however, a recent study of its equilibrium
properties [18] shows that XCP does not generally achieve
max-min fairness in multi-router networks and its link uti-
lization may sometimes be as low as 80%. The paper further
demonstrates scenarios where XCP allocates arbitrarily small
(unfair) fractions of bandwidth to certain flows [18]. Another
study [27] reports experiments with a 10-mb/s XCP Linux
router and identifies several implementation issues including
uncertainty in accurate selection of Cl, sensitivity to receiver
buffer size, and various problems with partial deployment.

The recently proposed Rate Control Protocol (RCP) [5] is
a rate-based max-min AQM algorithm in which each router l
periodically computes the desired sending rate rl(t) for flows
bottlenecked at l and inserts rl(t) into their packet headers.
This rate is overridden by other routers if their suggested rate
is less than the one currently present in the header. Routers
decide the fair rate rl(t) by implementing a controller

rl(t) = rl(t−∆)
[
1− ∆

dlCl

(
α(yl(t)− Cl)− β

ql(t)
dl

)]
, (1)

where ∆ is the router’s control interval, α and β are constants,
dl is a moving average of RTTs sampled by router l, Cl is its
capacity, and ql(t) is queue length at time t. Even though the
steady-state equations of RCP and XCP are the same [1], RCP
has lower implementation overhead, offers quicker transient
dynamics, and achieves max-min fair rate allocation [5].

Two additional max-min methods are inspired by Kelly’s
optimization framework [13] and aim to improve stability and
convergence properties of traditional models of additive packet
loss [16], [19]. The first approach called MaxNet [24] obtains
feedback fr(t) = maxl∈r pl(t) from the most congested router
along each path of user r and applies an unspecified end-user
control function to fr(t) so as to converge the sending rates
of all flows to max-min fairness. To avoid equilibrium packet
loss, link prices are driven by a controller

ṗl(t) =
yl(t)− γCl

γCl
, (2)

where 0 < γ < 1 is the desired link utilization.
The second method is Exponential Max-min Kelly Con-

trol (EMKC) [28], which elicits packet-loss from the most-
congested resource along each flow’s path and uses a modi-
fied version of the discrete Kelly equation to achieve delay-
independent stability. End-user rates xr(n) are adjusted using

xr(n) = xr(n−Dr) + α− βpr(n)xr(n−Dr), (3)

where Dr is the RTT of flow r, α > 0 and 0 < β < 2 are
constants, and pr(n) ∈ (−∞, 1) is the packet-loss feedback
received by flow r at time n. The feedback function allows
negative values and assumes the following shape [28]

pr(n) = max
l∈r

∑
s∈l xs(n−D→

s,l −D←
r,l)− Cl∑

s∈l xs(n−D→
s,l −D←

r,l)
. (4)
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Fig. 1. XCP, EMKC, and EMKC-AVQ under constant heterogeneous delay.

For a single-link network, system (3)-(4) is locally asymp-
totically stable for all time-varying delays satisfying

lim
n→∞

n− [D→
s,l(n) + D←

r,l(n)] = ∞, ∀r, s, l. (5)

Due to the steady-state overshoot of link’s capacity [28],
EMKC does not reach max-min fairness. However, as sug-
gested in [28], EMKC can be combined with AVQ [15] to
guarantee max-min fair rates and zero packet loss in the
stationary state.

III. UNDERSTANDING EXISTING METHODS

This section discusses the desired properties of future con-
gestion control and examines whether the existing methods
satisfy these requirements. We focus on such issues as flow dy-
namics under heterogeneous feedback delay, stability in multi-
link scenarios, convergence behavior, and overshoot properties
in transient and equilibrium states.

A. Ideal Congestion Control

During the design and analysis of congestion control, many
issues are taken into consideration; however, one of the most
fundamental requirements on modern congestion control is
its asymptotic stability under heterogeneous (including time-
varying) delays. The reason we focus on non-deterministic
delay is to understand the various deployment issues that
a protocol may face in real networks, where the forward
delay between the source and each router, as well as the
corresponding backward feedback delay, are dynamic (often
random) metrics [21]. Traditional models of congestion control
[12], [16], [19], [23] usually assume a certain “determinism”
about the RTT (i.e., queuing delays are either fixed or based
on fluid approximations) and sometimes produce results that
no longer hold under more realistic conditions [17]. It thus
becomes important to examine how protocols behave in highly
heterogeneous environments and whether fluctuating feedback
delay may cause them to oscillate.

Besides stability, ideal congestion control should exhibit fast
convergence to both efficiency and fairness, avoid overshoot-
ing capacity in transient and stationary states, and converge to
the desired link utilization γ. While the first few factors are
mostly important to end-users, the last metric is of interest
to network operators, who usually run their backbones at well
below capacity and may not appreciate protocols (such as [11],
[12]) that always try to achieve 100% utilization.

Our results below show that none of the existing methods
satisfies all of these requirements simultaneously. Some pro-
tocols exhibit oscillations and instability in multi-link topolo-
gies, while others demonstrate undesirable stationary and/or
transient properties. As a result of this study, we first come to
understand the need for and then develop a new method that
is capable of simultaneously meeting the design criteria above
while admitting a simple implementation inside routers.

B. Methodology

Our main focus in this comparison study is on XCP [12] and
EMKC [28] as two completely different approaches to max-
min congestion control. At the time of this writing, RCP [5],
MaxNet [24], and VCP [26] did not have a publicly available
implementation; however, we found that a combination of
EMKC and AVQ [15] possessed transient and stationary be-
havior similar to that of MaxNet. Recall that AVQ dynamically
adjusts the virtual capacity of each link until the arrival rate
yl(t) is stabilized at γCl, where γ is the desired link utilization.
This method is similar to the price integrator (2) in MaxNet
with the exception that AVQ is not feedback-specific.

Throughout this section, we use ns2 simulations with XCP
and AVQ code that comes with the simulator (version 2.27),
and EMKC code used in [28]. We also experimented with
the modified XCP code from ISI [25] and found it to offer
no stability benefits over the original code. We thus limit our
XCP discussion to the algorithms used in [12].

We should finally note that simulation scenarios shown
below are meant to highlight the possibility of unstable be-
havior and demonstrate the undesirable convergence properties
of the studied protocols rather than provide their exhaustive
evaluation under “realistic” Internet conditions.

C. Stability under Heterogeneous Delay

We first study how each method handles heterogeneous
delay over a single link. We use topology T1 shown in Fig.
1(a), where two flows x1 and x2 with round-trip delays
220 and 2020 ms, respectively, start with a 5-second delay
and share a 10-mb/s link. For XCP, we use the parameters
suggested in [12] (i.e., α = 0.4 and β = 0.226) and set the
buffer size sufficiently large (i.e., at least Cl×RTT ). As Fig.
1(b) shows, XCP is stable under heterogeneous delay, even
though it exhibits oscillations and relatively slow (compared
to the case of homogeneous D) convergence to fairness.
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Fig. 2. XCP, EMKC, and EMKC-AVQ in a multi-link scenario.

