
Computer Networks 53 (2009) 1027–1039
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Towards experimental evaluation of explicit congestion control

Yueping Zhang a,*, Saurabh Jain b, Dmitri Loguinov c

a NEC Laboratories America, Inc., Princeton, NJ 08540, United States
b Cisco Systems, Inc., San Jose, CA 95134, United States
c Texas A&M University, College Station, TX 77843, United States
a r t i c l e i n f o

Article history:
Received 26 March 2008
Received in revised form 8 August 2008
Accepted 8 December 2008
Available online 25 December 2008

Responsible Editor: X.S. Shen

Keywords:
Congestion control
Explicit-feedback
Linux experiment
1389-1286/$ - see front matter � 2008 Elsevier B.V
doi:10.1016/j.comnet.2008.12.004

* Corresponding author. Tel.: +1 609 951 2647; fa
E-mail addresses: yueping@nec-labs.com (Y. Zh

edu (S. Jain), dmitri@cs.tamu.edu (D. Loguinov).
a b s t r a c t

Innovative efforts to provide a clean-slate design of congestion control for future high-
speed heterogeneous networks have recently led to the development of explicit conges-
tion control. These methods rely on multi-byte router feedback and aim to contribute to
the design of a more scalable Internet of tomorrow. However, experimental evaluation
and deployment experience with these approaches is still limited to either low band-
width networks or simple topologies. In addition, all existing implementations are exclu-
sively applicable to either rate- or window-based protocols and are unable to study
performance of different protocols on a common platform. This paper aims to fill this
void by designing a unified Linux implementation framework for both rate- and win-
dow-based methods that does not incur any interference with the system’s network
stack or applications. Using this implementation, we implement and reveal several key
properties of four recent explicit congestion control protocols XCP, JetMax, RCP, and
PIQI-RCP using Emulab’s gigabit testbed with a ariety of simple yet representative net-
work topologies. Our experiments not only confirm the known behavior of these meth-
ods, but also demonstrate their previously undocumented properties (e.g., RCP’s
transient overshoot under abrupt traffic load changes and JetMax’s low utilization in
the presence mice flows).

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The explosive evolution of the Internet in both its size and
capacity has given rise to serious concerns [12,21,25,36] in
the research community about the effectiveness of existing
congestion control methods. As a consequence, significant
collaborative research initiatives (e.g., GENI [14] and FIND
[11]) are currently under way to design and develop a
materially different Internet that fundamentally improves
scalability, efficiency, and robustness of the current Inter-
net. Driven by these initiatives, recent efforts to design
next-generation congestion control have led to the emer-
gence of explicit-feedback control [6,19,34,35,39,41], which
. All rights reserved.

x: +1 609 951 2480.
ang), saujain@tamu.
significantly improves traditional end-to-end methods
[1–5,12,13,15,21,22,24,25,30,36] in terms of stability, scala-
bility, and fairness.

Explicit congestion control involves multi-byte conges-
tion notification from network devices and uses this infor-
mation in the control loop of end-users. Some of the
proposed protocols in this category are XCP [19], MaxNet
[34,35], EMKC [39], RCP [6], and JetMax [41]. Theoretical
and extensive ns2 [31] simulation results of XCP, RCP,
and JetMax indicate that they can provide a congestion-
control framework that achieves scalability in terms of
bandwidth and round-tip propagation delay, exhibits sta-
bility, and delivers inter-flow fairness. However, experi-
mental studies with these methods are limited to just
three papers: XCP over a single 10-mb/s bottleneck [37],
MaxNet in a WAN topology with a single 10-mb/s bottle-
neck [33], and JetMax in three scenarios with multiple
gigabit bottlenecks [40,41].

mailto:yueping@nec-labs.com
mailto:saujain@tamu.edu
mailto:saujain@tamu.edu
mailto:dmitri@cs.tamu.edu
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


1028 Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039
In this paper, we aim to advance research in explicit
congestion control by implementing a unified Linux frame-
work of explicit congestion control for both window-based
and rate-based methods and conducting a simple, yet
informative, comparison study using the developed soft-
ware in both single and multi-link topologies in real sys-
tems and gigabit networks. Our implementation can be
applied to design and testing of any new explicit conges-
tion control schemes, standardization of existing methods,
porting of these algorithms to other operating systems, and
experimentation in higher-capacity networks and a wider
variety of network topologies and traffic conditions.

To achieve our goal, we first implement a general expli-
cit-feedback congestion-control framework in the Linux
TCP/IP stack and populate it with four protocols XCP, Jet-
Max, and RCP. We also include in our study a recently pro-
posed method called Proportional-Integral Queue-
Independent RCP (PIQI-RCP),1 which addresses the draw-
backs of RCP (i.e., instability in certain networks and large
buffer requirements during flow join [17]). Conventionally,
rate-based protocols are implemented as application-level
libraries using UDP [41] or a combination of UDP and TCP
connections [32]. In contrast, we develop in this paper a
methodology for integrating rate-based protocols (e.g.,
RCP, JetMax, PIQI-RCP) into the window-based TCP/IP stack,
which allows existing TCP-based applications to use them
without modification. In addition, this methodology leads
to a unified platform that facilitates fair evaluation of rate-
based methods in comparison to their window-based coun-
terparts (e.g., XCP).

Using our implementation, we then perform a series of
Linux experiments to study the behavior of these protocols
and verify that our implementation matches ns2 simula-
tions shown in the original papers. Our results demon-
strate that these methods can indeed achieve high link
utilization, RTT-independent fairness (which is missing in
most end-to-end methods [36]), and zero steady-state
queueing delay and packet loss in both single and multi-
link topologies. Our experiments also lead to several novel
findings: (a) RCP can be much slower in its convergence
rate to the equilibrium compared to the other three meth-
ods; (b) JetMax loses link utilization in the presence of very
short (i.e., sub-RTT in duration) flows; and (c) RCP exhibits
oscillatory behavior with large overshoots and under-
shoots during abrupt changes in traffic load. We finish
the paper by explaining the cause of these drawbacks
and discussing the tradeoffs of the studied methods.

1.1. Contributions of the paper

We note that all protocols examined in the paper has
been extensively studied by their original authors using
ns2 simulations. However, in addition to proposing a no-
vel unified implementation framework and reporting sev-
eral newly discovered behaviors of these protocols, our
contributions also lie in the fact that we are able to ad-
dress many fundamental questions that ns2 simulations
cannot answer.
1 Pronounced ‘‘Picky RCP”.
(a) Precise timestamps: It has been a long standing issue
that the ideal timing of ns2 would not be possible to
replicate in practice and therefore Active Queue Man-
agement (AQM) congestion control would not be able
to compute its metrics (e.g., incoming rates) accurately
in real routers. Our work has shown that this is not the
case even with tiny 10-ms sampling windows and rela-
tively slow Linux software routers running a generic OS.
(b) Precise packet scheduling: ns2 can transmit packets
with arbitrary inter-packet delays; however, real net-
works cannot do that. Not only does this occur due to
random OS scheduling delays, but also interrupt moder-
ation [18]. Our work shows that even if sending rates are
fluctuating on very small time-scales, all studied AQM
techniques are robust enough to precisely estimate not
only the average arrival rates, but also to compute such
complex metrics as the number of responsive flows, vir-
tual packet loss, and smoothed end-to-end RTT.
(c) Performance: It has been argued that AQM conges-
tion control is too burdensome for real routers and is
not viable in high bandwidth networks. ns2 simula-
tions cannot be used to verify or disprove this conjec-
ture. Our results show that per-packet processing of
most studied methods is very small and can be accom-
modated even in software routers of gigabit networks
with virtually no additional CPU overhead.
(d) Contribution to the community: By sharing a working
implementation and explaining the details of how it can
be performed, one can actively promote the deploy-
ment of new protocols in real networks. On the other
hand, ns2 simulation code is often too detached from
reality and cannot be easily adopted into existing ker-
nels and architectures.

