What Signals Do Packet-pair Dispersions Carry?

Xiliang Liu, Kaliappa Ravindran City University of New York Dmitri Loguinov

Texas A&M University

- Introduction
- Characterization of Packet-pair Probing
 - "Sampling & construction" model
 - Statistical properties of probing signals
- Probing Response Curves
- Implication on Bandwidth Estimation
- Conclusion

Introduction 1

 Packet-pair probing has been a major mechanism to measure link capacity, crosstraffic, and available bandwidth.

 Due to its end-2-end nature of packet-pair measurement, no network support is needed.

Introduction 2

- Unresolved questions in packet-pair measurements:
 - What information about the path is captured in the output packet-pair dispersions?
 - How are these signals encoded?
 - What are the statistical properties of these signals?
- Understanding these questions helps us extract path information from packet-pair dispersions.
- This paper answers these questions in the context of a single-hop path and bursty cross-traffic arrival.

Prior Work 1

• Start from the simplest case – an empty path

• This becomes the basic idea for bottleneck capacity measurements.

Prior Work 2

 Single-hop path with constant-rate fluid crosstraffic. (Melander et al, Dovrolis et al)

In multi-hop paths, the same thing holds to a certain extent.

Prior Work 3

- Single-hop path with bursty cross-traffic
 - Bolot 1993, Hu et al 2003
 - When the packet-pair shares the same queuing period

$$\delta' = \frac{s}{C} + \frac{y\delta}{C}$$
Output dispersion R.V.

The R.V. indicating crosstraffic intensity between the arrivals of the pair

– When δ is sufficiently large (so that packet-pairs almost never share the same queuing period), the mean of the output dispersion is equal to δ .

- Introduction
- Characterization of Packet-pair Probing
 - "Sampling & construction" model
 - Statistical properties of probing signals
- Probing Response Curves
- Implication on Bandwidth Estimation
- Conclusion

What are the random processes? 1

- The three processes which probing packetpair inspects are all related to cross-traffic arrival.
- $Y_{\delta}(t)$, δ -interval cross-traffic intensity process, indicates the cross-traffic arrival rate in the time interval [t,t+ δ].
- $B_{\delta}(t)$, δ -interval available bandwidth process, indicates the spare capacity in the time interval [t,t+ δ].

What are the random processes? 2

- $\textbf{D}_{\delta}(\textbf{t}),$ $\delta\text{-interval}$ workload difference process, is defined as

$$D_{\delta}(t) = W(t+\delta) - W(t)$$

W(t), workload process, indicates the remaining workload (in terms of the amount of service time) in the hop at time t.

Construction Procedure

 A packet-pair constructs its output dispersion signal using the following formulas

$$\delta' = \frac{Y_{\delta}(a_1)\delta}{C} + \frac{s}{C} + \max\left(0, \frac{B_{\delta}(a_1)\delta - s}{C}\right)$$
$$= \delta + D_{\delta}(a_1) + \max\left(0, \frac{s - B_{\delta}(a_1)\delta}{C}\right).$$
The hop idle time between

The hop idle time between the departure of the pair $\tilde{I}_{\delta}(a_1)$

Intrusion residual $R_{\delta}(a_1)$

Intrusion Residual $R_{\delta}(a_1)$

• $R_{\delta}(a_1)$ is the <u>additional</u> queuing delay imposed on the second probing packet by the first packet in the pair.

The advantage of our model

- The ``sampling & construction" characterization of packet-pair probing holds *unconditionally*. It neither relies on any assumptions on cross-traffic arrival, nor imposes any restriction on input packet-pair dispersion δ .
- Using this characterization, we answered fully the question as to what information is contained in output dispersions and how it is encoded.

Statistical Properties of Probing Signals 1

- To facilitate information extraction from δ' , we examine the statistics of each encoded signal.
- Assumption: cross-traffic arrival has ergodic stationary increments.
 - $Y_{\delta}(t)$ has time-invariant distribution with ensemble mean λ for any δ interval.
 - Ergodicity implies that the variance of $Y_{\delta}(t)$ decays to 0 when δ increases, for any t.

$$E[Y_{\delta}(t)] = \lambda.$$

$$\lim_{\delta \to \infty} Var[Y_{\delta}(t)] = 0.$$

$$\lim_{\delta \to \infty} E[(Y_{\delta}(t) - \lambda)^{2}] = 0$$

Statistical Properties of Probing Signals 2

As a consequence of our assumption (see details in the paper)