For EMKC we set α = 0.2 mb/s, β = 0.5, ∆ = 100
ms, and repeat the simulation in T1. The result is plotted in
Fig. 1(c), which demonstrates that EMKC converges to the
stationary state much more smoothly than XCP; however, it
spends over 250 seconds before reaching fairness and even-
tually overshoots link’s capacity by 8%. Although EMKC’s
convergence rate can be improved by increasing α, this leads
to more steady-state packet loss and larger overshoot [28]. We
delay further discussion of this issue until later in the section.

The third method to examine is the combination of EMKC
and AVQ. We experimented with the default ns2 code of
AVQ, but found it to be too noisy due to the random fluc-
tuations in inter-packet arrival delays and the fact that AVQ
estimates yl(n) on a per-packet basis. To make the method
actually converge to its stationary state, we modified AVQ to
estimate the aggregate input rate yl(n) every ∆ time units and
adjust the virtual capacity C̃l at the end of this interval

C̃l(n) = C̃l(n−∆) +
τ∆(γCl − yl(n))

Dmax
, (6)

where τ = 0.2 is the gain parameter used throughout this
paper, γ is the desired link utilization, Dmax is the maximum
RTT of end-flows, and Cl is the true capacity of the link.2 The
final step of EMKC-AVQ is to limit C̃l to the range (−∞, γC]
and then apply its value in (4) to compute the feedback. Using
this implementation, we repeat the above simulation and plot
the result in Fig. 1(d), which indicates that EMKC-AVQ is
indeed max-min fair in the steady state (i.e., both flows achieve
5 mb/s) as well as stable under heterogeneous delays; however,
the convergence rate to fairness remains painfully slow (i.e.,
over 200 seconds).

D. Multi-link Stability

Our next stability issue is to examine the performance of
these protocols in multi-router networks where bottlenecks
shift over time and there exists a possibility for incorrect
inference of the most-congested router. For the purpose of
this section, we study the four-bottleneck case T2 shown in
Fig. 2(a), where four flows x1, . . . , x4 are routed over a grid-
type network. We customize the routing rules at nodes R1

and R4 to always route their traffic (including any ACKs) in
the clockwise direction. This ensures that acknowledgments

2All delays are computed using XCP’s smoothed EWMA estimator with
the default weight 0.4 and (6) is normalized by Dmax to ensure stability of
the resulting system under delayed feedback [16].

of flow x1 travel together with flow x3 and vice versa. At
the same time, the acknowledgments of flows x2 and x4 are
routed along their corresponding shortest paths (i.e., R2−R1

and R3 − R4). Flows start in sequence from x1 to x4 with
a 30-second delay. Given this order of user join, the system
should evolve through two separate stages, where flows x1

and x3 originally converge to 17 mb/s and then shift their
bottlenecks to accommodate flows x2 and x4. The final max-
min assignment of rates is 10 mb/s for each flow.

Fig. 2(b) shows the behavior of XCP in T2. Notice in
the figure that the protocol not only oscillates for over 200
seconds, but also denies service to flow x3, which never
obtains its share of the link even in the average sense. The
reason for oscillation can be traced to the fact that both x1

and x3 continuously switch between their bottlenecks and are
unable to settle down in the selection of their most-congested
router. This is caused by non-monotonicity of feedback at each
router, discontinuous control actions of end-users, and random
fluctuation of the RTT that forces XCP to become unstable
on small timescales. In contrast, EMKC in Fig. 2(c) and
EMKC-AVQ in Fig. 2(d) have no visible stability problems
and converge their sending rates exactly as expected.

E. Convergence Speed
Besides stability, another metric we evaluate is the conver-

gence speed to stationarity. XCP generally converges quickly
over links with homogeneous delay; however, its convergence
rate may be compromised by heterogeneity of delay and
oscillations of the controller inside routers. One example of
this behavior is shown in Fig. 1(b), where it takes XCP over
1.5 minutes to reach fairness on a 10 mb/s link. At the time
of this writing, there are no known expressions for XCP’s
convergence rate to efficiency or fairness and future analysis
of these metrics appears difficult due to the complex behavior
of the controller under delay.

For EMKC and small Nα ¿ C, [28] shows that flows reach
fairness in Θ(C log N/(Nα)) steps, which scales linearly
with resource capacity C. In Fig. 1(c), for instance, it takes
two EMKC flows over 4 minutes to reach fairness on a 10-
mb/s link. Furthermore, the major problem with EMKC’s
convergence rate to fairness is the tradeoff between conver-
gence speed and stationary packet loss in the network. For
small fixed α, EMKC’s linear rate of convergence is clearly
undesirable, especially in high-speed networks. To achieve
capacity-independent convergence, α must be on the order
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Fig. 3. Transient overshoot of EMKC-AVQ (α = 2 mb/s, β = 0.5 and
τ = 0.2).

of C, which results in large stationary packet loss since the
amount of steady-state overshoot Nα/β is now comparable to
C [28]. In general, there is no algorithmic way for end-flows
to select their α so as to keep loss low and convergence to
fairness quick. This is one of the main drawbacks of EMKC.

Similar arguments apply to EMKC-AVQ. Even though it
does not suffer from steady-state packet loss, as we show next,
EMKC-AVQ’s transient packet loss that is proportional to α
keeps the protocol from quickly converging to fairness.

F. Overshoot Properties

Another issue to consider is the amount of overshoot and
oscillation before the stationary state is reached. For discussion
purposes below, we semantically equate overshoot of network
capacity with packet loss, even though small overshoots (in
terms of amount and/or duration) can often be absorbed by
buffers and do not necessarily lead to packet loss. Neverthe-
less, we aim to stress that any overshoot (especially by 10000
concurrent flows) leads to stressful conditions at the router and,
in the least, increases the queuing delay. In addition, depending
on how long the feedback is delayed on the way to the sender,
any “innocent” overshoot of C may lead to substantial packet
loss and create a hostile environment for other flows.

Among the three controllers in this comparison study,
EMKC has the worst equilibrium properties since its combined
stationary rate y∗ = C+Nα/β is strictly above the bottleneck
capacity C. Moreover, this packet loss scales linearly with the
number of connections and becomes worse if one increases α
to accelerate the convergence rate to fairness.

