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On Efficient External-Memory Triangle Listing
Yi Cui, Di Xiao, and Dmitri Loguinov

Abstract—Discovering triangles in large graphs is a well-
studied area; however, both external-memory performance of
existing methods and our understanding of the complexity
involved leave much room for improvement. To shed light on this
problem, we first generalize the existing in-memory algorithms
into a single framework of 18 triangle-search techniques. We
then develop a novel external-memory approach, which we
call Pruned Companion Files (PCF), that supports operation of
all 18 algorithms, while significantly reducing I/O compared
to the common methods in this area. After finding the best
node-traversal order, we build an implementation around it
using SIMD instructions for list intersection and PCF for I/ O.
This method runs 5-10 times faster than the best available
implementation and exhibits orders of magnitude less I/O. In
one of our graphs, the program finds 1 trillion triangles in 237
seconds using a desktop CPU.

I. I NTRODUCTION

Enormous size of modern datasets poses scalability chal-
lenges for a variety of algorithms and applications. One partic-
ular area affected by the explosion of big data isgraph mining
and, more specifically, motif discovery in large networks.
Motifs are important building blocks of real-life networksin
biology, physics, chemistry, sociology, and computer science
[14], [16], [26], [27], [39], [42]. They capturelocal com-
position of graphs and allow reasoning about the underlying
construction processes that result in the observed phenomena.
Three-node cycles (i.e., triangles) have received the most
attention, attracting research interest for over 35 years [20]
and developing many applications in graph theory [4], [28],
[40], [41], [43], bioinformatics [21], [27], computer graphics
[12], databases [3], and social networks [5], [6], [10], [46].

Until recently [44], little was known about the CPU cost
of triangle listing, its behavior under different acyclic orienta-
tions, and comparison across the different methods. Much of
the previous work [1], [17], [24] utilizedO(.) bounds that were
exactly the same for all involved methods (i.e., vertex/edge
iterators). As it turns out [44], there are18 algorithms for
traversing the nodes of a triangle and handling the neighbors,
which can be reduced to four equivalence classes from the
CPU-cost perspective, each with its own optimal orientation.
However, external-memorytriangle listing remains largely
unexplored. Given the same18 options, how many different
I/O classes are there, what node permutations do they require,
and is it possible for some methods to simultaneously achieve
optimal CPU and I/O complexity using the same orientation?

If m is the number of edges andM is RAM size, previous
implementations [2], [13], [17], [22] operate with a simple
I/O model that requires reading the graphm/M times, for a
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total overhead ofm2/M . In theoretical development, better
bounds can be achieved using random coloring of the graph
[18], [30]; however, there are no implementations that use
this method and the constants inside its boundO(m1.5/

√
M)

are unknown. What makes these two approaches similar is
that their performance does not depend on the traversal order
within each triangle or preprocessing manipulations applied to
the graph, which leaves little for additional investigation.

Instead, we show below that there exists a technique for
graph partitioning that maps the18 triangle-listing algorithms
into six distinct classes, each of which possesses different
I/O performance characteristics that depend on the acyclic
orientation of the original graph. We call this framework
Pruned Companion Files(PCF) and demonstrate how all18
methods can be combined under an umbrella of a single
algorithm. Taking into account both I/O and CPU cost [44], we
discover16 unique ways to perform triangle listing in external
memory, none of which were known before.

While accurate modeling of I/O complexity is difficult,
we are still able to identify the best partitioning scheme,
deduce its optimal permutation, and prove that the amount
of data read from disk ismin(m2/M,O(m)) in random
graphs with Pareto degree sequences, where shape parameter
α > 4/3. Note that this is the first result with linear I/O bounds
under constant memory size. In contrast, both of the previous
techniques [17], [30] requireM to scale at least as fast asm to
achieve the same performance. We also demonstrate that our
partitioning scheme keeps the number of list intersectionsand
table lookups unchanged compared to RAM-only methods,
which means that its runtime remains constant for allM as
long as I/O is not the bottleneck.

To test these developments in practice, we build an im-
plementation that combines PCF with a novel application of
SIMD to edge iterator. Our solution, which we call PaCiFier,is
benchmarked on a variety of real-world graphs, including four
new ones that have not been examined for triangles before. Our
densest graph contains over1T triangles, while the largest has
over100B edges. Results show that PaCiFier is1−2 orders of
magnitude faster than the best vertex iterator [17] and5− 10
times faster than the best edge iterator [13]. More importantly,
it achieves10 − 50 times lower I/O complexity when RAM
size is small compared tom.

II. GENERALIZED ITERATORS(GI)

Recent work [44] created a taxonomy of18 vertex and
edge iterators. They use figures to highlight the intuitive
differences among the methods; however, the lacking formal
treatment makes it difficult to extend these results to external-
memory scenarios. We therefore introduce a new description
framework, which we callGeneralized Iterators(GI), that
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explicitly encodes the traversal order in each triangle. This
allows us to parameterize a single algorithm to cover execution
of all alternative methods.

A. Redundancy Elimination

Naive triangle-listing algorithms do not enforce order
among the neighbors, which results in extremely inefficient
operation. Besides discovering each triangle3! = 6 times,
there are serious repercussions stemming from the fact thatthe
number of pairs checked at each node is a quadratic function
of its degree. Even on relatively small graphs, this can leadto
1000× more overhead than necessary [44].

The redundancy can be eliminated by converting the graph
into a directed version, in which quadratic complexity ap-
plies only to the out-degree (or in-degree, depending on the
method), whose second moments are kept significantly smaller
than those of undirected degree. Assume the nodes are first
shuffled using some algorithm and sequentially assigned IDs
from sequence(1, 2, . . . , n). This creates a total order across
the nodes and is often calledrelabeling. A directed graph is
then created, where out-neighbors of each node have smaller
labels and in-neighbors have larger. This step is calledacyclic
orientation. Finally, in the directed graph, triangles∆xyz are
listed in ascending order of the new labels, i.e.,x < y < z.

This procedure generalizes all previous efforts in the field,
some of which perform only relabeling [24], [34], [36] and
others only orientation [2], [13], [17], [22], [34], [37], [38].
The drawbacks of not doing both are discussed in [44].

B. Relabeling

Consider a simple (i.e., no self-loops) undirected graphG =
(V,E) with n nodes andm edges. Defineθ to be a permutation
of node IDs that starts with the ascending-degree order and
re-writes the label of each node in positioni to θ(i). Among
then! possibilities, there are several named permutations [44],
which includeascending-degreeθA(i) = i, descending-degree
θD(i) = n+ 1− i, round-robin

θRR(i) =

{

⌈n+i
2 ⌉ i is odd

⌊n−i
2 ⌋+ 1 i is even

, (1)

and complementary round-robinθCRR(i) = θRR(n + 1 − i),
each of which optimizes a different class of triangle-listing
methods [44]. The difference in CPU cost between the best and
worst permutations can be orders of magnitude. Even worse,
this ratio may be unbounded asn → ∞ [44]. For a given
permutationθ, define itsreverseto be θ′(i) = n + 1 − θ(i).
This is a useful concept that allows detection of equivalence
classes later in the paper.

SupposeGθ is the relabeled graph under permutationθ. Its
construction typically requires sorting the degree sequence of
G usingθ, re-writing the source nodes of each list, inverting
the graph using external memory, and re-writing the source
nodes again. It is also common during this process to drop all
nodes with degree one since they cannot be part of a triangle.
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Fig. 1. Search-order operators in triangle listing.

