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ABSTRACT
In this paper, we take the sample-path approach in analyz-
ing the asymptotic behavior of single-hop bandwidth esti-
mation under bursty cross-traffic and show that these re-
sults are provably different from those observed under fluid
models of prior work. This difference, which we call the
probing bias, is one of the previously unknown factors that
can cause measurement inaccuracies in available bandwidth
estimation. We present an analytical formulation of “packet
probing,” based on which we derive several major proper-
ties of the probing bias. We then experimentally observe
the probing bias and investigate its quantitative relation-
ship to several deciding factors such as probing packet size,
probing train length, and cross-traffic burstiness. Both our
analytical and experimental results show that the probing
bias vanishes as the packet-train length or packet size in-
creases. The vanishing rate is decided by the burstiness of
cross-traffic.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring

General Terms
Measurement, Performance, Theory

Keywords
Bandwidth measurement, Packet train probing

1. INTRODUCTION
Available bandwidth of a network path has long been the

interest of measurement studies because of its importance
to many Internet applications such as adaptive streaming,
overlay routing, congestion control, and network diagnosis.
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However, available bandwidth is generally considered diffi-
cult to measure due to its dynamics, especially in the In-
ternet environment where the end-to-end approach is ad-
vocated and often is the only choice available. Thus, until
recently, most of the research efforts went into the mea-
surement of the bottleneck capacity [2] [3] [9] [18]. The
recent surge of available bandwidth estimation proposals
stems from the rationales developed in bottleneck capac-
ity estimation research. Among the recent proposals, TOPP
[12], SLoPS [7], PathChirp [20], IGI/PTR [5] and Spruce [21]
are the major representatives. Most of them are based on
packet-pair or packet-train probing, where bursts of equally
spaced packets of uniform size are injected into the path
of interest, and the available bandwidth information is in-
ferred based on the relationship between the input inter-
packet gaps and those of the output.

According to recently established notions, the available
bandwidth of a network hop is its residual capacity after
transmitting cross-traffic. Since at any time instance, the
hop is either idle or transmitting packets at its capacity
speed C, the utilization of the hop can be viewed as an on-
off function over time. The definition of the available band-
width ought to look at the average unutilized bandwidth
over some time interval δ, i.e.,

Bδ(t) = C
(
1− 1

δ

∫ t+δ

t

U(x)dx
)
, (1)

where Bδ(t) is the available bandwidth in time interval [t, t+
δ], U(x) ∈ {0, 1} is the link utilization on-off function deter-
mined by the packet-arrival pattern of cross-traffic, and C is
the hop capacity. The available bandwidth along a network
path is the minimum available bandwidth of all traversed
hops. The hop carrying the minimum available bandwidth
is called the tight hop.

Note that Bδ(t) varies over time t as well as over a wide
range of observation intervals δ. This dynamics make it an
elusive target to measure. To combat this difficulty, most
measurement proposals use a fluid cross-traffic model to jus-
tify the design of their estimation techniques. Under such
fluid cross-traffic, Bδ(t) becomes a constant for all t and all
δ and its relationship to probing input and output becomes
easy to identify. Measurement techniques designed using
this model are then empirically extended to general bursty
cross-traffic conditions.

Although the experimental performance of recent pro-
posals as documented is encouraging, the rationales they
are anchoring upon are not fully justified in general cross-
traffic conditions. In this paper, we contribute analytical
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insight into the asymptotic behavior of single-hop, packet-
train bandwidth estimation under bursty cross-traffic con-
ditions. This question has two aspects. First, given a cross-
traffic arrival process and fixed probing train parameters
(i.e., packet size and train length), we analyze how the
probing output relates to the probing input. We investi-
gate the output rate and gap for individual packet trains as
well as their asymptotic average as the number of probings
approaches infinity. We examine the functional relation be-
tween the probing input and the asymptotic average of the
probing output in the entire input range. We call this re-
lation the probing response curve and show the difficulties
in extracting the available bandwidth information from the
curve.

Second, we investigate how the response curve evolves
with respect to the changes in packet train parameters and
cross-traffic burstiness. Both questions are of fundamental
importance for the design of available-bandwidth estimation
methods. The answer to the first question provides a theo-
retical foundation that extends previous rationales based on
fluid cross-traffic models. The answer to the second question
offers an insight into parameter tuning strategies in the mea-
surement design. Published research has produced a great
deal of intuition and empirical findings related to these ques-
tions; however, neither their analytical foundation, nor a
mathematically precise explanation was available until now.