EMKC’s problem of steady-state packet loss can be over-
come by AVQ; however, the latter may exhibits transient
overshoot before settling in its max-min fair stationary state.
To understand this effect in detail, we repeat the simulation in
topology T1 and increase α to 2 mb/s. As Fig. 3(a) shows, the
instantaneous rate reaches 13 mb/s and the transient overshoot
lasts for over 50 seconds. Moreover, this situation becomes
even worse when the number of competing flows increases.
As seen in Fig. 3(b), where 20 EMKC-AVQ users share the
same 10-mb/s link in T1, the transient overshoot reaches 400%
and lasts for tens of seconds. This situation is a consequence of
the steady-state dynamics inherited from EMKC and the same
term Nα/β responsible for the overshoot, which is a linear
function of the number of flows N and parameter α. This leads

to a similar tradeoff between packet loss and convergence rate
as in EMKC.

IV. MAX-MIN BOTTLENECK ASSIGNMENT

This section highlights the importance of analyzing discon-
tinuous stability of max-min congestion control and explains
some of the phenomena observed in the previous section.

A. General Stability Considerations

One of the most overlooked issues in the analysis of max-
min feedback systems is instability arising from bottleneck
oscillations and/or inconsistent bottleneck assignment (i.e.,
when flows incorrectly infer their bottlenecks). Analysis of
max-min stability in multi-router networks is difficult (if not
intractable) within the literature of modern congestion control
as it involves non-linear systems that switch from one station-
ary point to another. Traditional switching theory [4] usually
assumes that 1) the stationary point is preserved between the
discontinuous jumps and 2) each subsystem corresponding to
a fixed bottleneck assignment has only one stationary point.
Under max-min feedback, both conditions may be violated
since not only does each subsystem have a different stationary
point, but it also may exhibit multiple equilibrium states or be
unstable altogether.

Due to the complexity of the problem, the goal of this
section is not to rigorously derive max-min stability of the
existing methods, but to uncover the conditions that lead
to instability and understand how to design stable max-min
controllers in the future.

B. Why Bottleneck Assignment is Important

Under max-min feedback [12], [28], it is usually assumed
that each flow xr has a fixed bottleneck br, which does
not change over time. It is further assumed that flows not
bottlenecked by br do not contribute to feedback pr generated
by br. In multi-link topologies, this is certainly not the case
since each flow xs bottlenecked at some other router and
passing through br clearly affects the value of pr and thus
the rate of flow xr. If it also happens that xr in turn affects
xs at bottleneck bs, the system forms a closed loop that may
become unstable. We study the formation of such loops in the
context of MKC (Max-min Kelly Control) [28]; however, a
similar question arises in other max-min feedback systems.

Assume that N users share M routers in the network and
suppose that R ∈ RN×M is the routing matrix of end-flows
(i.e., Rrl = 1 if user r uses router l and 0 otherwise). Define
br to be the bottleneck resource of user r and re-write the
general form of MKC [28] as

xr(n) =
(
1− βpr(n−D←

r,br
)
)
xr(n−Dr) + α, (7)

where

pr(n) = p
( N∑

s=1

Rsbrxs(n−D→
s,br

)
)
. (8)

Notice that the sum in (8) includes the users bottlenecked by
br (which we call responsive with respect to br), as well as any
additional flows (which we call unresponsive) passing through
the router. Even though each flow’s feedback in (7)-(8) is still
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delayed by only one backward delay D←
r = D←

r,br
, each flow

s may affect other flows through as many as M forward delays
D→

s,1, . . . , D
→
s,M . This presents a problem in stability analysis

since the z-transform of the delay matrix and the Jacobian of
the system are no longer block-diagonal and the proof in [28]
does not hold.

Analysis below uses notation xs → xr to represent the fact
that an unresponsive flow xs passes through bottleneck br and
affects flow xr through feedback pr(n). For the example in
Fig. 4(a) and max-min assignment of bottlenecks, we have
b1 = 1, b2 = b3 = 2, b4 = 3 and the corresponding
dependency graph is shown in Fig. 4(b).

Lemma 1: For any system with max-min feedback that can
stabilize its bottleneck assignment b1, . . . , bN , the resulting
dependency graph of (7)-(8) is acyclic.

Proof: Suppose that the bottleneck assignment does not
change over time and the dependency graph has a directed
cycle xi1 → . . . → xik

→ xi1 for some k ≥ 2. Notice that
since flow xi1 is unresponsive with respect to flow xi2 , its
stationary packet loss p∗i1 must be larger than p∗i2 (otherwise,
xi1 would have switched its bottleneck to bi2 ). Generalizing
this to the entire cycle, we immediately get a contradiction
p∗i1 > p∗i2 > . . . > p∗ik

> p∗i1 . Assuming a consistent tie-
breaking rule obeyed by all flows, the above argument applies
to cases where multiple routers have equal steady-state loss.

Generalizing this lemma, we define a bottleneck assignment
as consistent if it has an acyclic dependency graph. Then, we
have the following result.

Lemma 2: System (7)-(8) with a consistent bottleneck as-
signment b1, . . . , bN contains at least one router that has no
unresponsive flows.

Proof: Assume in contradiction that each router l has
some unresponsive flow ul passing through it and that this
situation persists over time. Take the first unresponsive flow
u1 and notice that it is affected by some other unresponsive
flow, which we label u2, passing through u1’s bottleneck bu1 .
This leads to u1 ← u2. Repeating this reasoning for u2, we get
u1 ← u2 ← u3, for some unresponsive flow u3 at bottleneck
bu2 . This process continues and creates an infinite sequence
u1 ← u2 ← u3 ← . . . Since the number of unresponsive
flows is finite, there is a point k when the sequence repeats
itself (i.e., uk = uj , j < k) and we obtain a cycle in the
dependency graph.

Equipped with Lemmas 1 and 2, we next prove MKC’s
stability under any time-invariant bottleneck assignment.

Theorem 1: Under any bottleneck assignment that does not
change over time, MKC (7)-(8) is locally asymptotically stable

regardless of delay if and only if the individual bottlenecks are.
Proof: Since bottlenecks do not shift and MKC relies

on max-min feedback, Lemma 1 implies that the dependency
graph is acyclic and bottleneck assignment is consistent. Using
Lemma 2, there exists at least one router l1 with no unrespon-
sive flows. Then, it follows that all flows passing through l1
are bottlenecked by l1 and their stability is independent of the
dynamics of the remaining flows. After the users bottlenecked
by l1 converge to their stationary rates, we can remove l1
and all of its (constant-rate) flows from the system. The
new network still exhibits max-min bottleneck assignment and
thus contains some router l2 that has no unresponsive flows.
Repeating this argument for all routers l1, . . . , lM , we obtain
that the local dynamics of the entire system can be viewed
as a system of linear block-diagonal equations with matrix
A = diag(A1, . . . , AM ), where Al ∈ RNl×Nl is the Jacobian
matrix of Nl flows bottlenecked at router l (

∑M
l=1 Nl = N ).