C. Orientation

Define Ni to be the adjacency list of nodei in Gθ and
di = |Ni| to be its undirected degree. In general,i /∈ Ni

because the graph is simple. Suppose the neighbors within
eachNi are sorted ascending by their ID andGθ is kept
as a sequence of pairs{(i, Ni)}ni=1. Our next goal is to
define notation that allows splitting arbitrary sets into values
smaller/larger than a given pivot. The most immediate use is
construction of in/out lists in the directed graph, but we will
encounter other applications shortly.

SupposeN is the set of natural numbers and consider two
finite setsS, T ⊆ N. Then, let

(T, S)+ = {j ∈ S|j ≤ max(T )} (2)

be a subset ofS that is bounded from above by the largest
value inT . WhenT consists of a single elementi, we simply
write (i, S)+. Similarly, define

(T, S)− = {j ∈ S|j ≥ min(T )} (3)

to contain elements ofS no smaller than the minimum inT .
Then, the out-list ofi in the oriented graph is given byN+

i :=
(i, Ni)

+, while the corresponding in-list byN−

i := (i, Ni)
−.

When the+/− operator is specified by a variableϕ, i.e.,
(T, S)ϕ, we say thatS is ϕ-oriented byT . This notation can
be extended to other graph concepts. For example,Gϕ

θ consists
of tuples{(i, Nϕ

i )}, wherei is the source node andNϕ
i is its

neighbor list, anddϕi := |Nϕ
i | is the corresponding degree in

the directed graph. Define1−ϕ to be theinverseof operator
ϕ, i.e., a plus becomes a minus and vice versa. It is then not
difficult to see thatGϕ

θ′ is identical toG1−ϕ
θ , i.e., reversing

the permutation is equivalent to inverting the orientation.

D. Search Order

Given six different ways to permute the nodes of a triangle,
we next show howϕ allows us to describe the various
trajectories during search that result in exactly one listing
of each triangle. Supposei is the first visited node by an
algorithm, j ∈ Ni is the second, andk ∈ Ni is the last
one. The larger/smaller relationship between these nodes is
what differentiates the various traversal orders. All possible
combinations are captured by Fig. 1(a), where each dashed
arrow represents aϕ-relationship between the two neighboring
nodes. If labeled with a plus, a dashed arrow indicates that
the source node islarger than the destination. The roles are
reversed when the label is a minus. Note that unlike our earlier
notation∆xyz, where the orderx < y < z was fixed, the



3

Algorithm 1: Generalized vertex iterator

1 Function GVI (ϕ̄)
2 build hash table H with all directed edges from G

ϕ3

θ
3 for i = 1 to n do
4 X = (i, Ni)ϕ1 ⊳ neighbors of i in G

ϕ1

θ (hit list)
5 Y = (i, Ni)

ϕ2 ⊳ same in G
ϕ2

θ (local list)
6 foreach j ∈ X do
7 Y ′ = (j, Y )ϕ3 ⊳ set Y ϕ3-oriented by j
8 foreach k ∈ Y ′ do
9 if (j, k) ∈ H then report triangle ∆sort(ijk)

Algorithm 2: Generalized lookup edge iterator

1 Function GLEI (ϕ̄)
2 for i = 1 to n do
3 X = (i, Ni)ϕ1 ⊳ neighbors of i in G

ϕ1

θ (hit list)
4 Y = (i, Ni)ϕ2 ⊳ same in G

ϕ2

θ (local list)
5 add elements of Y to hash table H
6 foreach j ∈ X do
7 Z = (j,Nj)ϕ3 ⊳ neighbors of j in G

ϕ3

θ (remote list)
8 Z′ = (i, Z)ϕ2 ⊳ set Z ϕ2-oriented by i
9 foreach k ∈ Z′ do

10 if k ∈ H then report triangle ∆sort(ijk)

11 empty H

relationship between(ijk) is fluid, i.e., changed by parameter
ϕ̄ = (ϕ1, ϕ2, ϕ3).

Once theϕ̄ vector is chosen, the dashed arrows become
oriented and are replaced with solid lines that specify greater-
than relationships among the nodes. One example is shown in
Fig. 1(b), wherek > i > j. A simple rule to remember is that
a+ keeps the direction of the dashed arrow, while a− reverses
it. Out of the23 = 8 possibleϕ̄ vectors, two produce loops,
such as the one in Fig. 1(c). These are invalid because they
lead to a contradiction, e.g.,k > i > j > k. The remaining
six combinations are studied next.

E. Algorithms

In Algorithm 1, we create thegeneralized vertex iterator
(GVI) that can handle all valid̄ϕ vectors. The method starts
by populating all directed edges fromGϕ3

θ into a hash table.
The reason for usingϕ3 is that the algorithm performs lookups
of (j, k) againstH , which we know from Fig. 1(a) have
relationshipϕ3. Then, for each nodei, GVI creates two sets –
thehit list X , from whichj will be drawn, and thelocal list Y
consisting of neighborsk that may complete a triangle. From
Line 6, the algorithm examines every nodej ∈ X , orients
Y usingϕ3 with respect toj, and checks the resulting pairs
(j, k) against the hash table. Note that Line 7 is important for
eliminating the possibility of redundancy.

The next technique is thegeneralized lookup edge iterator
(GLEI) whose operation is presented in Algorithm 2. The
main difference begins in line 5, where GLEI populates the
local list Y into a small hash tableH . For eachj ∈ X , the
method constructs aremote listZ consisting ofj’s neighbors
according toϕ3, orients it byϕ2 with respect toi, and checks
its members againstH . GLEI and GVI perform the same
number of memory hits [44], with the only difference being
the time needed to clear the hash table in Line 11.

The last method is thegeneralized scanning edge iterator
(GSEI), which is described by Algorithm 3. It relies on

Algorithm 3: Generalized scanning edge iterator

1 Function GSEI (ϕ̄)
2 for i = 1 to n do
3 X = (i, Ni)ϕ1 ⊳ neighbors of i in G

ϕ1

θ (hit list)
4 Y = (i, Ni)ϕ2 ⊳ same in G

ϕ2

θ (local list)
5 foreach j ∈ X do
6 Z = (j,Nj)ϕ3 ⊳ neighbors of j in G

ϕ3

θ (remote list)
7 Y ′ = (j, Y )ϕ3 ⊳ set Y ϕ3-oriented by j
8 Z′ = (i, Z)ϕ2 ⊳ set Z ϕ2-oriented by i
9 K = Intersect (Y ′, Z′)

10 foreach k ∈ K do report triangle ∆sort(ijk)

TABLE I
TAXONOMY OF VERTEX/EDGE ITERATORS

GVI GLEI GSEI Binary Search Vector ϕ̄ i j k

T1 L1 E1 No +++ z y x
T2 L2 E2 No −++ y z x
T3 L3 E3 No −−− x y z
T4 L4 E4 No ++− z x y
T5 L5 E5 Yes +−− y x z
T6 L6 E6 Yes −−+ x z y

sequential traversal of neighbor lists to perform set intersection
in Line 9. This is in contrast to GLEI that uses hash tables for
this purpose. The rest of the algorithm is quite similar. Before
intersecting local and remote lists(Y, Z), the method orients
them in Lines 7-8 to be consistent with Fig. 1(a). Note that
the former is done by GVI and the latter by GLEI. In practice,
orientation of the local listY imposes no additional overhead
since j monotonically increases within the loop, which is a
consequence ofNϕ1

i being sorted ascending. However, certain
GSEI traversal orders require a binary search in the remote list
Z to locatei [44].