The rest of the paper is organized as follows: in Section
2, we briefly review the theory behind XCP, JetMax, RCP,
and PIQI-RCP. In Section 3, we discuss our implementation
framework and relevant modifications to the Linux kernel
for implementing these methods. In Section 4, we verify
our developed code and evaluate the performance of these
protocols in various scenarios. We conclude the paper in
Section 5.
2. Background

In explicit congestion control, network devices in the
path feed back multi-byte congestion information to end-
hosts so that the latter can timely and accurately adjust
their congestion window sizes or sending rates in response
to the current traffic situation in the network. Each router l
performs per-packet processing to compute the combined
input traffic rate and generate feedback signal plðtÞ. In this
paper, we focus on protocols relying on max–min feedback,
where each flow i with round-trip time (RTT) Di responds
only to feedback plðtÞ from the most congested router l in
its path, which is called the bottleneck router of user i.
The forward/backward delays of flow i to/from the bottle-
neck router l is denoted by D!i and D i , respectively.

Since its appearance in 2002, eXplicit Control Protocol
(XCP) [19] has become a de-facto standard for explicit con-



Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039 1029
gestion control in IP networks [8]. XCP is a window-based
framework, in which routers continuously estimate aggre-
gate flow characteristics (e.g., arrival rate, average RTT) and
feed back the desired changes to the congestion window to
each bottlenecked flow through its packet headers. Each
router employs a decoupled efficiency controller (EC) and
fairness controller (FC). Specifically, EC generates the de-
sired aggregate change in the congestion window of all
flows:

/ðtÞ ¼ adSðtÞ � bQðtÞ; ð1Þ

where a and b are constants, d is the average RTT, SðtÞ is the
available bandwidth, and QðtÞ is the persistent queue size
at the bottleneck link. FC then translates /ðtÞ into per-
packet feedback HiðkÞ, which is conveyed in the k-th ACK
of flow i. Upon arrival of each ACK, flow i sets its congestion
window WiðkÞ according to:

WiðkÞ ¼ maxðWiðk� 1Þ þ HiðkÞ; sÞ; ð2Þ

where s is the packet size. For homogeneous delay, it is
shown in [19] that XCP is stable in single-bottleneck topol-
ogies if 0 < a < p=4

ffiffiffi
2
p

and b ¼ a2
ffiffiffi
2
p

, where a and b are
constants used in the XCP control equation.

The remaining three schemes examined in the paper are
all rate-based. Specifically, in JetMax [41], flow i adjusts its
sending rate xiðtÞ using the following control equation:

xiðtÞ ¼ xiðt � DiÞ � sðxiðt � DiÞ � glðt � D i ÞÞ; ð3Þ

where 0 < s < 2 is the gain parameter and glðtÞ is the net-
work feedback, which can be interpreted as the estimated
fair rate at the bottleneck link:

glðtÞ ¼
clCl � ulðtÞ

NlðtÞ
; ð4Þ

where cl is the desired link utilization, NlðtÞ is the total
number of flows bottlenecked at l, and ulðtÞ is the aggre-
gate rate of flows receiving feedback from routers other
than l. It is proven in [41] that JetMax achieves delay-inde-
pendent stability, max–min fairness, zero packet loss, and
constant convergence speed to both efficiency and fairness.

The recently proposed Rate Control Protocol (RCP) [6] is
a rate-based max–min Active-Queue Management (AQM)
algorithm in which each link l periodically computes the
desired sending rate rlðtÞ for flows bottlenecked at l and in-
serts rlðtÞ into their packet headers. This rate is overridden
by other links if their suggested rate is less than the one
currently present in the header. Links decide the fair rate
rlðtÞ by implementing a controller

rlðtÞ ¼ rlðt � DÞ 1� D
dlCl

aðylðtÞ � ClÞ � b
qlðtÞ

dl

� �� �
; ð5Þ

where D is the router’s control interval, a and b are con-
stants, dl is a moving average of RTTs sampled by link l,
Cl is its capacity, and qlðtÞ is its queue length at time t.
Compared to XCP, RCP has lower implementation over-
head, offers quicker transient dynamics, and achieves
max–min fairness [6].

However, it is recently demonstrated that RCP suffers
instability in certain network topologies and prohibitively
large buffer requirement when flows dynamically join
the network [17]. To address these issues, a new protocol
called Proportional Integral Queue Independent RCP (PIQI-
RCP) is proposed in [17]. In PIQI-RCP, each router l employs
a Proportional Integral (PI) controller [27] to compute the
feedback RlðtÞ:

RlðtÞ ¼ Rlðt � TÞ 1þ j1elðtÞ þ j2elðt � TÞ½ �; ð6Þ

where T is the control interval, elðtÞ ¼ 1� ylðtÞ=ðclClÞ is the
error function of router l, Cl is its link capacity, and j1;j2

are constants. At the sending side, each flow i applies the
following control equation to adjust its sending rate xiðtÞ:

xiðtÞ ¼ xiðt � TÞ þ s1eiðtÞ þ s2diðtÞ; ð7Þ

where:

eiðtÞ ¼ Rlðt � D i Þ � xiðt � TÞ ð8Þ

is the error between the previous rate of user i and the rate
suggested by the network,

diðtÞ ¼ Rðt � D i Þ � Rlðt � T � D i Þ ð9Þ

is the difference between the two most-recent rates pro-
vided by router l to flow i, and s1; s2 are constants. Assum-
ing a1 ¼ a2 ¼ a, PIQI-RCP has been proven to be stable in a
single-bottleneck topology for flows with both homoge-
neous and heterogeneous RTTs [17].

An additional explicit-feedback methods are inspired by
Kelly’s optimization framework [20] and aim to improve
stability and convergence properties of traditional models
of additive packet loss [23]. This method is called Exponen-
tial Max–min Kelly Control (EMKC) [39], which elicits
packet-loss from the most-congested resource along each
flow’s path and uses a modified version of the discrete
Kelly equation to achieve delay-independent stability.
Although EMKC is proven to achieve delay-independent
stability and exponential convergence rate to efficiency, it
is demonstrated in [38] to suffer consistent packet loss in
the steady state. Thus, we do not include EMKC in this
study.