We conclude that the entire system achieves delay-independent
stability if and only if the individual bottlenecks do.

While the general issue of bottleneck oscillation still re-
mains open, this section shows that as long as flows can
properly select their most-congested routers and avoid depen-
dency cycles, the dynamics of multi-link systems are in fact
described by those of individual routers. Also notice that if
flows converge their feedback monotonically for any bottle-
neck assignment, all cycles in the dependency graph are self-
correcting (i.e., they eventually lead to a contradiction similar
to the one in Lemma 1). This is schematically shown in Fig.
5(a), where two flows x1 and x2 sample monotonic feedback
p1 and p2 from two routers common to both flows. While
their initial inference of bottlenecks may be inconsistent, the
situation is eventually self-correcting and both flows agree that
feedback p2 should be applied to their equations.

On the other hand, when feedback oscillates there is a
possibility of having a directed cycle xi1 → . . . → xik

→ xi1

that persists over time. This can be shown using the example of
two flows. Suppose cycle x1 → x2 → x1 exists and is not self-
correcting. This implies that flow x2 affects x1 at bottleneck
b1 and x1 affects x2 at router b2. Since the two flows sample
packet loss p1 and p2 from their respective bottlenecks at
different times, the apparent contradiction p1 > p2 > p1 is
actually a perfectly legitimate set of two independent condi-
tions: p1(n1) > p2(n1) and p2(n2) > p1(n2) for some time
instants n1 6= n2. Therefore, as long as p1 and p2 oscillate,
it is possible that x1 at time n1 infers that p1 > p2, while
x2 at time n2 infers the opposite (i.e., p2 > p1). An example
of this is illustrated in Fig. 5(b), where both p1 and p2 are
individually (i.e., without the max function) stable, but create
a cyclic dependency graph with potential for instability.

As the XCP examples show, non-monotonic feedback al-
lows flows to continuously switch between bottlenecks and
maintain persistent cycles in the dependency graph, which
eventually leads to instability. It thus becomes imperative that
flows correctly choose their bottlenecks, which is what EMKC
achieves in practice due to its more predictable (i.e., mono-
tonic) evolution of feedback at each router. We summarize the
conclusion of this section in the following corollary.

Corollary 1: Max-min congestion control that converges its
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feedback pl(n) at each router l monotonically to some station-
ary point, regardless of the bottleneck assignment, is stable
over multi-link topologies if and only if the corresponding
bottlenecks are.

Note that EMKC in general does not satisfy this requirement
(i.e., there are delay patterns that create small disturbances to
the ideal convergence behavior); however, out of the studied
methods, it has the best control over delay and exhibits
dynamics that can be deemed monotonic in many practical
cases.

V. JETMAX

In this section, we present JetMax and provide an analytical
study of its properties. The next section discusses implemen-
tation and performance details of this protocol.

A. Design

Consider link l at time n. Assume that Nl(n) is the number
of responsive flows in this router at time n and wl(n) is their
combined rate. Also, assume that ul(n) = yl(n) − wl(n) is
the aggregate rate of unresponsive flows at the router and
0 < γl ≤ 1 is its desired utilization level. The main idea of
JetMax is to equally divide the residual bandwidth γlCl−ul(n)
between all flows bottlenecked by the router and then provide
this average rate to all responsive users. Knowing ul(n) and
Nl(n) (methods of computing these are discussed later), the
router periodically (i.e., every ∆l time units) computes and
feeds back to the senders the fair rate gl(n):

gl(n) =
γlCl − ul(n)

Nl(n)
. (9)

which is later utilized by end-users in their control equations:

xr(n) = xr(n−Dr)− τ
(
xr(n−Dr)− gl(n−D←

r )
)
, (10)

where τ > 0 is the gain parameter. The role of the second
term in (10) is twofold. On the one hand, it functions as an
efficiency component by encouraging end-users to increase
their rates when the resource is under-utilized; on the other
hand, it forces the sources to converge their rates to the equal
share of the bottleneck link’s available capacity so that max-
min fairness is achieved in the steady state.

Besides the end-user equation, another important issue is
the bottleneck switching mechanism. To this end, each user
chooses the link along its path with the largest packet loss
pl(n) as the bottleneck resource, where pl(n) is based on the
combined rate yl(n) = wl(n) + ul(n), i.e.,

pl(n) =
yl(n)− γlCl

yl(n)
. (11)
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Fig. 6. Spectral radius ρ(A) of system (9)-(10) with τ = 0.6 under 2000
random bottleneck assignments.

Since yl(n) does not change when the bottleneck assignment
changes (i.e., a flow migrates from one router to another),
JetMax is generally monotonic during bottleneck switching.

In the rest of this section, we show JetMax’s delay-
independent stability, max-min fairness in the steady state, and
ideal convergence speed to stationarity.

B. Delay-Independent Stability

We start by deriving the stationary rate of each flow.
Lemma 3: Given that flow r is bottlenecked by a resource l

of capacity Cl together with Nl− 1 other flows, its stationary
sending rate is x∗r = (γlCl − u∗l )/Nl, where u∗l is the steady-
state rate of all unresponsive flows at link l.

Proof: In the steady state, we have xr(n) = xr(n−Dr) =
x∗r and ul(n) = u∗l . Combining this with JetMax’s end-user
equation (10) immediately yields x∗r = (γlCl − u∗l )/Nl.

We next show that, under any consistent bottleneck assign-
ment, stability analysis of system (9)-(10) can be reduced to
that of EMKC.

Theorem 2: Under any consistent bottleneck assignment,
JetMax (9)-(10) is globally asymptotically stable regardless
of delay if and only if 0 < τ < 2.

Proof: First, assume an undelayed JetMax system with
a single link l. Then, its Jacobian matrix Al is simply Al =
diag(1 − τ), which is stable if and only if ρ(Al) = |1 −
τ | < 1, or in other words, 0 < τ < 2. Next, combining
the fact that Al is symmetric and using Theorem 1 in [28],
we obtain that single-link JetMax is stable for all types of
directional and time-varying delay under the same condition
on τ . Finally, invoking Theorem 1, we arrive at the conclusion
that JetMax achieves delay-independent stability in any multi-
link network with a consistent bottleneck assignment if and
only if its individual bottlenecks do, i.e., 0 < τ < 2. Since
JetMax (9)-(10) is a linear system, its global stability directly
follows.

To better understand this theorem, we set τ = 0.6 and gener-
ate 2000 random bottleneck assignments in random topologies
with 10 routers and 50 flows. For each case, we decide whether
the topology is consistent or not by applying DFS (depth-first
search) to the corresponding dependency graph. As Fig. 6(a)
shows, the spectral radius ρ(A) of the system’s Jacobian A is
1−τ = 0.4 under all consistent bottleneck assignments, which
aligns well with Theorem 2. At the same time, as Fig. 6(b)
demonstrates, ρ(A) under inconsistent bottleneck assignments
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may exceed 1, in which case even the undelayed system is
unstable.