F. Taxonomy

A combination of Algorithms 1-3 comprises ourGener-
alized Iterators(GI) framework. Analysis above shows that
each of the main algorithms (i.e., GVI, GLEI, GSEI) admits
six traversal orders and that this classification is exhaustive
(i.e., no other patterns are possible). Table I assigns names
to all methods based on their̄ϕ, specifying whether the edge
iterators require a binary search and how to relate(ijk) to
(xyz). In prior literature, T1 can be found in [17], [22], [38],
E1 in [2], [13], [37], E2 in [24], [34], E3 in [7], [8], and E5
in [36]. Methods T1-T3, E1, E3, E4 are listed in [29].

While there are18 techniques total, their CPU cost can be
reduced to just four non-isomorphic classes [44]; however,this
may no longer hold when I/O is taken into account. What can
be said for sure is that reversingθ, or similarly invertingϕ̄,
produces an identical method from the I/O standpoint. This
allows reduction of scope to a subset of methods that cannot
be converted into each other through inversion ofϕ̄.

For example, keeping only methods that utilizeG+
θ for

remote edges, i.e.,ϕ3 is the plus operator, would eliminate
rows(3, 4, 5) in Table I. In that case, Fig. 2 shows the position
of the remaining9 methods on a 2D plane, where the columns
share the CPU cost, while the rows do the same for I/O. We
use analysis from [44] to position the columns in order of
increasing CPU complexity, with T1 being the best and E6
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Fig. 2. Four CPU and three I/O classes.

being the worst; however, it is currently unknown if the rows
do in fact differ in cost, whether they can be split into multiple
subrows depending on additional factors, and how their I/O
relates to each other. This is our next topic.

III. PRUNED COMPANION FILES (PCF)

This section presents a general family of disk-based algo-
rithms that supports all of the methods in Table I. It also aims
to achieve better I/O complexity than prior approaches.

A. Overview

It is important to discuss the performance objectives of
external-memory algorithms before explaining our solution.
There are four metrics that contribute towards the runtime
of a method and its ability to handle large graphs. The first
is the triangle-identification time, which consists of lookups
againstH in GVI/GLEI and intersection in GSEI (i.e., Lines
9, 10, 9, respectively). For a methodM, supposecn(M, θ) is
the number of elementary operations, which we call theCPU
cost, andr(M) is the speed of these operations in nodes/sec.
For a fixed pair(i, j), the CPU cost equals|Y ′| for GVI,
|Z ′| for GLEI, and |Y ′| + |Z ′| for GSEI. Then, the triangle-
identification time is given bycn(M, θ)/r(M).

The second metric is the amount of I/O performed. Because
all reads are sequential, this overhead is measured by the
length of adjacency lists across all graphs participating in the
algorithm. The third metric is thenumber of lookups based on
hit list X (i.e., Lines 6, 6, 5), which is generally a function
of the partitioning scheme. This is in contrast to RAM-only
operation, where this value is always fixed atm, i.e., the
number of edges inGθ. Finally, the last parameter is the
minimum amount of RAM supported by the method.

It is possible that some of these metrics are tradeoffs of
each other; however, if an ideal algorithm exists, it would
simultaneously beat the other methods in all four categories.

B. Graph Partitioning

Because GSEI explicitly maintains remote and local lists,
both GVI and GLEI can be viewed as its special cases that
replace one of the lists with a hash table. For example, GVI
usesH in place of scanningZ, while GLEI does the same
for scanning ofY . As a result, any I/O partitioning scheme
that handles GSEI can be adopted to work with the other two
algorithms without incurring additional overhead. Therefore,
our description of I/O techniques targets Algorithm 3.

In general, triangle-partitioning schemes work by placing
one (or more) edges in some RAM buffer and then scanning
the disk for discovery of the remaining edges that complete
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Fig. 3. Graph partitioning.

each triangle. Since nodej and its neighborsk must be
retrieved using random access, one crucial observation is that
all methods require theremoteedge(j, k) to be present in
RAM, while the other two lists(X,Y ) may be streamed from
disk sequentially. This framework, coupled with generalϕ
and the algorithms developed in this section, is what we call
Pruned Companion Files(PCF).

Assume the set of nodesV is divided intop pair-wise non-
overlapping and jointly exhaustive setsV = (V1, . . . , Vp). In
a method we call PCF-A, we splitGϕ3

θ along the destination
node of each pair(j,Nϕ3

j ) to create a set ofremote-edge
graphs

Gr
θ(l) = {(j,Nϕ3

j ∩ Vl)}, (4)

wherel = 1, 2, . . . , p. In a method we call PCF-B, we do the
same along the source nodes

Gr
θ(l) = {(j,Nϕ3

j )|j ∈ Vl}. (5)

These technique are illustrated in Fig. 3 and their properties
are given by the next result.

Theorem 1:Algorithms 1-3 operating over PCF-A/B find
each triangle exactly once. Furthermore, the triangle-
identification costcn(M, θ) remains constant for allp.

Proof: First notice that every edge(j, k) belongs to a
unique partitionGr

θ(l). Then, replacingGϕ3

θ with Gr
θ(l) in

Algorithms 1-3 and repeating for alll = 1, 2, . . . , p, we
immediately obtain that no triangle is missed or counted more
than once.

To show that the triangle-counting overhead remains con-
stant, we focus on GSEI, with the other methods being similar.
Fix a nodej and assume the length of its neighbor listZ after
orientation by nodei in Line 8 is given byqij . Note that listY ′

is independent of the partitioning scheme and can be ignored.
For RAM-only operation, the intersection cost related toj can
be expressed as

∑

(i,j)∈G
ϕ1
θ

qij . (6)

In PCF-A, assume the length ofZ oriented byi in partition
l is given byqij(l). This leads to an overall cost forj

p
∑

l=1

∑

(i,j)∈G
ϕ1
θ

qij(l). (7)
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Since the partitions are mutually disjoint and exhaustive,it
must be that for alli

p
∑

l=1

qij(l) = qij , (8)

which yields the same cost in (7) as in (6) after changing the
order of summations.

In PCF-B, the analysis is even simpler. Becausej appears
as the source node in exactly one partition, it experiences the
same overhead (6) in that partition and zero in all others.

This result shows that partitioning does not create any
additional list-intersection operations, which allows usto focus
on the remaining three objectives in the rest of the paper.

C. Partition Balancing

AssumeM is the RAM size. To achieve the smallestp,
each partition size|Gr

θ(l)| must equalM , which requires
explicit balancing. Note that splitting the range[1, n] into
p = m/M equal-size bins fails to accomplish this objective
since permutationθ is degree-dependent. For example, with
θD, smaller node IDs indicate larger degree. Therefore, nodes
in the first bin may bring significantly more (or less depending
on ϕ3) edges intoGr

θ(l) than those in the last bin.
Balancing is accomplished by setting up boundaries

a1, a2, . . . , ap+1 such that a node is included inVl if and only
if it belongs to[al, al+1). While a1 = 1 andap+1 = n+1 are
obvious, the other values require more attention. For PCF-A
in Fig. 3(a), notice that inclusion ofk into Vl implies that all
edges from listN1−ϕ3

k are placed intoGr
θ(l). Therefore, we

must select the boundaries such that
al+1−1
∑

k=al

d1−ϕ3

k = M, (9)

which can be accomplished in one pass overG1−ϕ3

θ . For PCF-
B in Fig. 3(b), the roles ofj, k are reversed, which leads to

al+1−1
∑

j=al

dϕ3

j = M. (10)

Balancing in PCF-A and B is equally fast, except the former
requires existence of an inverted version ofGϕ3

θ .