3. Implementation details

The first step in any experimental evaluation of conges-
tion control protocols is to design an efficient implementa-
tion that can perform well in high-speed networks. We
present our implementation details in this section and pro-
vide experimental results in the following section.

3.1. General caveats

For our implementation, we used Linux kernel 2.6.12,
which is available with the Fedore Core 4 Linux distribu-
tion [9]. To generate accurate feedback information, unlike
old versions [37], Linux now supports floating-point com-
putations, which can be enabled in the Makefile during
re-compilation of the kernel. An additional issue with ker-
nel-space floating-point calculations is that starting from
Linux kernel 2.6.0, kernel threads can be preempted, in
which case floating-point registers are not saved due to
additional memory overheads. To circumvent this preemp-
tion problem, portions of floating-point code must be pro-
tected, which is accomplished by locking the CPU using the
get_cpu() and put_cpu() kernel routines.



Data 

Data 

tcp_transmit_skb() tcp_v4_rcv () 

ip_local_deliver() ip_queue_xmit() 

Data AQM sender AQM receiver

TCP 

IP 

TCP

TCP AQM

TCP AQM IP 

AQM 

Fig. 1. Implementation methodology of explicit-feedback congestion
control protocols.

1030 Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039
Our implementation of the end-host and AQM-router
functionality is in the form of kernel driver modules, which
can be loaded/unloaded without rebooting the system.
Thus, the following proposed framework is not limited to
protocols examined in the paper (i.e., RCP, PIQI-RCP, Jet-
Max, and XCP), but can be easily applied to any other expli-
cit congestion control by modifying the end-host/router
kernel modules according to the protocols’ control equa-
tions. Since no change to Linux’ TCP/IP stack is required,
the resulting protocols can be conveniently installed and
tested across different machines with different Linux plat-
forms. We next start our discussion with implementation
detail of the end-host.

3.2. End-host

In all explicit-feedback protocols, the end-host uses
feedback explicitly calculated by intermediate routers to
adjust its sending rate (or congestion window). To facili-
tate routers’ feedback computation, the end-host may also
need to convey in the packet header certain congestion-re-
lated information (e.g., the current RTT estimate, conges-
tion window, sending rate, and inter-packet interval).
Inspired by the discussion in [8], we place between each
packet’s transport and network headers a new congestion
(AQM) layer, which is used to communicate congestion-re-
lated information and network feedback between end-
hosts and routers. Congestion headers can be conveniently
inserted into (or removed from) every outgoing (or incom-
ing) packet by the end-host module without interfering
with the operation in the TCP/IP layer. Thus, this method-
ology is versatile enough to be easily implemented in dif-
ferent operating systems without modifying their TCP/IP
stacks. In addition to the congestion header, TCP options
[33,37] and IP options [8] have also been suggested to com-
municate congestion-related information and feedback.
We refer interested readers to [8] for a comprehensive dis-
cussion of available strategies.

We next provide a detailed description of the end-host
module. We first assign each protocol a different protocol
number, which is used by the end-host module to register
(or unregister) with the underlying TCP/IP stack every time
it is loaded (or unloaded) in the kernel. As illustrated in
Fig. 1, every incoming packet from the Network Interface
Card (NIC) driver is first passed to the IP layer for process-
ing. Depending upon the protocol number associated with
the packet, the IP layer forwards the packet to the corre-
sponding AQM module that has registered for it. Then,
the sender module extracts feedback information from
the congestion header and invokes its control equation to
calculate the next sending rate or congestion window. If
the end-host is a data receiver, the module saves the feed-
back in the congestion header and echoes it back to the
sender as part of acknowledgement packets.

Analogously, every outgoing packet from the applica-
tion layer is first processed by the TCP layer, which dele-
gates packet transmission to the corresponding end-host
module for appending congestion header and filling in con-
gestion-related information. The packet is then handed
over by the end-host module to the IP layer for further pro-
cessing and finally passed to the NIC driver for transmis-
sion. Since most of the operations mentioned above are
performed inside the kernel-space, they are transparent
to applications. Thus, this design facilitates deployment
of these protocols in the future Internet without requiring
any changes to existing applications.

Since most operations mentioned above are done inside
the core kernel and modules, they are transparent to the
applications. This design facilitates deployment of proto-
cols in future networks without requiring any change to
current applications. We next provide more details about
the implementation of window-based and rate-based
schemes for end-hosts.

For window-based methods (e.g., XCP), minimal changes
in the current TCP/IP stack are required since TCP itself is
window-based. For rate-based schemes, however, addi-
tional modifications in the kernel are necessary to make
its original window-based data-transfer operation rate-
based. The idea is very simple – pace the transmission of
data packets at the rate computed by the end-host module’s
control equation. To accomplish this goal, we first seek to
understand how data is transmitted in the original TCP/IP
stack. Data sent by the application layer is sliced into chunks
of MSS (Maximum Segment Size) and queued into a buffer
by the transport layer, which appends its headers to packets
upon their departure. The normal behavior is to transmit
them instantaneously when the number of packets in flight
is less than the smaller of congestion window and the adver-
tised receiver window. Clearly, to pace packet transmission
and maintain a smooth sending rate, we disable this behav-
ior for all data packets. However, we allow control packets
(such as SYN, FIN, and RST) to be transmitted immediately
to ensure proper operation of the underlying TCP/IP stack.

In addition, we implement a control timer function to
periodically process the queue holding data packets. When
the timer expires, the timer interval and the number of
data packets to transfer during that interval are recalcu-
lated based on the designated data rate. Since a queued
data packet cannot be sliced for transfer, the control inter-
val is adjusted properly to take this into account in order
to maintain the exact sending rate. Moreover, even though
Linux supports delaying an event to a resolution of 1 ls,
we chose the minimum timer interval to be 1 ms since
small resolutions are achieved using CPU busy waiting
and waste a lot of CPU cycles. This also helps to reduce
the load on the system when thousands of connections
are invoked concurrently.



Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039 1031
3.3. Kernel tuning

The default Linux kernel network stack has many
parameters that require tuning in order to support gigabit
throughput for a wide range of RTTs. We increase the
maximum size of both socket read and write buffers
(rmem_max, wmem_max) from the default value of
131,071 bytes to 107,374,182 bytes, per-connection mem-
ory space defaults (tcp_rmem, tcp_wmem, tcp_mem) from
(4096; 87,380; 174,760) bytes to (4096; 107,374,182;
107,374,182) bytes, size of the backlog queue (net-
dev_max_backlog) in the receive path from 300 to
10,000 slots, and that of the transmit queue in the for-
ward path (txqueuelen) from 1000 to 10,000 slots. The
size of transmit and receive ring buffers of the NIC is in-
creased from 256 slots to the maximally possible value of
4,096 slots. We also disable the TCP segmentation offload
and checksum verification features of NICs to support the
new congestion header in our implementation. More
information about the Linux network stack can be found
in [16].

