Multi-Hop Probing Asymptotics In Available Bandwidth Estimation: Stochastic Analysis

Xiliang Liu, Kaliappa Ravindran City University of New York Dmitri Loguinov Texas A&M University

Problem Statement

- Bandwidth estimation using first-order statistics of packet-train output dispersions
 - Assume an N-hop path probed by packet trains of length n

• **Goal**: derive the relationship between the statistical mean of Δ_{out} and Δ_{in} under arbitrary cross-traffic – We call this the probing response curve

Outline

Related work and background:

- Single-hop fluid curve
 - E.g., Melander (2001), Dovrolis (2001)
- Multi-hop fluid curve (one-hop persistent)
 - E.g., Dovrolis (2001)

Our contribution:

- Multi-hop fluid response curve
 - Arbitrary cross-traffic routing
- Multi-hop stochastic response curve
 - Packet-level model of cross-traffic
- Experimental verification
- Implications on existing techniques

Related Work

• Single-hop fluid setting:

Let $r_I = \frac{s}{g_I}$ and $r_O = \frac{s}{g_O}$, the fluid rate curve is

$$r_{O} = \begin{cases} r_{I} & r_{I} \leq C - \lambda \\ \frac{r_{I}}{r_{I} + \lambda} C & r_{I} \geq C - \lambda \end{cases}$$
(1)

A transformed version of rate curve depicts the relation between $\frac{r_I}{r_O}$ and r_I

$$\frac{r_I}{r_O} = \begin{cases} 1 & r_I \le C - \lambda \\ \frac{r_I + \lambda}{C} & r_I \ge C - \lambda \end{cases}$$
(2)

Rate-response single-hop fluid curves:

 Question: how do existing techniques relate to singlehop fluid curves?

PTR searches for the turning point.

- Previous multi-hop models
 - Analytical results are only available for fluid cross-traffic with one-hop persistent routing

• Mathematically:

$$g_i = \max\left(g_{i-1}, \frac{s + \lambda_i g_{i-1}}{C_i}\right)$$

Outline

Related work and background:

- Single-hop fluid curve
 - E.g., Melander (2001), Dovrolis (2001)
- Multi-hop fluid curve (one-hop persistent)
 E.g., Dovrolis (2001)

Our contribution:

- Multi-hop fluid response curve
 - Arbitrary cross-traffic routing
- Multi-hop stochastic response curve
 Packet-level model of cross-traffic
- Experimental verification
- Implications on existing techniques

Multi-hop Fluid Response Curve

Notation 1: flow rate vector x: $(x_1, x_2, ..., x_M)$ Notation 2: flow aggregation $\Gamma_{k,i}$: A binary vector indicating all flows that enter the path at link k and traverse link i Example: $\Gamma_{2,3} = (0, 1, 1, 0)^T$ The arrival rate of $\Gamma_{k,i}$ is $\mathbf{x}\Gamma_{k,i}$.

Multi-hop Fluid Response Curve (cont'd)

Main Result 1:

$$g_i = \max\left(g_{i-1}, \frac{s + \sum_{k=1}^{i} g_{k-1} \mathbf{x} \Gamma_{k,i}}{C_i}\right)$$

Multi-hop Fluid Response Curve (cont'd)

- Implications of this result
 - One-hop persistent curve is the upper bound
 - Single-hop curve is the lower bound

Outline

Related work and background:

- Single-hop fluid curve
 - E.g., Melander (2001), Dovrolis (2001)
- Multi-hop fluid curve (one-hop persistent)
 E.g., Dovrolis (2001)

Our contribution:

- Multi-hop fluid response curve
 Arbitrary cross-traffic routing
- Multi-hop stochastic response curve
 - Packet-level model of cross-traffic
- Experimental verification
- Implications on existing techniques

Multi-Hop Stochastic Response Curve

Assumption: The output dispersion R.V. G_N for different probings have idententical distributions.