D. Companion Files

The fastest previous implementations [2], [13], [17], [22]
use a framework that would scan the entire fileGϕ1

θ to obtain
hit lists X andGϕ2

θ for local listsY . Whenϕ1 = ϕ2, these
files coincide, which cuts the overhead by half compared to
other vectors̄ϕ. Nevertheless, the amount of I/O produced by
these schemes is still quite substantial, i.e.,mp = m2/M .
Instead, our approach is to prune listsX,Y to be opti-
mally suited for each partitionl and write them into special
companionfiles Gc

θ(l). Each of them, when paired with the
corresponding remote-edge graphGc

θ(l), allows identification
of all triangles with eitherk (PCF-A) orj (PCF-B) inVl.

Consider Algorithm 4, which is our one-pass solution to cre-
ating both companion and remote-edge files. If tuples{(i, Ni)}

Algorithm 4: One-pass graph partitioning

1 Function PartitionGraph (method, ϕ̄,V)
2 for i = 1 to n do
3 X = (i, Ni)ϕ1 ⊳ hit list from G

ϕ1

θ
4 Y = (i, Ni)ϕ2 ⊳ local list from G

ϕ2

θ
5 Z = (i, Ni)

ϕ3 ⊳ remote list from G
ϕ3

θ
6 for l = 1 to p do ⊳ go through each partition
7 if method = PCF-A then
8 X = (Vl, X)1−ϕ3 ⊳ hit list oriented by Vl

9 Y = Y ∩ Vl ⊳ keep only nodes in Vl

10 Z = Z ∩ Vl ⊳ keep only nodes in Vl

11 else
12 X = X ∩ Vl ⊳ keep only nodes in Vl

13 Y = (Vl, Y )ϕ3 ⊳ local list oriented by Vl

14 Z = Z · 1i∈Vl
⊳ Z if i ∈ Vl and ∅ otherwise

15 Y ′ = Y ⊳ local list to be written to Gc
θ(l)

16 if Z 6= ∅ then
17 write record (i, Z) into Gr

θ(l)
18 if ϕ1 = ϕ3 then
19 X = X\Z ⊳ further prune X
20 if ϕ2 = ϕ3 then
21 Y ′ = Y \Z ⊳ further prune Y
22 if X 6= ∅ and Y 6= ∅ and |X ∪ Y | ≥ 2 then
23 write record (i,X, Y ′) to Gc

θ(l)

are sorted by the source nodei, Lines 3-5 simultaneously
construct the three lists(X,Y, Z) by scanning multiple files
in parallel; otherwise, only methods withϕ1 = ϕ2 = ϕ3 are
supported. In Lines 7-14, the algorithm prepares the necessary
lists for each partitionl. Among these, Line 8 can be explained
with the help of Fig. 3(a). Notice that PCF-A can(1 − ϕ3)-
orient setX with respect toVl without losing any relevant
nodesj. Similarly Line 13 uses an observation from Fig.
3(b) that PCF-B canϕ3-orient Y with respect toVl without
omitting any essential nodesk.

In Lines 18-19, whereϕ1 = ϕ3 indicates that setsX and
Z may overlap, the algorithm drops redundant edges fromX .
The same operation applies toY in Lines 20-21. Finally, the
companion file receives triple(i,X, Y ′) if both hit list X and
local list Y are non-empty, and there exist at least two nodes
j ∈ X andk ∈ Y such thatj 6= k.

Note that whenϕ1 = ϕ2, it is possible forX to overlap
with Y . An important aspect of these cases is thatY is always
ϕ3-oriented againstX . If additionallyY ′ 6= ∅, eitherX ⊆ Y ′

or Y ′ ⊆ X holds. Not only that, but the smaller list is always
either at the bottom or top of the larger one. In such cases,
only their unionX ∪ Y ′ is written to disk, with an additional
field indicating the offset that separates them. Algorithm 4
omits this detail to prevent clutter, but actual implementations
should take it into account.

The main search function is shown in Algorithm 5. One
noteworthy aspect is Line 8, which handlesX being in RAM
for PCF-A, and Line 10, which does the same for PCF-B. In
the latter case, only nodesj ∈ Vl should be included in the
hit list, which explains the need for additional pruning. Since
X being in RAM implies thatY is too, Line 11 usesNi(l)
as the local list. Processing of individual nodes is given by
Algorithm 6, which is identical to the corresponding section
of GSEI, except it findsZ via the hash table rather than from
the full graphGϕ3

θ .
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Algorithm 5: Disk-based GSEI

1 Function FindTriangles (ϕ̄)
2 for l = 1 to p do
3 load Gr

θ(l) = {(i, Ni(l))} in RAM
4 build hash table H to map each i to its neighbor list Ni(l)
5 if ϕ1 = ϕ3 then ⊳ possible for parts of X to be in RAM
6 foreach (i, Ni(l)) in RAM do
7 if method = PCF-A then
8 X = Ni(l) ⊳ unrestricted hit list
9 else

10 X = Ni(l) ∩ Vl ⊳ restrict hit list to Vl
11 ProcessOneNode (ϕ̄, i,X,Ni(l))
12 while not EOF(Gc

θ(l)) do
13 read one record (i, X, Y ) from companion Gc

θ(l)
14 if Y = ∅ then
15 Y = H.find(i) ⊳ local list must be in RAM
16 ProcessOneNode (ϕ̄, i,X, Y )
17 empty H

Algorithm 6: Modified GSEI intersection

1 Function ProcessOneNode (ϕ̄, i,X, Y )
2 foreach j ∈ X do
3 Z = H.find(j) ⊳ remote list is always in RAM
4 Y ′ = (j, Y )ϕ3 ⊳ set Y ϕ3-oriented by j
5 Z′ = (i, Z)ϕ2 ⊳ set Z ϕ2-oriented by i
6 K = Intersect (Y ′, Z′)
7 foreach k ∈ K do report triangle ∆sort(ijk)

IV. A NALYSIS

This section examines the introduced methods in compari-
son to each other. Our objective is to select a technique and
its permutation so as to simultaneously maximize performance
across all four criteria, if possible.

A. Overview

From this point on, we parameterize PCF with a specific
ϕ̄ from Table I by adding the corresponding row index.
As before, we consider only rows1, 2, 6. When the A/B
designation is non-essential, we omit it. For example, PCF-
2 refers toϕ̄ = (− + +) under both A/B, while PCF-2A
narrows it down to the A partitioning scheme.

This creates the six I/O mechanisms in Table II, wherei→
j signifies the out-list neighbor relationship, i.e.,j ∈ N+

i ,
and i ← j the opposite, i.e.,j ∈ N−

i . Note that PCF-1A
and 2A place two edges in RAM and load the third one from
disk. This explains why their local listY is always omitted
from companion files. The remaining four techniques do the
opposite – one edge is contained inGr

θ(l) and two inGc
θ(l). In

three of these cases, edge direction is kept the same between
X andY , which ensures that eitherX ⊆ Y ′ or Y ′ ⊆ X , with
only one of them actually written to disk. Method PCF-2B is
the lone exception with itsX ∩ Y ′ = ∅.