3.4. Congestion header

In explicit congestion control, congestion header is used
to communicate congestion-related information and feed-
back between the end-hosts and routers. The congestion
header size of XCP, JetMax, RCP, and PIQI-RCP in our imple-
mentation is 20, 32, 16, and 24 bytes, respectively. RCP has
Protocol Length Version Unused

RTT

X

Delta

Reverse

32 bits

20 bytes

3

Rate

Reverse

RTT

32 bits

16 bytes

Protocol Length Version Unused
2

Fig. 2. Congestion header formats for
the smallest congestion header size while JetMax has the
largest. Considering unidirectional data flow, i.e., data
packets flow only in one direction and the other direction
has only acknowledgement packets, the congestion header
size can be further reduced to 12, 20, 8, and 13 bytes.

Congestion headers of all four protocols are shown in
Fig. 2. All headers have the following common fields: (1)
Protocol is the protocol number of the Transport Layer
above them. For example, for TCP this value is 6; (2)
Length is the size in bytes of the congestion header be-
tween the TCP and IP header; (3) Version is the protocol
version of the AQM algorithm; and (4) Unused may be re-
quired later for possible protocol extensions. Its value
should be set to zero.

For XCP, the congestion header is the same as suggested
in [8]. RTT represents the end-host’s current estimate of
round-trip time measured in ms. Field X stores the inter-
packet interval of a flow measured in ms. Variable Delta

represents the desired throughput of a flow expressed in
bytes per ms. Routers modify this field to represent the
allocated change in throughput expressed in bytes per
ms. Data receivers copy the value stored in the Delta field
of received packets into the Reverse field and send it in
acknowledgement packets. The total size of XCP’s conges-
tion header is 20 bytes.

JetMax’s congestion header is elaborately discussed in
[41]. Field RT stores the router ID of the currently known
bottleneck router. The value of RC is incremented at every
router encountered in a flow’s path. It helps in calculating
Length Version Flags

Packet Loss

Rate

Proposed Size

Inter-Packet Interval

RT

Reverse Packet Loss

Reverse Rate

32 bits

2 bytes

Protocol

RC RS RS_F

Rate

Reverse Rate

RTT

Protocol Length Version Id

Interval Number

Reverse Interval Number

4 bytes

32 bits

XCP, JetMax, RCP, and PIQI-RCP.



ip_rcv() 

ip_local_deliver ()

Route 

NF_IP_LOCAL_IN 

NF_IP_PRE_ROUTING

NF_IP_FORWARDRoute 

ip_queue_xmit () 

ip_finish_output2 ()

NF_IP_POST_ROUTING

NF_IP_LOCAL_OUT 

IP 

Fig. 3. Illustration of netfilter hooks in Linux TCP/IP stack.

1032 Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039
the value of RT and RS. Field Packet Loss is used to store
the virtual packet loss rate at routers as the packet passes
through them. The router with the highest packet loss rate
is considered to be the bottleneck router of each flow. Bot-
tleneck switching takes place whenever a router has a
packet loss rate that is higher than inside the current bot-
tleneck router of a flow. Field RS stores the ID of the router
in case a bottleneck switch is detected. Data receivers copy
the value of RS in received packets into the RS_F field and
send it in acknowledgement packets. Field Rate is modi-
fied by bottleneck routers and is used to assign sending
rates to end-users. Field Proposed Size is used by flows
to propose a new sending rate and request it to be ap-
proved by the routers in their path. Field Inter-Packet

Interval stores the inter-packet interval for a flow ex-
pressed in ms. It assists router’s estimation of the number
of flows in the system. Data receivers copy the value of
Packet Loss and Rate in the received packets to Re-

verse Packet Loss and Reverse Rate field respectively
and send them in acknowledgement packets. The total size
of JetMax’s congestion header is 32 bytes.

In the case of RCP’s congestion header, the Rate field is
modified by routers to assign sending rates to flows. Field
RTT represents the end-host’s current estimate of the RTT
measured in msec. Data receivers copy the value stored
in the Rate field of the received packets into the Reverse
field and send it in acknowledgement packets. The total
size of RCP’s congestion header is 16 bytes.

PIQI-RCP’s congestion header is similar to that of RCP
except for the three additional fields Interval Number,
Reverse Interval Number, and ID. Field Interval

Number is assigned by routers to indicate their control
interval sequence numbers corresponding to the assigned
rate feedback value. This field is copied into the Reverse

Interval Number field while sending the acknowledge-
ment packets. Variable Interval Number helps the end-
host to identify the uniqueness of received feedback and
invoke the control algorithm once per router’s control
interval. Field ID is the ID of the bottleneck router. The to-
tal size of PIQI-RCP’s congestion header is 24 bytes.

3.5. Router

Routers in explicit congestion control algorithms need
to provide end-hosts with accurate feedback of the actual
congestion level. They gather information of the input traf-
fic rate and queue size using some per-packet processing
and then apply this information into a control equation
at regular intervals to generate feedback, which is injected
into every packet’s congestion header and further fed back
to the sender. This functionality has been implemented
using Qdisc in prior work [37]; however, to design a more
flexible framework, we take advantage of netfilter [28],
which is a powerful packet filtering framework in the Li-
nux network stack commonly used to develop firewall
software such as Iptables. Using netfilter, custom
user-defined functions known as ‘‘hooks” can be invoked
at five different places in the IP and Route modules of
the network stack.

Specifically, as illustrated in Fig. 3, before each incoming
packet into the IP layer enters the Route module, it can be
intercepted by hook function NF_IP_PRE_ROUTING. After
being processed by the Route module, packets to be deliv-
ered to the local host can be captured by NF_IP_LOCAL_IN
and those to be forwarded to another host can be inter-
cepted by NF_IP_FORWARD. Furthermore, outgoing packets
from the local host will pass through NF_IP_LOCAL_OUT
before being processed by the Route module. Finally, all
outgoing (both locally-generated and transit) packets can
be intercepted by NF_IP_POST_ROUTING. Thus, one can
implement operations at one or more of these five inter-
ception points to realize desired AQM functionalities. We
refer interested readers to [28] for more information of
netfilter and its hook functions.

In our implementation, we develop AQM modules of
RCP, PIQI-RCP, XCP, and JetMax in the hook function
NF_IP_POST_ROUTING, at which point all outgoing packets
from the local machine or incoming packets from other
network interfaces that need to be forwarded are pro-
cessed. We assign the hook function the lowest priority
so that it is invoked only after all the kernel routines for
processing the packet have been finished. The hook func-
tion collects information present in the congestion header
of packets, updates the module’s data structure with this
information, and inserts feedback into the packets. A timer
function is used to invoke the AQM-router’s control equa-
tion at regular intervals T and generate the feedback infor-
mation that is inserted into the packets during the
subsequent interval. The duration of this interval is
10 ms for RCP and PIQI-RCP, 100 ms for JetMax, and the
average RTT of all transit flows for XCP.