C. Max-min Fairness
From Lemma 3, notice that the stationary packet loss p∗l

of all congested links is zero. Thus, if there are multiple
routers with zero packet loss in the path of a flow r, it will
be uncertain which router should be chosen such that the
resulting bottleneck assignment is max-min fair. To deal with
this situation, we introduce a simple tie-breaking rule based
on the average rate of the responsive flows at each router.
Assuming that several routers tie in zero packet loss, the user
prefers the link with the smallest value of gl = (γlCl−ul)/Nl,
i.e., it sets

br = arg min
l∈r:p∗l =0

gl(n). (12)

To maintain stability, switching based on the largest packet
loss (11) may be performed at any time n; however, that based
on (12) is conducted only when flow r’s sending rate reaches
the ε-neighborhood of stationarity under the current bottleneck
assignment. Before proving max-min fairness of the resulting
system, we need the following definition.

Definition 1 (Bertsekas-Gallager [2]): A link is a bottle-
neck of flow i, if it is fully utilized and the rate of flow i
is no less than that of any other flow accessing the link.

Now we are ready to prove max-min fairness of JetMax.
Theorem 3: The stationary resource allocation of JetMax

(10)-(12) is max-min fair.
Proof: Assume in contradiction that JetMax is not max-

min fair in its steady state. Then, using max-min results in
Bertsekas-Gallager [2, pp. 527], there must exist flow r that
is not bottlenecked by any router in its path. Let l ∈ r be the
router that provides feedback to flow r. Then, from Lemma 3
we must have x∗r = (γlCl − u∗l )/N

∗
l .

Now that link l is fully utilized, according to Definition 1,
flow r is not bottlenecked by this link if and only if there
exists a flow s accessing l such that

x∗r < x∗s. (13)

Let flow s be constrained by router k where k 6= l. Then,
we have x∗s = (γkCk − u∗k)/N∗

k , which translates (13) into

γlCl − u∗l
N∗

l

<
γkCk − u∗k

N∗
k

. (14)

According to (12), however, the last inequality must force
the bottleneck of flow s to shift from router k to l, thus
contradicting the assumption that the system has reached
stationarity.

D. Capacity-Independent Convergence Rate
For the analysis of convergence rate, we focus on single-link

behavior of JetMax as it generally serves as a good indicator
of multi-link performance of this method. To formalize the
metric “convergence rate,” consider the following definition.

Definition 2: A protocol converges to (1− ε)-efficiency in
ne steps if the system starts with y(0) = 0 and ne is the
smallest integer satisfying

∀n ≥ ne :
y(n)
γC

≥ 1− ε (15)

Similarly, (1− ε)-fairness is reached in nf steps if the system
starts in the maximally unfair state and nf is the smallest
integer satisfying

∀n ≥ nf :
|xr(n)− x∗r |

x∗r
≤ ε, ∀r. (16)

The following result derives capacity-independent conver-
gence time of JetMax.

Theorem 4: On a single link, JetMax reaches both (1− ε)-
efficiency and (1− ε)-fairness in dlog|1−τ | εe steps.

Proof: Without loss of generality, assume homogeneous
feedback delay for each flow, consider any consistent bot-
tleneck assignment, and focus on link l. Next, combine the
sending rate (10) of all flows bottlenecked by l into the
aggregate rate yl(n) =

∑
r∈l xr(n). Solving the resulting

recurrence on yl(n), we obtain that the combined rate at time
n can be written as

y(n) = (1− τ)n/D(y(0)− γC) + γC, (17)

where D is the RTT of end-flows and y(0) = 0 is the initial
total rate of all flows. Combining the last equation with (15)
and writing n in terms of RTT steps, we get |1 − τ |ne ≤ ε,
which yields

ne = dlog|1−τ | εe. (18)

Next, assume that the system starts in the maximally unfair
state (i.e., one flow takes all bandwidth) and that unresponsive
flows are stabilized. Therefore, controller (10) becomes

xr(n) = xr(n−Dr)− τ
(
xr(n−Dr)− x∗r

)
. (19)

Solving this recurrence, we get

xr(n) = (1− τ)n/Dr (x(0)− x∗r) + x∗r , (20)

which shrinks to (1 − ε)-fairness in nf = dlog|1−τ | εe RTT
steps following the technique we used to obtain (18).

This theorem indicates that JetMax reaches full utilization
and converges to fairness over links of any capacity in the
same number of steps (simulations follow later in the paper).
Also observe from (17) and (20) that 0 < τ < 1 is required
to guarantee monotonicity of the controller. Thus, all JetMax
experiments in this paper use τ < 1.

Next, we provide implementation details of JetMax and
evaluate its performance via both ns2 simulations and Linux
experiments.

VI. IMPLEMENTATION

A. Estimating Number of Flows

The first issue encountered by a JetMax router l is how to
estimate the current number of responsive flows Nl(n). Our
solution to this problem is based on the following observations.
For a given flow r, assume that δk is the inter-packet departure
delay between packets k and k + 1 at the source and δ′k is
the corresponding inter-packet arrival delay at router l. Fig.
7(a) illustrates this notation and shows that the router’s control
interval ∆l generally starts and ends in-between two arriving
packets. We therefore have the following relationship between
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Fig. 7. (a) The relationship between control interval ∆l and inter-packet
interval δk; (b) JetMax (τ = 0.6 and γ = 1) with the naive bottleneck
switching scheme in T1.

the router’s control interval and the combined delay of all
packets from flow r observed during the interval

k+m−1∑

i=k+1

δ′i ≤ ∆l ≤
k+m∑

i=k

δ′i, (21)

where k + m is the packet that arrives immediately after the
end of the current interval. This further yields

lim
∆l→∞

∑k+m
i=k δ′i
∆l

= lim
∆l→∞

∑k+m−1
i=k+1 δ′i

∆l
= 1. (22)

Generalizing this relation to all Nl flows bottlenecked by l
and taking the summation of inter-packet delays over all such
flows, we have

lim
∆l→∞

∑Nl

r=1

∑k+m
i=k δ′i

∆l
= Nl. (23)

Even though in general δk does not equal to δ′k, sums of
these two metrics over a large number of packets are asymp-
totically equal, i.e., limm→∞

∑k+m
i=k δi = limm→∞

∑k+m
i=k δ′i,

since JetMax does not build up network queues or lose any
packets. This, combined with (23), leads to

lim
∆l→∞

∑Nl

r=1

∑k+m
i=k δi

∆l
= Nl. (24)

Using the last equation, we next develop a mechanism for
estimating Nl. Each user r includes in every packet k its inter-
packet departure delay δk = sk/xr(n), where sk is the size of
the packet and xr(n) is the current sending rate. The router
then sums up this field over all packets of all responsive flows
and averages this value over interval ∆l. From (24), we have
that the value Ñl =

∑Nl

r=1

∑m
i=0 δk+i/∆l converges to the

true number of flows Nl as ∆l grows to infinity. Note that this
method does not maintain state information about individual
flows and requires only one addition per arriving packet and
one division per interval ∆l.