Table III summarizes the pruning rules and specifies the
contents of each companion list. Notice that PCF-1B uses
stricter conditions for achievingX,Y 6= 0 than PCF-1A and
its X ∪ Y ′ is the same or smaller, which indicates that it
out-performs its counterpart. AssumingθD, further scrutiny
of companion lists in Table III reveals that PCF-1A produces
less I/O than any of the remaining four methods, with PCF-
6A/6B being essentially identical to each other.

TABLE II
SUMMARY OF PCF ALGORITHMS USING REMOTE GRAPHG+

θ

PCF Gr
θ(l) Condition X Y ′

1A (y, z)→ x x ∈ Vl z → y ∅
2A (y, z)→ x x ∈ Vl y ← z ∅
6A z → y y ∈ Vl x← z x← y

1B y → x y ∈ Vl z → y z → x
2B z → x z ∈ Vl y ← z y→ x
6B z → y z ∈ Vl x← z x← y

TABLE III
COMPOSITION OFCOMPANION L ISTS IN PCF

PCF X Y Y ′

1A N+
i ∩ [al+1, n] N+

i ∩ Vl ∅
1B (N+

i ∩ Vl) · 1i≥al+1
N+

i ∩ [1, al+1) Y

2A N−
i N+

i ∩ Vl ∅
2B N−

i ∩ Vl N+
i Y · 1i/∈Vl

6A N−
i ∩ [al, n] N−

i ∩ Vl Y

6B N−
i ∩ Vl N−

i ∩ [1, al+1) Y

B. Modeling I/O

Additional insight can be gleaned from bounding the size
of companion files. Assumeuil is the length ofi’s hit list X ′

in Gc
θ(l) andvil is that ofY ′\X ′. Then, the total amount of

companion I/O (in edges) isHc = Hc
X +Hc

Y , where

Hc
X =

n
∑

i=1

p
∑

l=1

uil, Hc
Y =

n
∑

i=1

p
∑

l=1

vil, (11)

and that for remote-edge graphs is

Hr =

n
∑

i=1

|Gr
θ(l)| = m. (12)

Since Hr is constant for allϕ̄, comparison across the
various approaches in Table II needs to involve onlyHc.
Closed-form derivation of accurate models for (11) currently
appears intractable. Even ballparking the scaling rate is quite
elusive for certain extremely heavy-tailed degree distributions
[44]. Instead, we offer bounds achievable in two worst-case
scenarios and leave more precise modeling for future work.
AssumeHc(k) refers to the companion overhead of PCF-k
and consider the next result.

Theorem 2:The PCF I/O complexity (in edges) is upper-
bounded by

Hc(1) ≤
n
∑

i=1

min
(d+i − 1

2
, p− 1

)

d+i , (13)

Hc(2) ≤
n
∑

i=1

min(d+i , p)d
−

i , (14)

Hc(6) ≤
n
∑

i=1

min
(d−i + 1

2
, p
)

d−i , (15)

whered+i is the out-degree ofi andd−i is the in-degree.
Proof: We only consider PCF-A since PCF-B uses similar

arguments and produces the same bounds. It is not difficult to
see that PCF-1A writesHc = Hc

X edges to companion files
since its pruned hit listsY ′ are always empty. First, notice that
a list cannot be split into more thanp chunks. Due to removal
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of overlapX ∩ Z, we can do even better – the last partition
Vp produces a hit listX only for neighborsj ≥ ap+1 = n+1.
Since no label can exceedn, there are actually at mostp− 1
partitions whereuil 6= 0. Therefore,

∑p
l=1 uil ≤ (p− 1)d+i .

Our second observation is that an out-list cannot be split
into more thand+i files. Then, the worst case arises when
eachVl consists of a single node, where partitionl contains
the largestd+i − l out-neighbors ofi. Thus,

p
∑

l=1

uil ≤
d+

i
∑

l=1

uil ≤
d+

i
∑

l=1

(d+i − l) =
d+i (d

+
i − 1)

2
, (16)

which combined with the first case yields (13).
For PCF-2A, the first case is very similar, except it uses

the in-degreed−i and fails to remove the overlapX ∩ Z.
The second case writes the full in-neighbor list exactlyd+i
times, which yields the result in (14). Finally, PCF-6A operates
similar to 1A, except it uses the in-degree and fails to prune
the lists as efficiently. Due to these small differences, itsbound
(15) is not perfectly symmetrical to (13).

Using [44], we obtain that the I/O bound of PCF-1 is mini-
mized by the descending-degree permutationθD, that of PCF-
2 by round-robinθRR, and that of PCF-6 by ascending-degree
θA. Furthermore, under their respective optimal permutations,
(14) is strictly worse than (13). The bound of PCF-6 underθA
rivals that of PCF-1 underθD, although it is still slightly higher
due to a less-efficient pruning of overlap between(X,Y ) and
Z. The worst permutations corresponding to (13)-(15) areθA,
θCRR andθD, respectively [44].

For the asymptotics, letDn ∼ Fn(x) be the random degree
of a node in a graph of sizen. As n→∞, supposeFn(x)→
F (x) and letD ∼ F (x). Then, underθD andE[D4/3] <∞,
the scaling rate of (13) isno worse than linear[44]

Hc(1) ≤ min
(m2

M
,O(m)

)

. (17)

For example, Pareto distributionsF (x) = 1− (1+ x/β)−α

satisfy this requirement iffα > 4/3. For PCF-2 andθRR,
the rate (17) holds iffα > 1.5 [44]. Note that (17) is strictly
better thanm2/M from prior implementations [2], [13], [17],
[22]. WhenM is a constant, it is also better than theoretical
results of [18], [30] whoseO(m1.5/

√
M) bound cannot be

linear unlessM grows at least as fast asm.
Based on Table III, Theorem 2, and symmetry of PCF-

1A/6B and 1B/6A, Fig. 4 places the I/O of the various methods
in relationship to each other under different permutations.
When we do not differentiate between the PCF variants A/B
of a given method, it is usually because they have similar I/O.
From the picture, it emerges that PCF-1B withθD is globally
the most efficient technique.

C. I/O Comparison

For an illustration of the ideas presented earlier in this
section, we employ the commonly considered Twitter graph
[23] with 41M nodes andm = 1.2B edges. The file occupies
9.3 GB and its adjacency lists contain2m = 2.4B node IDs.
We start with Table IV, which shows the size of companion
files Hc. Observe that the predicted best-case permutations

 

 
 

1B 1A 

2 

θD 2 6 

θRR 

θA 6A 2 1 

1,6 

6B 

Fig. 4. Better-than relationships across the I/O of variousPCF methods.

TABLE IV
TWITTER I/O (IN BILLION EDGES) UNDER16 MB OF RAM

Permutation 1A 1B 2A 2B 6A 6B
θD 43.8 24.5 61.3 55.6 119.1 126.8
θRR 94.1 83.0 51.0 51.7 83.6 94.2
θA 125.7 118.4 54.8 61.7 25.5 44.2

in each column (highlighted in gray) agree with earlier anal-
ysis. Additionally, notice that reversal ofθ swaps PCF-A/B,
switches PCF-1 to PCF-6, and maps PCF-2 back to itself.
These effects were expected based on (13)-(15). Even though
PCF-1 and PCF-6 are close under their optimal permutations,
the former comes out ahead for the reasons discussed above.