4. Experimental results

Using the implementation described above, we next pro-
vide an experimental examination of RCP, PIQI-RCP, XCP,
and JetMax. We first set gain parameters to those suggested
by the authors of each protocol: a ¼ 0:4 and b ¼ 0:226 for
XCP [19], s ¼ 0:6 for JetMax [41], a ¼ 0:1 and b ¼ 1 for
RCP [6], and s1 ¼ 0:01, s2 ¼ 0:1, a ¼ 0:5, and c ¼ 0:95 for
PIQI-RCP [17]. We then verify our implementation by repli-
cating ns2 plots shown in the original papers [6,17,19,41].
This is a strong indication that explicit congestion control
schemes, which rely on accurate router-generated feedback,
may indeed be a viable solution to future high-speed heter-
ogeneous networks and their theoretical properties (e.g.,



0 40 80 120 160
0

200

400

600

800

1000

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)

0 40 80 120 160
0

200

400

600

800

1000

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)

0 40 80 120 160
0

200

400

600

800

1000

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)

0 40 80 120 160
0

200

400

600

800

1000

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)

Fig. 4. Performance of three flows sharing a single-bottleneck link of capacity 1 gb/s and RTT 50 ms.

Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039 1033
stability and fairness) can be realized with simple, yet
highly efficient, implementations. In this paper, we do not
include all those results, but focus on several representative
scenarios that demonstrate key properties of these
protocols.

In all experiments discussed below, we report the
achievable throughput at the IP layer using packet size of
1500 bytes. Furthermore, all experiments are performed
in Emulab [7] using Dell PowerEdge 2850 servers with
3.0 GHz 64-bit Xeon processors, 2 GB of RAM, and multiple
gigabit network cards.

4.1. Single-bottleneck topology

We first examine the performance of these protocols in
high-speed networks with a single-bottleneck link. Con-
sider a dumb-bell topology where three flows pass through
a single-bottleneck link of capacity2 1 gb/s and round-trip
propagation delay 50 ms. Each flow is connected to the bot-
tleneck link through a different access link of capacity 1 gb/s
and negligible propagation delay. These flows start with a
30-s lag and each lasts for 90 s. Dynamics of the actual send-
ing rates3 of these protocols are illustrated in Fig. 4, in which
all methods are able to maintain high sending rates. In all
experiments presented in the paper, there is no packet loss
2 Though the link capacity is 1 gb/s, the achievable IP layer throughput is
970 mb/s.

3 The sending rate is averaged every two RTTs for JetMax, RCP, and PIQI-
RCP, and is approximated by the ratio between the congestion window and
smoothed RTT estimation (i.e., cwnd/srtt) for XCP.
and the sending rate is equal to the arrival rate at the
receiver.

We also monitor queuing dynamics inside the bottle-
neck router for the above experiment and find that XCP
and JetMax are successful in controlling their queue length
at low levels during the entire experiment. However, RCP
experiences significant queue buildup (up to 9415 packets)
whenever a new flow joins the system. This phenomenon
is attributable to the fact that when a flow starts, the bot-
tleneck router cannot tell whether it is a new flow, which
makes it assign the old fair rate to this flow. This causes
the input traffic rate to overshoot the bottleneck link
capacity and overflow the queue.

In contrast to RCP, PIQI-RCP is able to maintain low
queues since new flows entering the system start with a
small sending rate that increases gradually. This lends
the router enough time to converge to a new steady-state
feedback value without significantly overflowing the
queue. As shown in the figure, PIQI-RCP has a slightly smal-
ler throughput as compared to other methods since the
router control algorithm operates on the virtual link capac-
ity cC with c ¼ 0:95.

4.2. RTT unfairness

Unlike TCP Reno and many other end-to-end high-
speed TCP variants [36], explicit congestion control meth-
ods do not suffer from RTT unfairness. Flows bottlenecked
at a common router share equal rates irrespective of their
RTTs. In this experiment, we use a dumb-bell topology
where the bottleneck link has a capacity of 1 gb/s and



1034 Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039
propagation delay of 15 ms. The access link of flow x1 con-
necting to the bottleneck router is 1 gb/s and has a 95-ms
delay, while the access link of flow x2 connecting to the
bottleneck router has capacity of 1 gb/s and negligible de-
lay. Hence the RTT of flow x1 is 220 ms and that of flow x2

is 30 ms, i.e., they differ by a factor of 7.
Fig. 5 illustrates dynamics of the two flows. First con-

sider the scenario right after flow x1 starts at t ¼ 0. In the
case of XCP and JetMax, x1 achieves full link utilization al-
most instantaneously. In contrast, for RCP it takes x1 nearly
10 s to saturate the link. This is because when flow x1 ini-
tially joins the system, the computed rate at the router is
very low. As the flow starts sending traffic, the control
algorithm computes a new rate. It takes a number of iter-
ations or control cycles before the router’s control equation
gives a rate close to the link capacity. Then, flow x2 joins
the system at t ¼ 30 s. Again, XCP and JetMax converge
to fairness almost immediately, while RCP spends over
5 s on clearing the built-up queue and giving both flows
their fair share. As seen from part (d) of the figure, PIQI-
RCP exhibits better convergence properties than RCP. In
the case of PIQI-RCP, not only does x1 saturate the virtual
link capacity faster, but also does the system converge to
its steady state almost instantaneously after x2 joins the
network.

XCP, being a window-based protocol, emits packets into
the network in bursts. To support high throughput, flows
with larger RTT have to maintain a larger congestion win-
dow. Because of these two reasons, flows with small RTT
experience high variance in queuing delay. This can be eas-
0 20 40 60 80
0

200

400

600

800

1000

1200

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)

0 20 40 60 80
0

200

400

600

800

1000

1200

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)

Fig. 5. Performance in the case of flo
ily seen in Fig. 5a. Flow x2, with small RTT entering the sys-
tem at t ¼ 30 s, experiences small oscillations in its
sending rate when co-existing with flow x1.

4.3. Max–min fairness in XCP

Recall that JetMax, RCP, and PIQI-RCP all achieve prov-
able max–min fairness in the steady state. In contrast, as
demonstrated in [26], XCP is unable to guarantee max–
min fairness and may result in arbitrarily unfair stationary
resource allocation in certain topologies. We next verify
this by considering the topology shown in Fig. 6a, which
is composed of two links l1 and l2 and n2 flows where n
is a given constant. Flow x1 passes only through link l1

and the other n2 � 1 flows x2 � xn2 traverse both links. In
addition, link capacities are set to C1 ¼ 155 and
C2 ¼ C1ðn� 1Þ=n mb/s. For max–min fairness, the n2 � 1
long flows should be congested at link l2 with stationary
sending rates x�2 ¼ 155=½nðnþ 1Þ� mb/s and flow x1 should
converge its rate to x�1 ¼ 155=n mb/s.

To examine whether XCP achieves max–min fairness in
this topology, we plot in Fig. 6b ratios ~x1=x�1 and x̂1=x�1 for
different values of n, where ~x1 is the sending rate of the
flow predicted by the model developed in [26] and x̂1 is
the actual sending rate measured in our experiment. These
ratios indicate how close the system is to max–min fair-
ness, i.e., the closer the ratios are to 1, the more max–
min fair the system is. As shown in the figure, the system
indeed departs from the max–min fair state when the
number of flows increases. It is also clear that our experi-
0 20 40 60 80
0

200

400

600

800

1000

1200

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)

0 20 40 60 80
0

200

400

600

800

1000

1200

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)

ws with heterogeneous RTTs.