Although our eventual goal is to understand the behav-
ior of packet-train probing in multi-hop network paths, the
insight obtained in the analysis of a single hop is indispens-
able in reaching this goal. Moreover, the single-hop case on
its own is an interesting and complex problem calling for an
elaborate discussion, which is the focus of this paper.

Under two theoretically and practically mild assumptions,
we derive several important properties of the gap (and rate)
response curve. Our results show that the rate response
curve in constant-rate fluid cross-traffic is the tight upper
bound of that in bursty cross-traffic with the same aver-
age intensity. We show that there is a probing input range
where the real curve negatively deviates from its fluid-based
prediction. We call this deviation the probing bias. Most
existing measurement techniques make use of the curve in
that range without being aware of the actual bias, which
sometimes makes them subject to significant measurement
inaccuracy.

Our analysis also discovers the source of the probing bias
and arrives to its closed-form expression for arbitrary prob-
ing constructions. We show that the amplitude of the prob-
ing bias is exclusively decided by the probing construction
and the available bandwidth distribution. We also present
an experimental approach to compute the probing bias in
given traffic traces. This allows us to empirically validate
our theoretical results, qualitatively observe the relationship
between the probing bias and probing train constructions in
certain cross-traffic conditions, and evaluate the asymptotic
performance of various available-bandwidth estimators.

The rest of the paper is organized as follows. In section
2, we survey the current measurement proposals and show
that they are all related to one rationale, which we later
inspect under general cross-traffic conditions. In section 3,
we identify the measurement targets and present the an-
alytical foundation of packet-train probing. In section 4,
we analyze the major properties of the response curves and
probing bias. In section 5, we propose two experimental

methods, period testing and trace driven testing, to observe
the probing bias and examine its relationship to several de-
ciding factors. We explain the implications of our findings
on some of the current proposals in section 6. Finally, we
present the concluding remarks in section 7.

2. BACKGROUND AND DISCUSSION

2.1 Related Work
IP-layer bandwidth estimation and the idea of using packet-

pairs to infer link capacity dates at least as far back as 1988
when Jacobson [6] designed the packet conservation princi-
ple of TCP to allow senders to indirectly infer the bottle-
neck/available bandwidth based on the spacing between the
ACK packets. Keshav’s packet-pair flow control followed in
1991 [8] and relied on fair queuing in all network routers.

Several years later, Carter et al. (1996) developed a tool
called cprobe [1] to measure the available bandwidth. Cprobe
bounced a short train of ICMP echo packets off the target
server and recorded the spacing between the first and last
returning packet. The rate of the arriving echo stream was
used as an estimate of the available bandwidth. As pointed
out later by Dovrolis [2], cprobe actually measured a met-
ric called the asymptotic dispersion rate (ADR), which does
not generally equal the available bandwidth. Paxon (1999)
defined and measured a relative available bandwidth metric
β [18], which approached 1 when the path was void of cross-
traffic and 0 when the path was close to 100% utilization.

Melander et al. (2002) studied the relationship between
the input and output rates rI and rO of probing trains in
a single-hop path and presented the following FIFO fluid
model [13]:

rO =





rI rI < C − λ

C
rI

rI + λ
rI ≥ C − λ

, (2)

where C and λ are the hop capacity and cross-traffic in-
tensity (or rate) respectively. Applying math induction to
the subsequent hops along the path, we get the main model
of measuring the available bandwidth AP of an arbitrary
multi-hop path P :

rO =





rI rI < AP

C
rI

rI + λ
b ≥ rI ≥ AP

, (3)

where b is the second minimum residual link bandwidth
along path P and C is the capacity of the tight hop.