We now examine how the methods scale asM → 0. We
dismiss PCF-6 due to its similarity to PCF-1. We also fixθD
since it achieves the best CPU cost among the methods in Fig.
2. We vary RAM size from1 GB down to1 MB and plot the
result in Fig. 5, where PCF-A cannot go lower than16 MB
due to inability to fit the largest in-degree into RAM. Observe
that not only is PCF-1 more efficient than PCF-2, but the
gap between the two grows asM decreases. AsM → 0 and
p → ∞, both methods converge towards their upper bounds,
which are150B in (13) and360B in (14) [44], the figure shows
that PCF-1 is getting there at a slower pace than PCF-2.

We next analyze the scaling rate of our best method PCF-
1B against the two previous models of I/O. Recall that the
m2/M technique was proposed by MGT [17], while the
O(m1.5/

√
M) bound is due to Paghet al. [30]. Since there

is no actual implementation for the latter, it is difficult to
assess the constants insideO(.). We thus take some liberty in
assuming how this method would work in practice. It randomly
colors the nodes usingc =

√

m/M unique values and splits
the edges intoc2 files based on the color of source/destination
nodes. It then combines three files of colors(ij, jk, ki) and
runs MGT over the result. Since the size of each combined
subgraph is3m/c2, the I/O cost of the method is9m1.5/

√
M ,

which accounts for allc3 combinations of triplets(ij, jk, ki).
While [30] deals with undirected graphs, whose size is
∑n

i=1 di = 2m edges, we assume the method can be applied
to G+

θ . Thus, both MGT and Pagh usem = 1.2B in their
respective models.

The result for Twitter andM → 0 is shown in Fig. 6(a).
After the initial jump, PCF-1B becomes parallel to Pagh’s
curve 1/

√
M . Both of them scale significantly better than

MGT’s inverse linear function. In Fig. 6(b) we use random
graphs with a Pareto degree distribution (α = 1.5, E[D] = 30)
to examine the scaling rate of I/O asn → ∞. In this range,
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Fig. 5. Scaling rate of PCF-1 on Twitter underθD .
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Fig. 6. Comparison against prior methods.

PCF-1B is roughly linear, while the other two methods grow
significantly faster. Asn increases, the ratio of MGT to PCF-
1B jumps from51 to 219, while that for Pagh from15.5 to
29.3. To put this in perspective,n = 80M nodes requires25B
edges of I/O for PCF-1B,734B for Pagh, and5.5T for MGT.

D. CPU-I/O Tradeoffs

As it turns out, Fig. 2 splits into16 different CPU-I/O
complexity classes, i.e., two (A/B) for each of the8 unique
GI methods, with T6-L6 being a single entity. In the past, it
was believed that GVI and GLEI were functionally identical.
However, this is not the case when I/O is taken into account.
For example, T1 shares the I/O cost with L1, but at lower
CPU complexity. Similarly, it shares the CPU cost with L2-
L6, while imposing less I/O. In the same vein, it was unknown
until now whether E1 and E2 were interchangeable. Results
above confirm that they are not.

These observations are emphasized using Table V, where
each I/O cell reports the best number achieved by either PCF-
A or B. Observe that the best GVI is T1, which exhibits
optimal CPU and I/O complexity underθD. The decision is
also easy for GSEI, where E1 is the top contender. On the other
hand, GLEI must choose which of the two objectives is more
important – L1 has the best I/O and L2 the best CPU cost,
both underθD. Other GLEI combinations are much worse.

E. Lookups and Minimum RAM

Recalling that PCF-B prunesX such thatX ⊆ Vl holds,
while PCF-A does not, the next result follows immediately.

Theorem 3:PCF-A issuesHc
X hit-list lookups and requires

M ≥ maxi d
1−ϕ3

i . PCF-B performs exactlym lookups and
requiresM ≥ maxi d

ϕ3

i .
In graphs with heavy-tailed degree andM ≪ m, it is

common that the hit list sizeHc
X ≫ m (e.g., see Table

TABLE V
CPU-I/O COMPLEXITY CLASSES INTWITTER UNDER16 MB OF RAM

Under CPU-optimal permutation Under I/O-optimal permutation
Perm GI CPU I/O Perm GI CPU I/O
θD T1 150B 24B θD T1 150B 24B

L2 150B 56B L1 360B 24B
T6-L6 150B 119B E1 511B 24B
E1 511B 24B θRR T2 255B 51B
E2 511B 56B L2 63T 51B

θRR L1 255B 83B E2 63T 51B
T2 255B 51B θA T6-L6 123T 25B

θCRR E6 63T 45B E6 123T 25B

IV). Therefore, for small RAM size, PCF-B should have a
noticeably better CPU performance than PCF-A. In fact, its
number of hash-table hits is optimal as it equals that in RAM-
only algorithms.

In terms of restrictions on RAM, all considered methods
PCF-1/2/6 have a plus forϕ3, which means that PCF-A lower-
boundsM by the largestin-degree, while PCF-B by the largest
out-degree. It is well-known thatθD keeps the latter no larger
than

√
2m; however, its maximum in-degree equalsmaxi di,

which can be significantly higher, i.e., up ton− 1. Therefore,
PCF-B underθD is definitively less restrictive than PCF-A.
When the permutation is reversed, the bounds on in/out degree
are swapped and PCF-A becomes better than PCF-B. Finally,
θRR has both maximum in/out degree equal tomaxi di, which
makes this permutation equally bad in both PCF-A/B.

F. Summary

From the analysis above, two methods T1B and E1B emerge
as clear winners within their respective classes (i.e., hash
tables and scanning intersection). Among the18 methods,
they achieve the smallest companion I/O, perform the minimal
number of hit-list lookups, impose the lowest RAM require-
ments, do not need to invertGϕ3

θ during creation of{Vl}, and
obtain(X,Y, Z) from a single file in Algorithm 4.

We next consider which of them has a smaller runtime.
There are two aspects involved – the relative CPU cost

wn :=
cn(E1, θD)

cn(T1, θD)
(18)

and the relative speeds = r(E1)/r(T1). While [44] proves
existence of random graphs wherewn →∞ asn→∞, ratio
wn is only 2−3 in real graphs commonly studied in this area.
Given thats is at least20 on modern CPUs, it is conclusive
that scanning edge iterators will remain the best option until
graphs are discovered with significantly largerwn.

V. I MPLEMENTATION

We now build a fast implementation of E1B that takes
advantage of SIMD for scanning the lists and PCF-B for I/O.
We call this method PaCiFier and make it available in [11].

A. Intersection

Since E1B spends almost all of its CPU time on intersection,
it is crucial to address this bottleneck first. With support for
SIMD in modern CPUs, we can exploit data-level parallelism
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Fig. 7. Parallel intersection with STTNI.

TABLE VI
SINGLE-CORESPEED(INTEL I7-3930K @ 4.4 GHZ)

Speed (M/sec)
Hash table 19
Naive scalar intersection 264
Branchless intersection 416
SIMD 32-bit intersection 1, 119
SIMD 16-bit intersection 1, 801

and achieve a significant speedup compared to traditional
CPU-based methods. We adopt the technique from [35], which
utilizes STTNI intrinsics from SSE 4.2. They work on two
128-bit vector registers, treating them as four32-bit or eight
16-bit integers. Fig. 7 shows how STTNI builds an all-to-all
comparison matrix and outputs a vector of matches using just
one instruction. While32-bit intersection is fast, better results
can be procured by compressing labels into16-bit numbers.
This is performed by grouping node IDs into chunks that share
the same upper16 bits. For each chunk, PaCiFier additionally
keeps its length and a list of the lower two bytes from
each original label. This works well because all vertices are
sequentially relabeled and adjacency lists are kept in ascending
order. Besides almost doubling intersection speed, this method
reduces graph size by approximately50%.

