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Introduction 1Introduction 1Introduction 1

• Packet-pair probing has been a major 
mechanism  to measure link capacity, cross-
traffic, and  available bandwidth.

δ
δ0

• Due to its end-2-end nature of packet-pair 
measurement, no network support  is needed.
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Introduction 2Introduction 2Introduction 2

• Unresolved questions in packet-pair measurements: 
━ What information about the path is captured in the output 

packet-pair dispersions? 
━ How are these signals encoded?
━ What are the statistical properties of these signals?

• Understanding these questions helps us extract path 
information from packet-pair dispersions.

• This paper answers these questions in the context of a 
single-hop path and bursty cross-traffic arrival.
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Prior Work  1Prior Work  1Prior Work  1

• Start from the simplest case – an empty path
━ Jacobson 1988.

• This becomes the basic idea for bottleneck               
capacity measurements.

δ0

δ

s/C



6

Prior Work 2Prior Work 2Prior Work 2

• Single-hop path with constant-rate fluid cross-
traffic. (Melander et al, Dovrolis et al )

• In multi-hop paths, the same thing holds to a 
certain extent. 

δ0

δ

s/(C—λ)
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Prior Work 3Prior Work 3Prior Work 3

• Single-hop path with bursty cross-traffic 
━ Bolot 1993, Hu et al 2003
━ When the packet-pair shares the same queuing 

period

━ When δ is sufficiently large (so that packet-pairs 
almost never share the same queuing period), the 
mean of the output dispersion is equal to δ.

Output dispersion R.V.

The R.V. indicating cross-
traffic intensity between the 
arrivals of the pair
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Sampling & Construction ModelSampling & Construction ModelSampling & Construction Model

• A packet-pair inspects three random processes 
associated with the hop it arrives into and constructs
the output dispersion signal δ0 based on the random 
sampling.
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What are the random processes? 1What are the random processes? 1What are the random processes? 1

• The three processes which probing packet-
pair inspects are all related to cross-traffic 
arrival.

• Yδ(t), δ-interval cross-traffic intensity process,  
indicates the cross-traffic arrival rate in the 
time interval [t,t+δ].

• Bδ(t), δ-interval available bandwidth process, 
indicates the spare capacity in the time 
interval [t,t+δ].
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What are the random processes? 2What are the random processes? 2What are the random processes? 2

• W(t), workload process, indicates the remaining 
workload (in terms of the amount of service 
time) in the hop at time t.

W(t)

t

• Dδ(t), δ-interval workload difference process, is 
defined as

a1
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Construction Procedure Construction Procedure Construction Procedure 

• A packet-pair constructs its output dispersion 
signal using the following formulas

The hop idle time between 
the departure of the pair Intrusion residual Rδ(a1)
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Intrusion Residual Intrusion Residual Intrusion Residual 

t

• Rδ(a1) is the additional queuing delay imposed on the second 
probing packet  by the first packet in the pair. 

a a+δ

W(t)
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The advantage of our modelThe advantage of our modelThe advantage of our model

• The ``sampling & construction”
characterization of packet-pair probing holds 
unconditionally. It neither relies on any 
assumptions on cross-traffic arrival, nor 
imposes any restriction on input packet-pair 
dispersion δ.

• Using this characterization, we answered fully 
the question as to what information is 
contained in output dispersions and how it is 
encoded.
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Statistical Properties of Probing Signals 1Statistical Properties of Probing Signals 1Statistical Properties of Probing Signals 1

• To facilitate information extraction from δ’, we 
examine the statistics of each encoded signal.

• Assumption: cross-traffic arrival has ergodic  
stationary increments. 
━ Yδ(t) has time-invariant distribution with ensemble mean λ for 

any δ interval. 
━ Ergodicity implies that the variance of Yδ(t) decays to 0 when 

δ increases, for any t.
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Statistical Properties of Probing Signals 2Statistical Properties of Probing Signals 2Statistical Properties of Probing Signals 2

• As a consequence of our assumption (see 
details in the paper)
━ Both W(t) and Dδ(t) have time-invariant distributions.