B. Maintaining Membership of Flows

JetMax relies on the existence of an effective mechanism for
the routers to identify its responsive flows. To implement this
functionality, we allocate three one-byte router-ID fields in the
packet header: RT , RC , and RS . All IDs are in terms of hop
count from the source. The first field RT records the router
ID of the true (i.e., currently known to the source) bottleneck
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Fig. 8. (a) The scenario where the bottleneck switching occurs in the middle
of the router’s control interval; (b) JetMax (τ = 0.6 and γ = 1) with the
proper bottleneck switching scheme in T1.

link br for a given flow r; the second field carries the hop
number of the packet (which we call the current router-ID)
and is incremented by each router; and the last field contains
the suggested resource ID that is modified by the routers that
perceive their congestion to be higher than that experienced
by the flow at the preceding routers.

Upon each packet arrival, router l increments RC by one
and then checks whether its local packet loss pl(n) is greater
than the one carried in the packet. If both packet-loss values
are zero, the router checks if its local average rate gl(n) is
less than the one carried in the header. If either case is true,
the router overwrites the packet loss and average rate in the
packet header and additionally sets the packet’s field RS to the
value of RC obtained from the header. At the sending side,
if the suggested router RS carried in the acknowledgment is
different from the true router RT , the source notices that a
bottleneck switch is suggested and initiates a switch to RS .

C. Managing Bottleneck Switching

The above scheme in itself is insufficient to eliminate all
undesirable transient effects associated with bottleneck switch-
ing. To demonstrate this, we simulate the algorithms developed
so far in ns2 using the single-link topology T1, where we
change the join order of users to highlight some of the issues
arising in the naive implementation of JetMax. Specifically,
flows x2 and x1 join at time 0 and 30 seconds, and experience
round-trip delay 2020 and 220 ms, respectively. The simulation
result is plotted in Fig. 7(b), in which x2 initially overflows
the link’s capacity by 500% and then maintains non-zero
packet loss for over 15 seconds. As we discuss below, this
phenomenon arises as the result of improper management of
bottleneck switching.

For the illustration in Fig. 8(a) that explains this situation,
assume that user r changes its bottleneck to link l at time n
and the first packet carrying this new membership arrives into
router l at time t = n + D→

r,l, which is in the middle of the
router’s control interval ∆l. Notice that flow r is counted as
unresponsive prior to time t and responsive after that. This
inconsistent inference of membership results in an incorrect
estimation of both Nl and ul(n). Consequently, the resulting
feedback does not reflect the actual situation inside the router
and leads to oscillations in the transient phase.

Fortunately, this inconsistency exists only in the first interval



10

0 50 100
0

5

10

15

time (sec)

ra
te

 (
m

b/
s)

combined rate
individual rate

(a)

z 
Source port # Dest port # 

Flags 
 

   

User sequence # 

Packet loss:  
 

Fair rate:  
 

Proposed size:  
 

Inter-packet interval:                    

32 bits 

 

   

 

 

 
(b)

Fig. 9. (a) JetMax (τ = 0.6 and γ = 1) with proposed rate in T1; (b)
format of the JetMax packet header.

∆l after the switch. Thus, to properly manage bottleneck
switching, the end-user simply ignores the first non-duplicate
ACK after each switch and reacts to the following ones as
shown in Fig. 8(a). Simulation of the resulting JetMax is
illustrated in Fig. 8(b), in which the initial “spike” present
in Fig. 7(b) is eliminated and x2 monotonically converges to
efficiency. However, notice in the figure that JetMax exhibits
transient packet loss reaching as high as 33% when flow x1

joins the network. We explain and resolve this issue in the
next subsection.

D. Eliminating Transient Packet Loss

The reason of the transient packet loss shown in Fig. 8(b)
lies in the fact that flow x2 with a large RTT does not release
bandwidth quickly enough and is not aware of the presence of
any competing flows until after the overshoot has happened.

Proper implementation of JetMax that avoids this issue
relies on the concept of “proposed rate.” Suppose a JetMax
flow decides to increase its sending rate; however, it does
not know if the other flows in the system have released (or
are planning to release) enough bandwidth for this increase
not to cause packet loss. To resolve this uncertainty, the flow
that plans to increase its rate first “proposes” the new rate in
its packet header and waits for the router’s approval/rejection
decision based on the aggregate proposed rate at the router.
Flows not interested in rate increase continuously propose their
current sending rates and ignore the decisions they may be
receiving. Furthermore, flows planning to decrease their rates
can do so immediately as such actions can only reduce the
traffic at the bottleneck and improve the fairness of the system.

This strategy can be easily realized in practice. Assuming
that the k-th packet transmitted by the source has packet size
sk bits, the flow can convey its proposed rate x+

r (n) to the
router by including a virtual packet size s+

k in each header
such that

s+
k = sk

x+
r (n)

xr(n)
. (25)

By adding up the virtual packet sizes and normalizing them
by the interval length ∆l, the router can approximate the
aggregate proposed rate y+

l (n) =
∑

r∈l x
+
r (n) and thus accept

or decline y+
l (n) at the end of its control interval ∆l based

on whether y+
l (n) is greater than γlCl or not. Note that when

computing gl(n) in (9) and pl(n) in (11), the router simply
replaces ul(n) and yl(n) with their corresponding proposed

values u+
l (n) and y+

l (n). Therefore, no extra latency is intro-
duced by this mechanism and each approved rate adjustment
takes exactly one RTT (instead of two RTTs if (9)-(11) were
based on actual rates). The result of this implementation is
shown in Fig. 9(a), in which the system never overflows the
link and converges to fairness monotonically.

E. Calculating Reference Rate

Similar to the discussion of bottleneck switching in Section
VI-C, an inconsistency between the router’s and the end-
user’s reference rates arises when packets carrying the new
proposed rate x+

r (n) arrive in the middle of the router’s
control interval ∆l (see [28] for details). As proposed in
[28], this inconsistency can be resolved by utilizing the packet
sequence number and keeping track of the transmitted packets
at the source to recover the reference rate used by the router.
However, this results in significant computational overhead
and in certain cases may adversely impact the ability of the
sender to maintain high sending rates.