Based on (2) and (3), Melander et al. proposed a mea-
surement technique called TOPP (Trains of Packet Pairs)
[14]. TOPP first collects the output rates of probing packet
pairs for a series of equally spaced input rates in some inter-
val [rmin

I , rmax
I ]. In the subsequent analysis phase, instead

of using (3), TOPP uses the piece-wise linear relationship
between rI/rO and rI :

rI

rO
=





1 rI < AP

rI

C
+

λ

C
b ≥ rI ≥ AP

. (4)

TOPP identifies the second segment in the curve using
several empirical methods and applies linear regression to
calculate the capacity C and cross traffic intensity λ of the
tight link. Hence, AP = C − λ is obtained.
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Another recent proposal is SLoPS (Self Loading Periodic
Streams) by Jain et al. (2002) [7]. SLoPS is implemented
in a tool called pathload and is based on the observation
that one-way delays of packets in a probing train show an
increasing trend when the input rate of the probe traffic
is higher than the available bandwidth of the path. This
rationale is clearly true if cross-traffic is modeled as a fluid
and generally can be written as a variation of (4):

rI

rO
=

{
1 rI ≤ AP

> 1 rI > AP

. (5)

To measure available bandwidth in bursty cross-traffic,
pathload adapts its input probing rate in a way similar to a
binary search to locate the region where the one-way delay
of the probing packets is just about to show an increasing
trend or the two statistical tests used can neither detect
an increasing trend, nor detect a non-increasing trend with
sufficient confidence. That region is then taken as the range
of the available bandwidth of the path.
PathChirp [20] is a proposal to improve pathload’s mea-

surement speed. PathChirp uses probing trains with ex-
ponentially decreasing inter-packet spacing and calculates
available bandwidth from the queuing delay signature of the
arriving chirp.

Hu et al. [5] (2003) analyzed the interaction between
probing pairs and CBR cross-traffic using a single-hop path.
They proposed the following gap formula under the condi-
tion that the packets in each probing pair share the same
hop busy period:

gO =
s

C
+

λgI

C
, (6)

where gO is the output gap, gI is the input gap between the
packet pair, s is the packet size of probe traffic. The paper [5]
also proposed a packet-train based estimator called IGI that
measures the cross-traffic intensity, which can be viewed as
an empirical extension of (6).

As an alternative to IGI, [5] suggested to use a method
called PTR (Packet Transmission Rate), in which the output
rate of the probing train is used as an estimator of AP . The
authors [5] showed that both IGI and PTR produce accurate
results at the turning point where the input gap gI starts to
become the same as the output gap gO.

Notice that IGI/PTR is also related to model (2), which
shows that the turning point is where both rI and rO are
equal to the available bandwidth C−λ. Equation (6) is the
“gap” version of the second part of (2).
Spruce [21] is another measurement proposal that uses

packet-pairs. Like IGI, spruce assumes a single bottleneck
link whose capacity C can be estimated beforehand. Spruce
sends probing pairs with intra-pair gap gI set to the bot-
tleneck link transmission delay of the packet and inter-pair
delay set to an exponentially distributed random variable so
as to maintain the average probing rate below 0.05C. Each
probing pair generates an available bandwidth estimate Ai

computed by:

Ai = C
(
1− gO − gI

gI

)
. (7)

Spruce averages the last 100 samples of Ai to arrive at an
estimation of AP . Observe that spruce anchors its rationale
on (6) with gI = s/C, where s is the probing packet size.

There are other measurement proposals such as Delphi
[19] and the work in [4]. These proposals assume specific
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Figure 1: Single-hop probing model.

cross-traffic processes, which allows them to either directly
estimate cross-traffic intensity or reconstruct its parameters
on a larger timescale based on the sampled traffic in small
time intervals. The packet probing part however is similar
to that of spruce and is related to (6).

2.2 Discussion
In summary, most of the recent proposals anchor their ra-

tionales directly on (2) or a model closely related to it. How-
ever, (2) is only fully justified based on a fluid cross-traffic
model, in which the arrival rate of cross-traffic is constant
at all times t and equals λ. For general bursty cross-traffic,
it is important to understand whether (2) is the asymp-
totic behavior of packet train probing or not. A positive an-
swer to this question would lay a solid ground for the design
of available bandwidth measurement methods and provide
them with an assurance of asymptotic accuracy. On the
other hand, a negative answer would shed new light on the
fundamental limits and tradeoffs in probing-based measure-
ments, giving rise to new insights in parameter tuning under
certain application requirements. We next present the nec-
essary analytical foundation to tackle this question. Due to
limited space, all proofs in this paper are omitted, and we
refer interested readers to [10] for more details.