For lists that are shorter than some threshold (e.g.,16),
both compression and16-bit intersection do not work well.
In these cases, we keep the lists in32-bit format and apply
the branchless scalar (i.e., non-SIMD) intersection from [19].
A benchmark of these operations together with the Google
Hash Table are shown in Table VI. With1.8B operations/sec,
PaCiFier’s ratios is a whopping94.7. This places even more
doubt that T1B will be competitive in the near future, especially
given that RAM bandwidth scales much faster than latency
[33], i.e., s will continue increasing.

B. Relabeling and Orientation

For degree-based permutations, prior work sorts pairs (de-
gree, ID) to establish a total order. This becomes a major
bottleneck in preprocessing, especially for large graphs where
these tuples do not fit in RAM. In contrast, we use a novel
approach that decides the new labels without sorting the nodes.
We first accumulate a histogram of degree frequency in one
pass over pairs(i, di), which are kept separately from the
adjacency lists{Ni}. Using a prefix sum of the histogram,
we then establish the starting IDs for nodes of each unique
degree value. Performing another scan of the tuples, we find

 

 

32 15 9 2 1 deg[] 

hist[] 1 1 2 4 6 

newIDs[] 1 2 3 5 9 

prefix 

sum 

Fig. 8. Descending-degree relabel with a histogram.

the degree of each source nodei in the histogram and create a
mapping from old labels to the corresponding new IDs. This
is shown in Fig. 8. Frequently accessed parts of the histogram
typically fit in the L2 cache, which makes lookups against
them extremely fast.

If the mapping fits in RAM, PaCiFier performs a scan
over the adjacency lists and rewrites all edges in one-pass.
Otherwise, it changes the source nodes, inverts the graph, and
updates the source nodes again.

C. Parallelization

Scaling PaCiFier to multiple cores is rather straightforward.
In Algorithm 5, the processing of each record(i,X, Y ) ∈
Gc

θ(l) is an independent job, which allows multiple threads
to work on different lists without interfering with each other.
The lookup tableH is read-only and can be safely shared by
all worker threads without any locks. Assumingc available
cores and hyper-threading, we run2c worker threads and set
the affinity mask to bind each thread to a dedicated core.
This configuration ensures100% CPU utilization for the entire
execution and almost linear scalability with the number of
cores (see below).

D. Evaluation Setup and Datasets

Experiments use a six-core Intel i7-3930K @ 4.4 GHz,
Asus Rampage IV Extreme motherboard, and quad-channel
DDR3 RAM @ 2133 MHz. We compare PaCiFier against four
methods with available implementations – RGP [8], DGP [8],
MGT [17], and PDTL [13]. For the first three techniques, we
use a multi-threaded binary shared by the authors of [17].

We employ all standard graphs in the field – Live Jour-
nal (LJ) [17], US road maps (USRD) [17], Billion Triples
Challenge (BTC) [15], WebUK [17], Twitter [23], and Yahoo
[45]. Note that the original Yahoo graph hasn = 1.4B, which
reduces to720M after removing zero-degree nodes. To cover
a wider variety of options, we add two web crawls: IRLbot
[25] and ClueWeb [9]. Out of the former, we extract domain,
host, and IP-level graphs. AssumingI(x) is the IP address
of an authoritative nameserver for domainx, graph IRL-IP
contains edgesI(x)→ I(y) iff x→ y in IRL-domain, which
may be useful for spam detection and ranking. The original
ClueWeb dataset published online [9] does not contain any
dynamic links and is limited to7.9B edges [32]. We remedy
this problem by running our HTML parser over all pages,
which yields a much larger graph with102B links. The new
files can be downloaded from [11].

Table VII summarizes statistics of the graphs, where the old
datasets require billion-scale intersection costcn(E1, θD) and
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TABLE VII
DATASET PROPERTIES

Graph Nodes (n) Degree sum (2m) Triangles wn cn(E1, θD) Size E[di] maxi di maxi d
+
i

LJ 4,846,609 85,702,474 285,730, 264 3.01 2.1B 364 MB 17.7 20,333 685
USRD 23,947,347 57,708,624 438,804 2.37 25M 403 MB 2.4 9 4
BTC 164,660,997 772,822,094 28,498,939 1.59 3.5B 4.1 GB 4.7 1,637,619 646
WebUK 62,338,347 1,877,431,056 179,076,331,071 1.99 364B 7.5 GB 30.1 48,822 5,692
Twitter 41,652,230 2,405,026,390 34,824,916,864 3.38 511B 9.3 GB 57.7 2,997,487 4,102
Yahoo 720,242,173 12,869,122,070 85,782,928,684 1.47 433B 53.3 GB 17.9 7,637,656 1,540
IRL-domain 86,534,416 3,416,273,404 112,797,037,447 3.63 1.4T 13.3 GB 39.5 2,948,635 4,481
IRL-host 641,982,060 12,872,821,328 437,436,899,269 2.85 2.6T 52.7 GB 20.1 5,475,377 4,516
IRL-IP 1,588,925 1,636,848,800 1,032,158,059,864 3.17 4.2T 6.1 GB 1,030 669,776 8,915
ClueWeb 8,179,508,503 102,394,528,124 879,280,163,294 2.00 3.0T 358 GB 12.5 44,383,637 1,747

TABLE VIII
PREPROCESSINGT IME (SECONDS)

Graph MGT PDTL PaCiFier
LJ 2.2 1.0 1.7

USRD 2.0 1.4 2.0
BTC 18.8 11.6 8.9
WebUK 36.9 24.5 14.7
Twitter 88.9 38.4 24.5
Yahoo 295 276 149
IRL-domain 149 61.9 31.8
IRL-host 736 456 221
IRL-IP 33.9 19.1 8.5
ClueWeb 8,192 19,502 962

the new ones trillion-scale. The densest graph IRL-IP has an
average degree1,030, contains over1T triangles, and requires
4.2T intersection operations. ClueWeb comes in at a hefty358
GB, but neither its number of triangles nor CPU cost can top
those of IRL-IP. Also note that the longest out-list in the table
occupies just35 KB of RAM, far smaller than the longest
undirected neighbor set (i.e.,177 MB).

E. Preprocessing Time

RGP/DGP do not require preprocessing, while the other
three methods manipulates the input graphG into a suitable
format prior to actual listing of triangles. It is common to time
the two phases separately, especially since the former can be
performed once and the latter repeated many times on the same
preprocessed data. Table VIII shows the result using a RAID
system capable of reads at1 GB/s. Even though PaCiFier is
the only one performing both relabeling and orientation, its
usage of the histogram to avoid sorting makes it2 − 8 times
faster than MGT and up to20 times faster than PDTL.