━ Bδ(t) has a time-invariant distribution
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Statistical Properties of Probing Signals 3Statistical Properties of Probing Signals 3Statistical Properties of Probing Signals 3

• Both          and           have time-invariant 
distributions, but their ensemble means depend on 
both δ and probing packet size s.

• Keeping s fixed, we have
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Probing response curveProbing response curveProbing response curve

• Link capacity C, cross-traffic λ , and available 
bandwidth C-λ are the pieces of information we are 
interested in extracting from packet-pair output 
dispersion random variable.

• This information is contained in E[δ’] as a function of 
input dispersion δ
━ E[δ’] : the probing response of the path at input dispersion 

point δ.
• The way to estimate E[δ’] is to probe many times and 

generate an output dispersion random process {δ’
n}

━ The process has time-invariant distribution and its sample-
path time-average is equal to E[δ’]
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Closed-form expression for probing 
response curve
ClosedClosed--form expression for probing form expression for probing 
response curveresponse curve

• Based on our “sampling & construction”
model and stationary cross-traffic arrival 
assumption, we get

Distribution function of Bδ(t)
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Deviation from fluid response curve 1Deviation from fluid response curve 1Deviation from fluid response curve 1

• The two terms               and                  cause 
the response curve to deviate from that in 
fluid cross-traffic, which complicates 
information extraction.

Fluid response curve, where 
information can be easily 
extracted.
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Deviation from fluid response curve 2Deviation from fluid response curve 2Deviation from fluid response curve 2

s/C s/(C-λ)

δ

E[δ’]

Caused by

Caused by
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Deviation from fluid response curve 3Deviation from fluid response curve 3Deviation from fluid response curve 3

• Rate response curve is more convenient.

rI=s/δ

s/E[δ’]

C-λ C

Caused by

Caused by
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Deviation from fluid response curve 4Deviation from fluid response curve 4Deviation from fluid response curve 4

• A transformed version of rate response curve is even 
more convenient.

rI

rI/(s/E[δ’])

1

C-λ C

Caused by

Caused by
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Computing response curvesComputing response curvesComputing response curves

• We proposed a method that computes E[δ’]  
from cross-traffic arrival traces with high 
accuracy.
━ Given a trace, compute the sample-path δ’(t) in a 

time interval of the trace duration.
━ The sample-path δ’(t) is a piece-wise linear 

function, which allows accurate and easy 
computation of its time-average.

━ This time-average is a good approximation of E[δ’]  
if the duration is sufficiently long.

• Alternatively, we can also measure the 
response using ns2 simulation.
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Some results using Poisson CT 1Some results using Poisson CT 1Some results using Poisson CT 1
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Some results using Poisson CT 2Some results using Poisson CT 2Some results using Poisson CT 2
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Implication on two packet-pair 
measurement techniques
Implication on two packetImplication on two packet--pair pair 
measurement techniquesmeasurement techniques

7310Real Value

3.4332.3835.81TOPP Off-line
3.6432.3335.97TOPP Ns-2

C-λλC

• TOPP uses the deviated portion of the response curve 
and produces inaccurate results.

• Spruce uses the curve at input rate C, where no 
deviation occurs. Hence, spruce is unbiased in single-
hop path.

• However, Spruce is subject to significant under-
estimation in multi-hop paths due to the two noise 
terms we discussed here.  We report more details in 
the future work.
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Recent progress (not in the paper) Recent progress Recent progress (not in the paper) (not in the paper) 

• Using the ``sampling & construction” model, we 
were able to show that the two noise terms 
converge in mean-square to 0 as packet-train 
length increases and that output dispersion δ’ also 
converges in mean-square to the fluid  response.

• The trick is to treat the first and last packets in the 
train as a packet-pair, and treat probing packets in 
between as if they were from cross-traffic.
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ConclusionConclusionConclusion

• We proposed a ``sampling & construction”
model to characterize the signals contained in 
packet-pair dispersion.

• The presence of two positive-mean noise 
random signals impedes accurate information 
extraction from packet-pair output dispersions 
and response curves.

• The way to suppress the noise signals is to 
use large probing packet-size and long 
packet-trains instead of packet-pairs.

• Future work: extension to multi-hop paths.
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