3. ANALYSIS OF PACKET PROBING
In this section, we present an analytical formulation of

packet probing, identify measurement targets, and derive
closed-form relation between probing input and output for
individual packet trains. Our analysis focuses on the single-
hop probing model in Figure 1. We use the quadruple
〈a1, gI , s, n〉 to denote a probing train of n packets p1, p2, . . . , pn,
where a1 is the arrival time of the first packet p1 to the hop,
gI is the inter-packet spacing, s is the probe packet size, and
n is the train length. The arrival time at the hop of the prob-
ing packets are denoted by ai = a1+(i−1)gI , i = 1, 2, . . . , n.
The departure time of probing packets from the hop are de-
noted by di, i = 1, 2, . . . , n. We define the output gap of a
packet train as the average spacing between adjacent pack-
ets in the train :

gO=
dn − d1

n− 1
. (8)

In terms of rate, the corresponding average input and out-
put rates are given by:

rI =
s

gI
, rO =

s

gO
=

(n− 1)s

dn − d1
. (9)

We start from the gap version of (2), namely, we first
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investigate the validity of the following model:

E[gO] =





gI gI >
s

C − λ
s

C
+

gIλ

C
gI ≤ s

C − λ

(10)

in a single hop path and then come back to its rate version.
Since we are now dealing with bursty cross-traffic, neither
cross-traffic intensity nor probing output gap is a constant.
Meanwhile, λ and E[gO] can be viewed as the time averages
of traffic intensity and output gaps. Detailed connotations
about these two terms are clarified at later proper times.

3.1 Problem Formulation
Throughout the paper, we assume infinite buffer capacity,

FIFO queuing, and a work-conserving discipline for the for-
warding hop. For the composition of cross-traffic and prob-
ing traffic, we assume simple traffic arrival, i.e., at most one
packet arrives at any time instance.

Definition 1. Cross traffic is driven by the packet count-
ing process N(t) and the packet-size process Sn. The cumu-
lative traffic arrival V (t) is a random process counting the
total volume of data received by the router up to time in-
stance t:

V (t) =

N(t)∑
n=1

Sn. (11)

Note that V (t) and N(t) are right continuous, meaning
that the packet arriving at t is counted in V (t). Unlike
conventional traffic modeling, we make no assumption on
N(t) or Sn. Instead, our assumption is made for V (t).

Assumption 1. Cross traffic exhibits “intensity stability,”
which means that limt→∞ V (t)/t exists and is less than the
hop capacity C.

This higher level assumption can accommodate a broad
range of traffic types and, at the same time, detach the
model from the underlying details of traffic arrival.

We define cross-traffic intensity λ in (10) as the limit of
V (t)/t as t → ∞. This definition reveals a mathematical
essence of one’s intuitive notion of average traffic intensity.
Further, as we next show, the time average of cross-traffic
intensity metrics in arbitrary fixed observation interval is
the same as this limit.

Definition 2. We define Yδ(t) as the average cross-traffic
arrival rate in the interval (t, t+δ] and call it the “δ-interval
cross-traffic intensity” process:

Yδ(t) =
V (t + δ)− V (t)

δ
. (12)

Given this definition, we have the following result.

Lemma 1. The limiting time average E[Yδ(t)] of any δ-
interval cross-traffic intensity sample-path is equal to λ:

E[Yδ(t)] = lim
t→∞

1

t

∫ t

0

Yδ(u)du = λ, ∀δ > 0. (13)

Throughout this paper, we use the notation of probability
expectation as a shorthand representation for sample-path
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Figure 2: (a) The first 50 ms of the workload sample-
path W (t) of exponential on-off ns2 traffic (C = 10
mb/s, s = 750 bytes); (b) Hop workload W (t) of CBR
ns2 traffic (C = 2.4 mb/s, s = 1500 bytes).

limiting time average1. Lemma 1 reveals that to measure λ,
instead of conducting one observation in a very large time
interval (which is often not practical), we can conduct ob-
servations in arbitrarily small time intervals and use their
average to approach it. This has significant implication on
probing based measurement as we show later.

A look back at assumption 1 further confirms its mildness.
Since λ is one of our measurement targets, the intensity
stability assumption basically says that the measurement
target needs to exist.

Our next assumption is related to the forwarding hop.

Definition 3. Hop workload process W (t) is the sum at
time instance t of service times of all packets in the queue
and the remaining service time of the packet in service.