F. Triangle-Listing Time

We run the next set of tests using an8-GB RAM constraint,
which ensures that I/O is not a bottleneck for our RAID. As a
result, Table IX presents an evaluation of pure CPU efficiency
of each algorithm. PaCiFier’s performance is determined by
the length of neighbor lists, i.e., efficiency of SIMD scanning.
Compared to MGT, which implements T1, its speedup varies
from a factor of13.6 on Yahoo to78.6 on IRL-IP. In the
latter graph, PaCiFier finds1T triangles in237 seconds, which
translates into17.7B neighbor checks/sec and4.3B discovered
triangles/sec using all six cores. Compared to PDTL, which is

TABLE IX
RUNTIME (SECONDS) WITH 8 GB OF RAM

Graph RGP DGP MGT PDTL PaCiFier
LJ 22.3 22.2 11.2 2.8 0.7

USRD 12.3 12.3 1.2 6.2 0.3
BTC 111 110 11.4 12.1 2.1
WebUK 1,299 891 599 93.6 17.1
Twitter 10,300 9,814 2,238 327 63.4
Yahoo 31,945 13,990 1,080 619 79.2
IRL-domain 17,717 16,919 5,946 849 148
IRL-host – – 11,099 1,773 367
IRL-IP – – 18,617 2,358 237
ClueWeb – – * 13,782 1,737

TABLE X
RESULTS FROMPRIOR WORK

Type Algorithm Runtime (sec) Cores or
Twitter Yahoo servers

RAM-only [36] 101 – 16
[37] 55.9 77.7 40

External PATRIC [2] 552 – 200
OPT [22] 469 819 6

MapReduce [10] 36,300 – 47
GP [38] 28,980 – 1,636
TTP [31] 12,780 – 47
CTTP [32] 5,520 61,920 40

an optimized version of E1 with MGT’s partitioning scheme,
PaCiFier achieves a5− 10× faster runtime.

The number of found triangles is consistent across the meth-
ods, except RGP/DGP fail to finish within12 hours on several
graphs, which we indicate with a dash. Additionally, MGT
quits with an unrealistically small number of triangles (i.e.,
170M) after spending24K seconds on ClueWeb, which we
show with an asterisk. Its traces point toward early termination
before processing all of the partitions; however, unavailability
of the source code prevents further analysis.

To put these results in perspective, Table X cites the runtime
from prior work on Twitter and Yahoo. We split the algorithms
into several categories – RAM-only, external-memory, and
MapReduce. We report the number of utilized cores for the
former two groups and cluster size for the last one. The
first two methods in the table [36], [37] produce comparable
numbers to those of PaCiFier, but using3 − 6 times more
late-model Xeon cores. Due to their RAM-only operation, we
do not consider them competitors for PaCiFier. The next two
techniques [2], [22] are extensions of RGP/DGP and MGT
to multiple machines. They are generally faster than their
respective predecessors, but still far slower than PaCiFier. The
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Fig. 9. Speedup vs. number of cores (8 GB of RAM).

TABLE XI
RUNTIME (SECONDS)

Graph RAM (MB) MGT PDTL PaCiFier

Twitter

8,192 2,238 323 63.3
4,096 2,248 327 63.2
2,048 2,260 327 61.9
1,024 2,285 347 61.0
512 2,354 464 61.4
256 2,487 1,003 67.2

IRL-domain

8,192 5,947 849 148
4,096 5,976 851 144
2,048 6,020 853 143
1,024 6,090 898 143
512 6,252 995 145
256 6,540 1,484 149

final four methods [10], [38], [31], [32] in the table are entirely
disappointing –87 to 572 times slower than PaCiFier while
consuming substantially more resources.

G. Parallelization Efficiency

We now examine how PaCiFier scales with the number of
cores, which indicates how well the algorithm benefits from
additional CPU resources. As discussed earlier in section V-C,
PaCiFier’s parallelization framework partitions the computa-
tion (i.e., triples(i,X, Y ′) from the companion file) into equal-
sized jobs, which are processed lock-free by worker threads.
As shown in Fig. 9, PaCiFier’s runtime indeed scales almost
linearly. The reason for a slightly suboptimal outcome is that
certain auxiliary operations (e.g., indexing ofGr

θ(l) in Line 4
of Algorithm 5) are executed sequentially.

H. Effect of RAM: Bottlenecked by CPU

Next, we analyze the performance of each algorithm under
varying RAM size. We showed earlier that PaCiFier’s CPU
cost was constant for allM . While the I/O complexity does
increase asM → 0, double buffering and prefetching can keep
this overhead negligible until the disk becomes a bottleneck.
Table XI supports this discussion – using our RAID system,
PaCiFier completes in virtually the same amount of time for
all M in the range between256 MB and 8 GB. The initial
drop in runtime can be explained by smaller lookup tables
and better cache locality; however, asM decreases further,
SIMD becomes less efficient and this effect is reversed. While
MGT is not bottlenecked by I/O either, PDTL increases its
runtime by49−116% atM = 256 MB. More interesting cases
where the disk can no longer keep up with the computation
are studied next.

TABLE XII
I/O COMPARISON

Graph RAM (MB) GP TTP MGT/PDTL PaCiFier

Yahoo
(in GB)

8,192 2,099 1,066 88.8 40.4
4,096 3,271 1,599 177.6 47.6
2,048 5,247 2,132 355.1 55.5
1,024 7,632 3,198 710.2 64.8
512 11,219 4,531 1,420 74.6
256 16,408 6,663 2,841 84.4

ClueWeb
(in TB)

8,192 47.4 19.2 3.91 0.69
4,096 68.4 27.9 7.82 0.87
2,048 99.8 40.2 15.6 1.10
1,024 141.7 55.9 31.3 1.36
512 204.6 80.4 62.6 1.64
256 291.1 113.6 125 1.93

I. Effect of RAM: Bottlenecked by I/O

For comparison of disk activity, we use the exact model
m⌈m/M⌉ for MGT/PDTL and compute the size of all com-
panion files in PaCiFier by running Algorithm 4. Although
DGP/RGP share the sameΘ(m2/M) asymptotic cost with
MGT, these methods require two orders of magnitude more
I/O due to slow convergence, which we omit from analysis.
Instead, we contrast against MapReduce methods. The first
one is GP [38], which uses at leastρ = ⌈3

√

m/M⌉ reducers
and shuffles

30(ρ− 1)(ρ− 2)m

ρ
(19)

bytes of data [31]. A later method called TTP [31] reducesρ
by a factor of

√
3 and improves the shuffle to20(ρ− 1)m.

Table XII shows the I/O in bytes on the two largest graphs
under consideration. PaCiFier starts off beating GP/TTP bya
factor of32− 78 and MGT/PDTL by a factor of3.7− 9. This
advantage keeps accumulating asM decreases. Eventually,
PaCiFier develops a58 − 195× lead over the former and
34 − 64× over the latter asM reaches256 MB. In the last
scenario, the I/O phase of MGT/PDTL would require34.5
hours to finish ClueWeb using our1 GB/s RAID. With a
magnetic hard drive (i.e.,100 MB/s read speed), this would
take over two weeks. On the other hand, PaCiFier lowers these
numbers to32 minutes and5.3 hours, respectively.

VI. CONCLUSION

The paper created a taxonomy of18 triangle-listing methods
using a unifying framework called Generalized Iterators (GI),
developed a new set of algorithms called Pruned Companion
Files (PCF) for external-memory operation of GI, and showed
that it possessed better complexity than current implementa-
tions in the field. It then determined which of the18 methods
was the most efficient when both CPU and I/O objectives
were taken into account and created a working solution that
exhibited5 − 10× smaller runtime and orders of magnitude
less I/O compared to the best previous technique.
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