0 300 600 9000

0.2

0.4

0.6

number of sources sharing l1

al
lo

ca
te

d 
ra

te
 / 

m
ax

−m
in

 ra
te

theory
experiment

Fig. 6. Experimental verification of XCP’s max–min fairness issue identified in [26].

Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039 1035
mental results exactly match theoretical values predicated
by [26].

4.4. CPU usage at routers

Due to per-packet processing of congestion headers of
incoming packets, computation of feedback for every con-
trol interval, and stamping feedback on every outgoing
packet, it may be believed that explicit congestion control
would involve significant computational overhead, espe-
cially in high-capacity links, that can undermine their
deployment. However, our experiments show that the
overhead involved in these computations is virtually insig-
nificant. Specifically, for a gigabit transfer from one sender
to a receiver through a router, the average load on the rou-
ter is around 30% for all the protocols such as TCP, XCP, Jet-
Max, RCP, and PIQI-RCP. Hence, for 70% of the time, the
router is idle. Out of the 30% load, most CPU time is utilized
in the handling of IRQs (Hardware Interrupt Requests) and
Software Interrupts. This indicates that the computational
overhead involved is relatively small as compared to pro-
cessing the interrupts invoked to enqueue and dequeue
packets. This leads us to believe that explicit congestion
control can be efficiently incorporated into the fast path
of commercial routers and indeed offers a viable solution
to future high-speed heterogeneous Internet.

4.5. Performance with mice traffic

In this section, we study the performance of explicit-
feedback methods when the traffic is a combination of
short- and long-lived flows. The test setup in this case is a
dumb-bell topology with two senders and one receiver.
We start the long flow at t ¼ 0 from one of the two sender
machines and generate the mice traffic (i.e., short-lived
flows) at t ¼ 30 s from the other machine. Both sets of
flows pass through a common bottleneck link with capacity
1 gb/s and round-trip propagation delay 50 ms. The pattern
of mice traffic’s connection arrivals follows a Poisson pro-
cess with mean inter-arrival time of 0.2 s and Pareto dis-
tributed traffic size with shape parameter 1.4 and mean
of 100 packets. We note that as demonstrated in [10,29],
Poisson arrival can precisely model the arrival processes
of certain types of TCP connections (e.g., remote-login and
file transfer), but is not suitable for many other connection
arrivals. However, as explained below, results presented in
this section do not depend on the arrival pattern of mice
traffic and thus will hold for other traffic arrival processes.

As shown in Fig. 7a, in the case of XCP, the link utiliza-
tion for the first 30 s is close to 100% when only the long
flow is present in the system. But when mice traffic is
started, the link utilization drops. The input traffic at the
router fluctuates between 800 and 970 mb/s. The loss in
link utilization is caused by a part of the feedback sent by
the router to short flows not being utilized as they exit from
the system after transferring a small number of packets.
The system still operates at high utilization since XCP is
conservative in giving bandwidth to new flows entering
the system.

In the case of RCP, the link utilization remains very high
with the input traffic rate occasionally overshooting link
capacity by huge margins. This is evident from Fig. 7c.
For the first 30 s, the input traffic at the router is stable
around the link capacity. Fluctuations arise in the system
after mice traffic arrives into the system at t ¼ 30 s. New
flows entering the system are given the rate calculated in
the last control interval. As a result, when many flows en-
ter the system simultaneously, the input traffic rate ex-
ceeds link capacity and causes high queue levels. This
makes the router reduce the rate in the next control inter-
val in order to drain the queue, which temporarily reduces
link utilization. This behavior can be clearly seen at
t ¼ 55 s. Hence, in the case of RCP, large buffer size is rec-
ommended at routers to absorb the sudden rise in input
traffic rate and prevent large amounts of packet loss.

As shown in Fig. 7d, PIQI-RCP also achieves high link
utilization in this scenario. Throughout the experiment,
the input traffic is very close to the set virtual link capacity
without significant overshoots suffered by RCP. This is pri-
marily because new flows entering the system start with a
small sending rate that increases gradually upon receiving
feedback from the router.

In contrast to other methods, JetMax behaves very dif-
ferently in the presence of mice traffic. As seen in Fig. 7b,
up to t ¼ 30 s, JetMax operates at high utilization levels
when there is only one long flow in the system. However,
when mice traffic is started, the router perceives that a
lot of flows have entered the system, the reason being
the estimation of the number of flows Nl in the system is
independent of the input traffic and depends only upon



0 100 200 300
0

200

400

600

800

1000

1200

time (sec)

y l (m
b/

s)

0 100 200 300
0

200

400

600

800

1000

1200

time (sec)

y l (m
b/

s)
0 100 200 300

0

500

1000

1500

time (sec)

y l (m
b/

s)

0 100 200 300
0

500

1000

1500

time (sec)

y l (m
b/

s)

Fig. 7. Performance in the presence of background mice traffic generated in the system at t ¼ 30 s.

1036 Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039
the sum of inter-packet transmission delay set in the con-
gestion header by the flows. In the presence of mice traffic,
the system is unable to differentiate between short and
long flows and feeds back an equal rate to all of them. This
causes the long flow to significantly decrease its sending
rate, i.e., the long flow gets penalized in the presence of
short flows. For the current setup, the link utilization fluc-
tuates between 10-20% and most flows last less than one
RTT and therefore are unable to fully utilize the bandwidth
allocated by the router.

4.6. Abrupt change in traffic demand

In this experiment, we examine the performance of the
system with abrupt increase or decrease in traffic demand.
We use a dumb-bell topology with two machines on one
side of the bottleneck acting as senders and one machine
on the other side acting as the receiver. All access links
have capacity 1 gb/s, while the bottleneck link has capacity
100 mb/s and round-trip propagation delay 50 ms. At
t ¼ 0, one long flow is started for a 120 s. At t ¼ 30 s an-
other 10 flows abruptly enter the system. These 10 flows
continue to remain in the system until t ¼ 113 s, when
they all suddenly exit. The performance of these protocols
in this scenario is shown in Fig. 8.

From the figures, it can be clearly inferred that XCP and
JetMax are robust in the face of sudden increase or de-
crease in traffic demand. Link utilization drops momentar-
ily when a large number of flows join or leave the system
simultaneously, but the system converges very fast to its
steady state. RCP performs the worst in this case. At time
t ¼ 30 s, the average input traffic overshoots to around
300 mb/s and the queue size jumps to around 11,000 pack-
ets as shown in Fig. 9a. This is because at this time, the rou-
ter’s control algorithm has the per flow rate computed to
be 100 mb/s, which is given to all incoming flows. When
flows start sending at this rate, the queue at the router sig-
nificantly builds up. Next, with the rise in both the input
traffic rate and queue size, the router’s control equation
computes a very low rate. This rate, when assigned to the
flows, makes them drastically reduce their sending rate
and hence cause the drop in link utilization. The system re-
mains in this transient state (i.e., both overshoot and
undershoot) for about 7 s (i.e., 140� 50 ms ¼ 140 RTTs)
before reaching its steady state. In the case of PIQI-RCP,
the overshoot in average input traffic at t ¼ 30 s, as com-
pared to RCP, is significantly lower. As can be seen from
the figure, it increases to around 128 mb/s but the system
quickly converges to its steady state. The excessive traffic,
for a short period, gets absorbed in the network device
queues without increasing the IP layer queue.