Note that W (t) is also right continuous. Two examples of
hop workload sample-path are shown in Figure 2.

Assumption 2. The forwarding hop exhibits workload sta-
bility. That is, limt→∞W (t)/t = 0.

Workload stability means that W (t) = o(t). Note that
given Assumption 1, workload stability is satisfied in most
practical situations and that Assumption 2 is formally stated
only for convenience of presentation.

We next define a process especially useful in characterizing
how cross-traffic changes the gaps of probing packet pairs.

Definition 4. A δ-interval workload-difference process Dδ(t)
is the difference between the hop workload at time t and t+δ:

Dδ(t) = W (t + δ)−W (t). (14)

One important implication of workload stability relevant
to probing based measurements is the zero-mean nature of
Dδ(t). It is formally stated as follows.

1In fact, the limiting time average of a sample-path is the
expectation of its limiting frequency distribution [15, pages
45-50]. Hence, it is also called the “sample-path mean.”
This paper is purely sample-path based, and we avoid ad-
dressing any probabilistic nature of the underlying random
process. The first equality in Lemma 1 has nothing to do
with ergodicity. It is an equality by definition.
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Lemma 2. Assuming W (t) = o(t), the limiting time av-
erage E[Dδ(t)] of any δ-interval workload-difference sample-
path is zero:

E[Dδ(t)] = lim
t→∞

1

t

∫ t

0

Dδ(u)du = 0, ∀δ > 0. (15)

With these two assumptions, we next present a formula-
tion of “available bandwidth” and show how it is related to
cross traffic and hop workload both in finite and asymptot-
ically infinite time intervals.

Definition 5. Hop utilization process U(t) is an on-off
process associated with W (t):

U(t) =

{
1 W (t) > 0

0 W (t) = 0
(16)

and δ-interval hop idle process

I(t, t + δ) = Iδ(t) = δ −
∫ t+δ

t

U(x)dx (17)

is a process indicating the total amount of idle time of the
forwarding hop in [t, t + δ]. We further call time interval
[t, t + δ] a “hop busy period” if Iδ(t) = 0 and a “hop idle
period” if Iδ(t) = δ.

Definition 6. A δ-interval available bandwidth process
Bδ(t) is a process indicating the residual bandwidth in the
time interval [t, t + δ]:

Bδ(t) = C

(
1− 1

δ

∫ t+δ

t

U(x)dx

)
=

Iδ(t)C

δ
. (18)

In our next lemma, we present the relationship among
cross-traffic intensity, hop workload, and available band-
width in arbitrary finite time intervals.

Lemma 3. For all t ≥ 0 and δ > 0, the following holds:

δ =
Bδ(t)δ

C
−Dδ(t) +

Yδ(t)δ

C
. (19)

Note that the term Dδ(t) escaped the formulation efforts
of prior work. Although it is a zero-mean term, it is not
unconditionally insignificant. For example, when the distri-
bution of available bandwidth is of interest, this term must
be taken into consideration.

The next two theorems present the asymptotic relation-
ship between cross-traffic intensity and available bandwidth.
They explain when and why available bandwidth can be es-
timated by measuring cross-traffic intensity λ.

Theorem 1. Under the assumptions of this paper, δ-interval
available bandwidth converges to C−λ as the observation in-
terval becomes large:

lim
δ→∞

Bδ(t) = C − λ, ∀t > 0. (20)

Theorem 1 shows that given the two stability assumptions
we made, available bandwidth also exhibits stability and, in
large time intervals, can be approximated by C − λ.

Note, however, that in cases when we are interested in
the available bandwidth in a small δ-interval2, Lemma 3
suggests that Bδ(t) cannot be correctly estimated based on

2“Small” is relative to the convergence delay of V (t)/t.

the measurement of Yδ(t) alone. However, the following the-
orem says that the limiting time average of available band-
width metrics in arbitrary δ-interval can be estimated by
measuring cross-traffic.

Theorem 2. The limiting time average E[Bδ(t)] of any
δ-interval available bandwidth process is C − λ. That is,

E[Bδ(t)] = lim
t→∞

1

t

∫ t

0

Bδ(u)du = C − λ, ∀δ > 0. (21)

To summarize, our results show that available bandwidth
in a large timescale or the first-order statistics of available
bandwidth in arbitrary fixed time scale can be estimated based
on the measurement of cross traffic, while small timescale
metrics and their higher-order statistics cannot be correctly
estimated solely based cross-traffic measurements.