— Both W(t) and $D_{\delta}(t)$ have time-invariant distributions.

$$E[D_{\delta}(t)] = E[W(t+\delta)] - E[W(t)] = 0$$

 $-B_{\delta}(t)$ has a time-invariant distribution

$$E[B_{\delta}(t)] = C - \lambda$$

$$\lim_{\delta \to \infty} Var[B_{\delta}(t)] = 0$$

Statistical Properties of Probing Signals 3

- Both $R_{\delta}(t)$ and $\tilde{I}_{\delta}(t)$ have time-invariant distributions, but their ensemble means depend on both δ and probing packet size s.
- Keeping *s* fixed, we have

- Introduction
- Characterization of Packet-pair Probing
 - ``sampling & construction" model
 - statistical properties of probing signals
- Probing Response Curves
- Implication on Bandwidth Estimation
- Conclusion

Probing response curve

- Link capacity C, cross-traffic λ, and available bandwidth C-λ are the pieces of information we are interested in extracting from packet-pair output dispersion random variable.
- This information is contained in E[δ] as a function of input dispersion δ
 - E[δ] : the probing response of the path at input dispersion point δ .
- The way to estimate $E[\delta]$ is to probe many times and generate an output dispersion random process $\{\delta_n\}$
 - The process has time-invariant distribution and its sample-path time-average is equal to E[δ]

<u>Closed-form expression for probing</u> response curve

 Based on our "sampling & construction" model and stationary cross-traffic arrival assumption, we get

• The two terms $E[\tilde{I}_{\delta}(t)]$ and $E[R_{\delta}(t)]$ cause the response curve to deviate from that in fluid cross-traffic, which complicates information extraction.

$$E[\delta'_{n}] - \max\left(\delta, \frac{\delta\lambda + s}{C}\right) = \begin{cases} E[\tilde{I}_{\delta}(t)] & \frac{s}{\delta} \ge C - \lambda \\ E[R_{\delta}(t)] & \frac{s}{\delta} \le C - \lambda. \end{cases}$$

Fluid response curve, where information can be easily
$$= \min\left(E[R_{\delta}(t)], E[\tilde{I}_{\delta}(t)]\right)$$
extracted

F

• Rate response curve is more convenient.

• A transformed version of rate response curve is even more convenient.

- Introduction
- Characterization of Packet-pair Probing
 - ``Sampling & construction" model
 - Statistical properties of probing signals
- Probing Response Curves
- Implication on Bandwidth Estimation
- Conclusion

Computing response curves

- We proposed a method that computes $E[\delta]$ from cross-traffic arrival traces with high accuracy.
 - Given a trace, compute the sample-path $\delta'(t)$ in a time interval of the trace duration.
 - The sample-path $\delta'(t)$ is a piece-wise linear function, which allows accurate and easy computation of its time-average.
 - This time-average is a good approximation of $E[\delta]$ if the duration is sufficiently long.
- Alternatively, we can also measure the response using ns2 simulation.

Some results using Poisson CT 1

Some results using Poisson CT 2

Implication on two packet-pair measurement techniques

• TOPP uses the deviated portion of the response curve and produces inaccurate results.

	C	λ	C - λ
Real Value	10	3	7
TOPP Ns-2	35.97	32.33	3.64
TOPP Off-line	35.81	32.38	3.43

- Spruce uses the curve at input rate C, where no deviation occurs. Hence, spruce is unbiased in singlehop path.
- However, Spruce is subject to significant underestimation in multi-hop paths due to the two noise terms we discussed here. We report more details in the future work.

Recent progress (not in the paper)

 Using the ``sampling & construction" model, we were able to show that the two noise terms converge in mean-square to 0 as packet-train length increases and that output dispersion δ' also converges in mean-square to the fluid response.

$$\lim_{n \to \infty} E\left[\left(\delta' - \max\left(\delta, \frac{s + \delta\lambda}{C}\right) \right)^2 \right] = 0$$

• The trick is to treat the first and last packets in the train as a packet-pair, and treat probing packets in between as if they were from cross-traffic.

Conclusion

- We proposed a ``sampling & construction" model to characterize the signals contained in packet-pair dispersion.
- The presence of two positive-mean noise random signals impedes accurate information extraction from packet-pair output dispersions and response curves.
- The way to suppress the noise signals is to use large probing packet-size and long packet-trains instead of packet-pairs.
- Future work: extension to multi-hop paths.

Correspondence : xliu@gc.cuny.edu