Main Result 2:

$$E[G_i] = E[G_{i-1}] + \frac{E[R_i]}{n-1} \\ = \frac{\sum_{k=1}^{i} \left(\mathbf{x} \Gamma_{k,i} E[G_{k-1}] \right) + s}{C_i} + \frac{E[\tilde{I}_i]}{n-1}.$$

Multi-Hop Stochastic Response Curve (cont'd)

• Stochastic curve:

These terms do not have fluid counterparts.

Multi-Hop Stochastic Response Curve (cont'd)

The presence of the two additional terms causes the multi-hop gap response curve to positively deviate from its fluid counterpart.

The response deviation $\beta_N = E[G_N] - g_N$ can be recursively expressed as follows

$$\beta_{i} = \begin{cases} \beta_{i-1} + \frac{E[R_{i}]}{n-1} & g_{i} = g_{i-1} \\ \frac{1}{C_{i}} \sum_{k=1}^{i} \left(\mathbf{x} \Gamma_{k,i} \beta_{k-1} \right) + \frac{E[\tilde{I}_{i}]}{n-1} & g_{i} > g_{i-1} \end{cases}$$

Multi-Hop Stochastic Response Curve (cont'd)

• Impact of Packet-train Parameters

Under certain additional assumptions, we get the following two results in the paper:

Main Result 3: For any given input rate, as probing packet size s increases, G_N converges to g_N in the mean.

Main Result 4: For any given input rate, as packet-train length n increases, G_N converges to g_N in the mean-square sense.

Full Picture of the 3 Response Curves

Outline

Related work and background:

- Single-hop fluid curve
 - E.g., Melander (2001), Dovrolis (2001)
- Multi-hop fluid curve (one-hop persistent)
 E.g., Dovrolis (2001)

Our contribution:

- Multi-hop fluid response curve
 Arbitrary cross-traffic routing
- Multi-hop stochastic response curve
 Packet-level model of cross-traffic
- Experimental verification
- Implications on existing techniques

Experimental Verifications

One-Hop Persistent Cross Traffic Routing

Path Persistent Routing

Real Internet Experiments

- We measure the rate response curves for more than 270 Internet paths over the RON testbed.
- Parameters:
 - Input rates: from 10 to 150 mb/s with step 5 mb/s
 - Packet-train length: from 33 to 129 packets
 - Packet-size: 1500 bytes
 - For each rate, we use 200 trains to estimate $E[G_N]$
- Experiment durations are 20-100 minutes

Lulea → CMU (1/16/2005)

24

Ana1-gblx → Cornell (4/29/2005)

 $r_{\rm l}({\rm s/E[G_{\rm N}]})$

Outline

Related work and background:

- Single-hop fluid curve
 - E.g., Melander (2001), Dovrolis (2001)
- Multi-hop fluid curve (one-hop persistent)
 E.g., Dovrolis (2001)

Our contribution:

- Multi-hop fluid response curve
 Arbitrary cross-traffic routing
- Multi-hop stochastic response curve
 Packet-level model of cross-traffic
- Experimental verification
- Implications on existing techniques

Implications on Existing Techniques

- TOPP uses packet-pairs to measure the stochastic response curve and implicitly assumes that it is the same as the fluid curve
 - To avoid bias, TOPP must use trains of sufficient length
- Pathload and PTR are related to searching for the turning point in the single-hop fluid response curve
 - Since they are using long trains, they are often immune to measurement bias

Implications on Existing Techniques (cont'd)

Spruce measurement bias

Implications on Existing Techniques (cont'd)

Spruce measurement biases

Experiment	Elastic Bias	Non-Elastic Bias	Total bias	Real avail- bw	Spruce Measurement
Emulab-1	53.76	30.24	84	36	0
Emulab-2	26.88	12	38.88	36	0
Lulea-cmu	24	0	24	94	70

Conclusions

- We derived the multi-hop fluid response curve with arbitrary cross-traffic routing
- Also derived the multi-hop response curve using packetbased cross-traffic models and showed its convergence to its fluid counterpart when packet-train length increases
- Our results provided a stochastic justification of the existing techniques using long-trains
- Uncovered the sources of measurement biases for the techniques using short trains
- Leads to new techniques for measuring the tight link capacity (implementation in progress)