Note that measuring cross-traffic intensity λ is not the
only way to estimate available bandwidth A. Metric A =
C−λ can be directly estimated without knowing the values
of C or λ, as is the case of SLoPS [7] and PTR [5]. Our
discussion of probing response curve in Section 4 will cover
the theoretical aspects of both approaches.

Despite the perplexing dynamics, we identified two mea-
surement targets, λ and A = C − λ, under mild traffic as-
sumptions. These two targets are fairly stable in the sense
that they are independent of any particular observation time
instance t and observation interval δ. Although other met-
rics such as the variance and distribution of available band-
width might also be interesting, they are less stable because
of their dependence on δ. Measurement of those targets is
beyond the scope of this paper.

We are now ready to derive the probing response curve
and show how these two targets, λ and A, are embedded in
the curve. Before that, however, we must understand the
interaction between the probing traffic and the cross-traffic.
Traffic interaction includes two parts: the way the probing
train changes the original hop workload and the way the
cross-traffic changes the inter-packet gaps in the probing
train. The latter is our interest, but its analysis relies on
understanding the former.

3.2 Probing Intrusion of Packet Trains
We use W̃ (t) and Ĩδ(t) to respectively denote the workload

sample-path and the hop idle sample-path associated with
the superposition of cross-traffic and probing traffic. Note
that traffic composition only increases hop workload. That
is, for all t, W̃ (t) ≥ W (t). We next define useful notation
that will help us examine this intrusion behavior of packet
train probing.

Definition 7. The intrusive range of the probing traffic
into W (t), is the set {t : W̃ (t) > W (t)}. The intrusion

residual function is Wd(t) = W̃ (t)−W (t).

The function Wd(t) helps us understand the intrusion be-
havior of the probing traffic into W (t). Before the arrival
of probing packets, Wd(t) = 0. It gets an immediate in-
crement of s/C upon every probing packet arrival, where
s is the packet size. In W (t)’s busy periods without ad-
ditional probing packet arrival, Wd(t) remains unchanged.
In W (t)’s idle periods without additional probing packet ar-
rival, Wd(t) deceases linearly with slope −1. Function Wd(t)
is monotonically non-increasing between every two adjacent
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Figure 3: Illustration of intrusion residual function.

probing packet arrivals. Figure 3 illustrates this behavior,
where (t1, t2) and (t3, t5) are two busy periods in W (t), and
(t2, t3) and (t5, t7) are two idle periods in W (t). Times t1,
t4 and t6 are the instants of probing packet arrivals. Time
t7 is the end point of the intrusive range.

Based on the above observations of Wd(t), we have the
following lemma:

Lemma 4. When W (t) is probed by a single packet p of
size s arriving into the hop at time t0,

Wd(t) =

{
0 t < t0

max
(
0,

s

C
− I(t0, t)

)
t ≥ t0

. (22)

When W (t) is probed by a packet train 〈a1, gI , s, n〉, we
are often interested in computing

Ri(a1) = W−
d (ai) = W−

d (a1 + (i− 1)gI) (23)

for i = 1, 2, . . . , n, where f−(a) denotes the left-sided limit
limx→a− f(x). Metric Ri(a1)

3 is the intrusion residual caused
by the first i − 1 packets in the probing train 〈a1, gI , s, n〉
and experienced by packet pi. In other words, the queuing
delay of pi in the hop is given by:

W̃−(ai) = W (ai) + W−
d (ai)

= W (ai) + Ri(a1). (24)

The total sojourn time of pi at the hop is the sum of its
service time and its queuing delay:

di − ai = W (ai) + Ri(a1) +
s

C
(25)

As a direct result of Lemma 4, Ri can be recursively com-
puted as follows:

Ri =

{
0 i = 1

max
(
0,

s

C
+ Ri−1 − I(ai−1, ai)

)
i > 1

. (26)

Denoting s/C−I(ai−1, ai) by yi, the second part of equa-
tion (26) can be expanded to the following non-recursive
form:

Ri = max

(
0, yi−1,

i−1∑

k=i−2

yk, . . . ,

i−1∑

k=1

yk

)
. (27)

We next discuss the second part of traffic interaction.