4.7. Multiple-bottleneck topology

We next examine the performance of these protocols in
a parking-lot topology shown in Fig. 9b, which is composed
of two bottleneck links ðl1; l2Þ and three flows ðx1; x2; x3Þ.
Capacity of these two links are C1 ¼ 970 and C2 ¼ 800
mb/s, and the round-trip propagation delay of each link
is 50 ms. Flow x1 passes through both links, but flows x2

and x3 only utilize l1 and l2. Flow x1 starts first and con-
verges its rate to the capacity of l2, i.e., 800 mb/s. When
x2 joins 30 s later, x1 switches its bottleneck to l1 and both
flows converge to an even share of C1=2 ¼ 485 mb/s. As x3



0 50 100
0

20

40

60

80

100

120

time (sec)

in
pu

t t
ra

ffi
c 

ra
te

 (m
b/

s)
0 50 100

0

20

40

60

80

100

120

time (sec)

in
pu

t t
ra

ffi
c 

ra
te

 (m
b/

s)

0 50 100
0

100

200

300

400

time (sec)

in
pu

t t
ra

ffi
c 

ra
te

 (m
b/

s)

0 50 100
0

100

200

300

400

time (sec)

in
pu

t t
ra

ffi
c 

ra
te

 (m
b/

s)

Fig. 8. Performance under abrupt change in traffic demand.

0 50 100
0

5000

10000

time (sec)

qu
eu

e 
si

ze
 (p

ac
ke

ts
)

Fig. 9. (a) Queuing dynamics in RCP under abrupt change in traffic demand and (b) multiple-bottleneck topology.

Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039 1037
starts at time t ¼ 60 s, x1 changes its bottleneck back to l2

and converges its sending rate together with x3 to
C2=2 ¼ 400 mb/s. Flow x2 then utilizes the remaining
bandwidth on link l1, i.e., 570 mb/s. Finally, when x1 termi-
nates at t ¼ 90 s, flows x2 and x3 change their sending rates
to the capacity of each link. As demonstrated in Fig. 10a–d,
all methods are stable and max–min fair in this case with
their dynamics following the theoretical understanding.
In the case of PIQI-RCP, the sending rate of flows x1 � x3

are scaled by c ¼ 0:95 since the router controller operates
on the virtual link capacity cC with c ¼ 0:95.

4.8. Summary of results

From the above experimental results, we find all these
protocols to be scalable with the increase in link capacity
and round-trip propagation delay. Also, in the steady state,
they admit low queuing delay and almost zero packet loss
rate. XCP can maintain high link utilization and has low
buffering requirements, but does not achieve max–min
fairness in certain topologies and has the highest number
of per-packet computations (6 additions and 3 multiplica-
tions) at routers. JetMax performs well in almost all scenar-
ios using long flows, has the least buffering requirement,
and requires the smallest number of per-packet computa-
tions (3 additions per packet for responsive flows, 2 addi-
tions per-packet for unresponsive flows, and zero
multiplications). However, JetMax loses link utilization in
the presence of mice flows. RCP is able to maintain high link
utilization in most traffic scenarios and does a reasonable
amount of per-packet computations (2 additions and 2
multiplications). However, it has a very high buffering



0 40 80 120
0

200

400

600

800

1000

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)
0 40 80 1200

200

400

600

800

1000

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)

0 40 80 120
0

200

400

600

800

1000

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)

0 40 80 120
0

200

400

600

800

1000

time (sec)

se
nd

in
g 

ra
te

 (m
b/

s)

Fig. 10. Performance in a multiple-bottleneck link topology.

1038 Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039
requirement to avoid packet loss and shows significant
oscillations in the sending rate with abrupt increase or de-
crease in traffic demand. PIQI-RCP retains most of the
strengths of RCP, has significantly lower buffering needs,
and is more robust to abrupt surge in traffic demand.

5. Conclusion

In this work, we designed and implemented a novel
unified Linux framework for developing explicit conges-
tion control protocols. This framework allows for low-
overhead implementations of both window- and rate-
based congestion control algorithms without any interfer-
ence with Linux’s TCP/IP stack or the application layer.
This significantly facilitates testing and deployment of ex-
plicit congestion control and can be easily extended to
any new protocols. Using this implementation framework,
we evaluated several existing methods in gigabit net-
works. Besides verifying our implementation to be in con-
formance with original ns2 simulations, we also
discovered several novel drawbacks of RCP (i.e., slow con-
vergence to equilibrium and significant overshoot in the
presence of abrupt traffic load changes) and JetMax (i.e.,
low link utilization under mice traffic). Our results lead
us to conclude that PIQI-RCP performs the best among
the studied methods given the scenarios considered in
this work. In our future work, we would like to extend
our study considering different traffic patterns, evaluate
these protocols in networks with higher link capacities
as they become accessible to us for experimentation,
study their behavior in the presence of wireless links with
time-varying capacity, and propose improvements to
these protocols.

References

[1] J.S. Ahn, P.B. Danzig, Z. Liu, L. Yan, Evaluation of TCP vegas: emulation
and experiment, in: Proceedings of the ACM SIGCOMM, August 1995,
pp. 185–195.

[2] M. Allman, V. Paxson, W. Stevens, TCP congestion control, IETF RFC
2581, April 1999.

[3] A.A. Awadallah, C. Rai, TCP-BFA: buffer fill avoidance, in: Proceedings
of the IFIP HPN, September 1998, pp. 575–594.

[4] S. Bhandarkar, S. Jain, A.L.N. Reddy, Improving TCP performance in
high bandwidth high RTT links using layered congestion control, in:
Proceedings of the PFLDnet, February 2005.

[5] L. Brakmo, S. O’Malley, L. Peterson, TCP vegas: new techniques for
congestion detection and avoidance, in: Proceedings of the ACM
SIGCOMM, August 1994, pp. 24–35.

[6] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, N. McKeown, Processor
sharing flows in the internet, in: Proceedings of the IEEE IWQoS, June
2005.

[7] Emulab. [Online] Available: <http://www.emulab.net/> (accessed
01.08.2008).

[8] A. Falk, Y. Pryadkin, D. Katabi, Specification for the Explicit Control
Protocol (XCP), IETF Internet Draft, July 2007.

[9] Fedora Core. [Online] Available: <http://fedora.redhat.com/>
(accessed 01.08.2008.

[10] A. Feldmann, A.C. Gilbert, W. Willinger, Data networks as cascades:
investigating the multifractal nature of internet WAN traffic, in:
Proceedings of the ACM SIGCOMM, August 1998, pp. 42–55.

[11] FIND. [Online] Available: <http://find.isi.edu/> (accessed 01.08.2008.
[12] S. Floyd, High-speed TCP for large congestion windows, IETF RFC

3649, December 2003.
[13] S. Floyd, T. Henderson, The NewReno modification to TCP’s fast

recovery algorithm, IETF RFC 2582, April. 1999.
[14] GENI. [Online] Available: <http://www.geni.net/> (accessed 01.08.