Another problem of the above method from [28] lies in
the fact that the obtained reference rate is a function of the
previous and current proposed rates. As the consequence, the
router may erroneously approve a proposed rate that is actually
above the link’s capacity or reject one even when the link is
under-utilized, both of which may further lead to transient rate,
or bottleneck, oscillations.

A much simpler approach that also significantly improves
the performance of reference rate calculation from [28] is to
leverage the fact that this inconsistency exists only in the first
control interval after the switch. Thus, by ignoring the first
non-duplicate ACK after the switch and responding to the
remaining ones, the end-user can directly use the most recently
proposed rate x+

r (n−Dr) (if approved by the router) as the
next actual rate xr(n) and apply x+

r (n − Dr) in its JetMax
equation (10) to compute the next proposed rate x+

r (n).

F. Packet Format

The header format of a JetMax packet is illustrated in Fig.
9(b). Besides the two-byte fields for port numbers, we allocate
a one-byte field to each of flags, RT , RC , and RS . Then, we
use four-byte numbers to record the user sequence numbers to
deal with out-of-order packets, packet loss p+

l = 1−γlCl/y+
l

computed based on the proposed rates, fair rate g+
l = (γlCl−

u+
l )/Nl also based on the proposed rates, user-proposed packet

size s+
k , and the inter-packet interval δk = sk/xr(n). Note that

only δk uses the actual sending rate of the flow.
Thus, the total size of a JetMax packet header is 28 bytes,

which is 4 bytes smaller than XCP’s 32 (12 XCP-specific bytes
and 20 bytes of the TCP header). In addition, JetMax’s per-
packet processing inside the router takes only three additions
for responsive flows (to calculate RC , w+

l , and Nl) and two
additions for unresponsive flows (to compute RC and u+

l ), as
opposed to XCP’s three multiplications and six additions [12].

VII. SIMULATIONS

A. Behavior in T1 and T2

We first repeat the ns2 simulations that earlier presented
stability and equilibrium problems to existing methods and
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Fig. 10. Performance of JetMax (τ = 0.6 and γ = 1) in ns2.

then examine how JetMax handles additional scenarios. Sim-
ulation code used in this paper is available in [10].

JetMax’s single-link performance under constant hetero-
geneous delay has already been shown in Fig. 9(a). We
next create a more complex dynamic system in which the
forward and backward feedback delays are non-deterministic
and time-varying. We first modify T1 by setting the round-trip
propagation delay of each link to 20 ms. We then generate
random feedback delays by forcing the receiver to pass its ac-
knowledgments through a local queue, which randomly delays
the packets before sending them to the source. The algorithm
applies a random d-second delay-spike to the head packet of
the queue every m successfully transmitted acknowledgments
and delays the remaining packets by 10 µs, where d and
m are uniformly distributed in [0.5, 1.0] and [5000, 10000],
respectively. This delay pattern ensures that the queue is
completely emptied before the next spike and approximates
periodic congestion in the Internet caused by flash crowds,
routing changes, and oscillatory behavior of cross-traffic flows.
Simulation results under this configuration are plotted in Fig.
10(a), in which JetMax is stable, max-min fair, and loss-free
as expected. It is also worthwhile to note that the flat regions
in Fig. 10(a) when both flows start consume three RTTs (i.e.,
2.6 seconds) and are necessary for the flows to deal with initial
router assignment and bottleneck selection.

Multi-link performance of JetMax in T2 is shown in Fig.
10(b), in which the protocol again demonstrates monotonic
convergence, max-min allocation of rates in the steady state,
and effective handling of bottleneck selection. Numerical
data from this simulation also show that the system never
overshoots the link’s capacity or loses any packets. Simulations
in a dozen of additional (more complex) multi-link topologies
combined with both fixed and random feedback delay produce
similar results and are omitted for brevity.

B. Effect of Mice Traffic

All of our simulations so far have been performed in
environments with long-lived flows. However, the real Internet
traffic is composed of a mixture of connections with a wide
range of transfer sizes, packet sizes, and RTTs [8]. Thus, to
obtain a better understanding of JetMax, we next test it in
more diverse scenarios.

Toward this end, we first consider a simple “dumb bell”
topology, where 2 long and 500 short JetMax flows share a
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Fig. 11. Single-link performance of JetMax (τ = 0.6 and γ = 1) in the
presence of mice flows.

single link of capacity 100 mb/s.The inter-arrival time of short
flows follows an exponential distribution with mean λ = 0.2
seconds and the duration of each flow is drawn from a log-
normal distribution [20] with mean ω = 10 seconds. From
basic queuing theory, we can infer that the expected number
of active short flows at any instant is L = ω/λ = 50, while the
instantaneous flow population is bursty as illustrated in Fig.
11(a). Moreover, we set the packet sizes of the short flows to
be uniformly distributed in [800, 1300] bytes and their RTTs
are selected uniformly randomly in [40, 1040] ms.

As seen in Fig. 11(b), one long flow starts first and quickly
reaches link utilization. After the second long flow joins 5
seconds later, the first flow is forced to release some of its
bandwidth, allowing both flows to converge to the fair share
of the link’s capacity (i.e., 50 mb/s). At time 15 seconds, mice
flows start joining and leaving the network. Since on average
there are 50 short and 2 long flows in the system, the expected
fair rate is 100/52 = 1.92 mb/s per flow. This prediction
is confirmed in Fig. 11(b), where the sending rates of the
long flows remain within [1.7, 2.0] mb/s during the period
between [30, 120] seconds. It is worth noting that the small
rate oscillations during this interval are not due to instability,
but the time-varying number of mice flows and changes to the
stationary point of the system.

To understand the throughput obtained by the short flows,
Fig. 12(a) shows the average rate of the mice flows. As
seen in the figure, the short flows also manage to obtain
their fair share (despite the short duration) and achieve rates
close to the expected 1.92 mb/s. As the number of active
connections decreases after time 120 seconds, sending rates
of the remaining short flows climb up and take over the
bandwidth of the departed flows.

We next test JetMax’s multi-link performance in the pres-
ence of mice flows. Consider a “parking lot” topology where a
long flow traverses two links R1 and R2 of capacities 400 and
100 mb/s (router control intervals ∆l are uniformly random
in [100, 300] ms), each of which is accessed by 500 short
flows. As shown in Fig. 12(b), the long flow starts first and
converges to the capacity of R2. Short flows accessing R1 start
joining the system after 15 seconds. Since R1 becomes more
congested than R2, the long flow switches the bottleneck to
R1 and maintains its sending rate within the neighborhood of
the average fair rate 400/52 = 7.7 mb/s. At time 80 seconds,
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Fig. 12. (a) Dynamics of the average throughput of short flows in a single-
link network; (b) Multi-link performance of the long JetMax flow (τ = 0.6
and γ = 1) in the presence of mice traffic.