2008.
[15] M. Gerla, M.Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, S. Mascolo,

TCP westwood: congestion window control using bandwidth

http://www.emulab.net/
http://fedora.redhat.com/
http://find.isi.edu/
http://www.geni.net/


Y. Zhang et al. / Computer Networks 53 (2009) 1027–1039 1039
estimation, in: Proceedings of the IEEE GLOBECOM, November 2001,
pp. 1698–1702.

[16] T. Herbert, The Linux TCP/IP Stack: Networking for Embedded
Systems, Charles River Media, 2004.

[17] S. Jain, D. Loguinov, PIQI-RCP: design and analysis of a rate-based
explicit congestion control, in: Proceedings of the IEEE IWQoS, June
2007.

[18] S.-R. Kang, D. Loguinov, IMR-pathload: robust available bandwidth
estimation under end-host interrupt delay, in: Proceedings of the
PAM, April 2008, pp. 172–181.

[19] D. Katabi, M. Handley, C. Rohrs, Congestion control for high
bandwidth delay product networks, in: Proceedings of the ACM
SIGCOMM, August 2002, pp. 89–102.

[20] F.P. Kelly, A.K. Maulloo, D.K.H. Tan, Rate control for communication
networks: shadow prices proportional fairness and stability, J. Oper.
Res. Soc. 49 (3) (1998) 237–252.

[21] T. Kelly, Scalable TCP: improving performance in high-speed wide
area networks, Comput. Commun. Rev. 33 (2) (2003) 83–91.

[22] R. King, R. Riedi, R. Baraniuk, Evaluating and improving TCP-Africa:
an adaptive and fair rapid increase rule for scalable TCP, in:
Proceedings of the PFLDnet, February 2005.

[23] S. Kunniyur, R. Srikant, Stable, scalable fair congestion control and
AQM schemes that achieve high utilization in the internet, IEEE
Trans. Automat. Contr. 48 (11) (2003) 2024–2029.

[24] A. Kuzmanovic, E. Knightly, TCP-LP: a distributed algorithm for low
priority data transfer, in: Proceedings of the IEEE INFOCOM, April
2003, pp. 1691–1701.

[25] D. Leith, R. Shorten, H-TCP protocol for high-speed long distance
networks, in: Proceedings of the PFLDnet, February 2004.

[26] S.H. Low, L.L.H. Andrew, B.P. Wydrowski, Understanding XCP:
equilibrium and fairness, in: Proceedings of the IEEE INFOCOM,
March 2005, pp. 1025–1036.

[27] I.J. Nagrath, M. Gopal, Control Systems Engineering, John Wiley &
Sons, 2004.

[28] Netfilter. [Online] Available: <http://www.netfilter.org/> (accessed
01.08.2008.

[29] V. Paxson, S. Floyd, Wide area traffic: the failure of poisson modeling,
IEEE/ACM Trans. Netw. 3 (3) (1995) 226–244.

[30] I. Rhee, L. Xu, CUBIC: a new TCP-friendly high-speed TCP variant, in:
Proceedings of the PFLDnet, February 2005.

[31] Network Simulator. [Online] Available: <http://www.isi.edu/nsnam/
ns/> (accessed on 01.08.2008.

[32] H. Sivakumar, R.L. Grossman, M. Mazzucco, Y. Pan, Q. Zhang, Simple
available bandwidth utilization library for high-speed wide area
networks, J. Supercomput. (2003).

[33] M. Suchara, R. Witt, B. Wydrowski, TCP MaxNet–implementation
and experiments on the WAN in lab, in: Proceedings of the IEEE
ICON, November 2005, pp. 901–906.

[34] B.P. Wydrowski, L.L.H. Andrew, I.M.Y. Mareels, MaxNet: faster flow
control convergence, Networking 3042 (2004) 588–599.

[35] B.P. Wydrowski, M. Zukerman, MaxNet: a congestion control
architecture for maxmin fairness, IEEE Commun. Lett. 6 (11)
(2002) 588–599.

[36] L. Xu, K. Harfoush, I. Rhee, Binary increase congestion control (BIC)
for fast, long distance networks, in: Proceedings of the IEEE
INFOCOM, March 2004, pp. 2514–2524.

[37] Y. Zhang, T. Henderson, An implementation and experimental study
of the eXplicit Control Protocol (XCP), in: Proceedings of the IEEE
INFOCOM, March 2005, pp. 1037–1048.

[38] Y. Zhang, S.-R. Kang, D. Loguinov, Delay-independent stability and
performance of distributed congestion control, IEEE/ACM Trans.
Netw. 15 (6) (2007) 838–851.
[39] Y. Zhang, S.-R. Kang, D. Loguinov, Delayed stability and performance
of distributed congestion control, in: Proceedings of the ACM
SIGCOMM, August 2004, pp. 307–318.

[40] Y. Zhang, D. Leonard, D. Loguinov, JetMax: scalable maxmin
congestion control for high-speed heterogeneous networks,
Elsevier Comput. Netw. 52 (6) (2008) 1193–1219.

[41] Y. Zhang, D. Leonard, D. Loguinov, JetMax: scalable max–min
congestion control for high-speed heterogeneous networks, in:
Proceedings of the IEEE INFOCOM, April 2006, pp. 1–13.

Yueping Zhang received the B.S. degree in
computer science from Beijing University of
Aeronautics and Astronautics, Beijing, China,
in 2001 and the Ph.D. degree in computer
engineering from Texas A&M University, Col-
lege Station, USA, in 2008. He is currently a
research staff member at NEC Laboratories
America, Inc. His research interests include
congestion control, delayed stability analysis,
active queue management (AQM), router
buffer sizing, and peer-to-peer networks.
Saurabh Jain received the B.S. degree in
electronics and communication engineering
from Indian Institutes of Technology, Roorkee,
India, in 2003 and the M.S. degree in electrical
and computer engineering from Texas A&M
University, College Station, TX, in 2007. He is
currently with Cisco Systems, Inc. His
research interests include Internet congestion
control and performance analysis.
Dmitri Loguinov received the B.S. degree
(with honors) in computer science from
Moscow State University, Moscow, Russia, in
1995 and the Ph.D. degree in computer sci-
ence from the City University of New York,
New York, in 2002. Since September 2007, he
has been an Associate Professor of computer
science with Texas A&M University, College
Station. His research interests include peer-
to-peer networks, Internet video streaming,
congestion control, image and video coding,
Internet traffic measurement and modeling.

http://www.netfilter.org/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

	Towards experimental evaluation of explicit congestion control
	Introduction
	Contributions of the paper

	Background
	Implementation details
	General caveats
	End-host
	Kernel tuning
	Congestion header
	Router

	Experimental results
	Single-bottleneck topology
	RTT unfairness
	Max–min fairness in XCP
	CPU usage at routers
	Performance with mice traffic
	Abrupt change in traffic demand
	Multiple-bottleneck topology
	Summary of results

	Conclusion
	References