500 short flows start arriving at R2. This compels the long
flow to change its bottleneck to R2 and converge to the new
fair rate. Finally, after all mice flows terminate, the long flow
re-stabilizes its sending rate at the capacity of R2.

C. Effect of Random Packet Drops

In this subsection, we examine the performance of JetMax
in lossy environments (e.g., wireless networks) with random
non-congestion-related packet drops. We first note that JetMax
is not sensitive to packet loss in the return path since out of the
ACKs generated in the same ∆l interval, only one is utilized
by the end-user to adjust its sending rate and all others are
ignored since they carry duplicate information. We verified
this in ns2 simulations, where the performance of JetMax in
T1 with 90% packet loss in its return path was almost identical
to that in the loss-free environment previously shown in Fig.
9(a). We omit the plot of this simulation for brevity and focus
on more interesting cases of forward-path loss.

To better see the effect of random loss in the forward path,
consider the ns2 simulation illustrated in Fig. 13(a), where we
use T1 and create 10% and 20% packet loss in the forward
paths of flows x1 and x2, respectively. As shown in the figure,
both fairness and stability are not affected by the forward-path
random loss; however, the stationary rates are. To explain this
phenomenon, assume 1−αr,l is the total (long-term average)
packet loss suffered by flow r along its path to router l. Using
Lemma 3, it is not difficult to obtain that

x∗r =
γlCl − u∗l

αlNl
, (26)

where the average loss rate αl is given by

αl =

∑
r∈Sl

αr,l

Nl
, (27)

and Sl is the set of responsive flows with respect to link l.
Accordingly, we have that the stationary rate x∗1 before the
second flow joins the network is 10/0.8 = 12.5 mb/s, while
afterwards both x∗1 and x∗2 are 5/0.85 = 5.82 mb/s, all of
which matches simulation results perfectly. Since only fraction
αr,l of flow r’s packets survive before arriving into link l, the
actual input rate x∗r,l of flow r at l is x∗r,l = αr,lx

∗
r . This,

combined with (26)-(27), leads to y∗l = γlCl−u∗l . Simply put,
although the combined sending rate perceived by the end-users
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Fig. 13. JetMax (τ = 0.6 and γ = 1) under random packet loss: (a) T1

with 10% forward-path loss; (b) “parking lot” topology with mice flows and
random loss.
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Fig. 14. Single-router Linux experiments with JetMax (τ = 0.6).

may exceed the link’s capacity, the bottleneck link is ideally
utilized and free from congestion-related packet loss.

In the next simulation, we test JetMax in the “parking lot”
topology used in Fig. 12(b) with 500 mice flows per link, 10%
random loss on each link in the forward path, and 50% loss
in the backward path. Fig. 13(b) shows the dynamics of the
long flow and confirms that JetMax is stable and convergent
to the equilibrium as expected.

VIII. LINUX PERFORMANCE

We finish the paper by examining performance and im-
plementation overhead of JetMax in Linux software routers.
The main goal of this study is to advance beyond 10 mb/s
cases studied in the literature [27] and achieve true gigabit
speeds where AQM algorithms would have the most impact
in practice. For the experiments reported in this paper, we
use two Linux routers shown in Fig. 14(a), where R1 is a
single Pentium 4 running at 3.4 GHz and R2 is a dual-Xeon
box running at 3 GHz. All network cards are 1 gb/s full-
duplex 1000BaseT Ethernet utilizing PCI-X slots in the their
respective computers. Network capacity in the figure is in
terms of transport-layer rates and is configured independently
for each link at 600 and 940 mb/s using different target
utilization levels γl.

We implemented JetMax in Linux 2.6.9 and built a sepa-
rately loadable JetMax module that was invoked by netfilter
hooks upon each packet queuing event. This module was a
standalone application that could be compiled, loaded, and un-
loaded without rebooting the system. During our investigation,
we found that recent Linux kernels do in fact support floating-
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Fig. 15. Dual-router Linux experiments with JetMax (τ = 0.6).

point operations (despite a popular belief to the contrary [27])
and that kernel timers are scheduled with remarkable accuracy
(i.e., 100 µs), both of which provide significant benefit to
AQM algorithms as they often require computation of feed-
back with high precision and accurate ∆-interval timing.

For the first test, we run five flows from host B to A in
Fig. 14(a) to examine the ability of JetMax to utilize high-
bandwidth links and support multiple senders/receivers per
end-host. Each flow starts with a 15-second delay and lasts for
75 seconds. The performance of JetMax for this setup is shown
in Fig. 14(b). Notice in the figure that the first flow converges
to 99% of 940 mb/s in 1.3 seconds and maintains its steady-
state rate without oscillations. As subsequent flows arrive,
they take 1.2 seconds (which is 6 control steps of ∆ = 200
ms units each) to achieve 0.99-fairness, where transitions
between the neighboring states take place monotonically and
the system’s combined rate never exceeds 940 mb/s. Similar
performance is observed when flows depart, where the system
takes approximately 1.2 seconds to re-stabilize each time.

We next test JetMax’s capability of managing bottleneck
switching in multi-link scenarios. We start flows x1 and x2

in Fig. 14(a) with a 20-second delay. Notice that x1 should
first converge to 600 mb/s, then shift its bottleneck to R2,
and eventually settle down at 470 mb/s. This is shown in Fig.
15(a), where the flows perform precisely as expected. When
flow x1 departs at t = 40, x2 quickly converges to 940 mb/s.

In our final setup, we repeat the same experiment except
that flow x3 joins at time t = 40 seconds. This allows the
bottleneck of flow x1 to shift twice during its stay in the
system. The corresponding simulation result is illustrated in
Fig. 15(b), where x1 and x2 first converge to 470 mb/s each
and maintain this rate until t = 40. When x3 joins, it quickly
settles down with x1 at 300 mb/s and x2 takes the remaining
bandwidth (i.e., 640 mb/s) on its link. Once x1 departs at
t = 60, x2 converges to 940 mb/s and x3 to 600 mb/s.
Notice that in this experiment router R2 delivers over 1.5 gb/s
combined throughput to end-flows without losing any packets.

IX. CONCLUSION

This paper examined several max-min AQM congestion
controllers and found that all of them exhibited undesirable
properties under certain criteria. A bigger problem, however,
discovered in this work was the susceptibility of XCP and
potentially other max-min systems with non-monotonic feed-

back to oscillation between bottlenecks and unstable behavior
in multi-router topologies.

We proposed a new method JetMax that was able to over-
come the identified issues with existing methods and admitted
multi-link stability (to the extent examined in this study),
fast convergence to efficiency/fairness, loss-free dynamics,
adjustable link utilization, and simple implementation.
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