3When a1 is irrelevant, we often write Ri(a1) as Ri.

3.3 Output Gaps of Individual Probing Trains
Our next lemma describes the relationship between prob-

ing input and output for an individual packet train. It is the
corner stone of our probing analysis. Previous work only re-
vealed this result under certain conditions [5], [16]. The
full picture, although simple and important, has remained
undocumented.

Lemma 5. Assuming δ = (n − 1)gI and W (t) is probed
by a packet train 〈a1, gI , s, n〉, the output gap gO can be ex-
pressed as:

gO =
Yδ(a1)gI

C
+

s

C
+

Ĩ(a1, an)

n− 1

= gI +
Dδ(a1)

n− 1
+

Rn(a1)

n− 1
. (28)

Lemma 5 shows that the output gap carries the informa-
tion about Yδ(a1), which is potentially useful in cross-traffic
measurements. However, the output gap is also contam-
inated by the noise information of Dδ(a1), Ĩ(a1, an), and
Rn(a1).The last two terms can have positive mean in bursty
cross-traffic. This is exactly where the probing bias comes
from, as we show later. Meanwhile, we examine several use-
ful bounds for these two terms.

From (26), noticing that I(ai−1, ai) is no less than zero
and applying mathematical induction to i, we get 0 ≤ Rn ≤
(n− 1)s/C. Combining with Lemma 5, we have:

Corollary 1. Again assuming δ = gI(n − 1), the fol-
lowing inequalities hold:

Dδ(a1)

n− 1
+ gI ≤ gO ≤ Dδ(a1)

n− 1
+ gI +

s

C
. (29)

The second inequality is tight iff I(a1, an) = 0.

Our next lemma leads to a bound for Ĩ(a1, an).

Lemma 6. For k = 1, 2, . . . , n− 1, we have:




0 ≤ Ĩ(ak, ak+1) ≤ gI − s

C
gI >

s

C

Ĩ(ak, ak+1) = 0 gI ≤ s

C

. (30)

Since the term Ĩ(a1, an) can be expressed as a sum:

Ĩ(a1, an) =

n−1∑

k=1

Ĩ(ak, ak + 1), (31)

we get the following bounds on the noise term Ĩ(a1, an)/(n−
1) after combining (30) with (31):





0 ≤ Ĩ(a1, an)

n− 1
≤ gI − s

C
gI >

s

C

Ĩ(a1, an)

n− 1
= 0 gI ≤ s

C

. (32)

Collecting Lemma 5 and (32), we get the following result.

Corollary 2. When W (t) is probed by 〈a1, gI , s, n〉,




gO =
Yδ(a1)gI

C
+

s

C
gI ≤ s

C
Yδ(a1)gI

C
+

s

C
≤ gO ≤ Yδ(a1)gI

C
+ gI gI >

s

C

. (33)
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We call (gOC − s)/gI the intensity sampling estimator
(ISE). Corollary 2 implies that when ISE is used to esti-
mate Yδ(a1), it is ensured to be correct only when gI ≤ s/C.
When gI > s/C, ISE’s correctness is not guaranteed and it
tends to overestimate Yδ(a1). The amount of overestima-
tion, however, will not be more than C − s/gI , as can be
easily derived from the inequality in Corollary 2.

Finally, by subtracting the two expressions of gO in (28)
and combining Lemma 3, we get an important relationship
between Rn(a1) and Ĩ(a1, an):

Ĩ(a1, an) = Rn(a1) + I(a1, an)− (n− 1)s

C
. (34)

With the understanding of individual packet train prob-
ing, we are now in a position to derive the probing response
curve.

4. PROBING RESPONSE CURVES
The probing response curve depends on a number of fac-

tors such as probing construction, the inter-packet pattern,
and cross-traffic characteristics. We assume a Poisson inter-
probing pattern, because the asymptotic average of Pois-
son samples converges to the limiting time average of the
sample-path being sampled. This property is known as
PASTA (Poisson Arrivals See Time Averages) [22]. The
average rate of Poisson sampling is assumed to be small
enough so that the interference between adjacent trains can
be neglected. We use 〈{Tm}, gI , s, n〉 to denote a prob-
ing train series driven by a Poisson arrival process Λ(t) =

max{m ≥ 0 : Tm ≤ t}. We use g
(k)
O to denote the output

gap of the kth probing train 〈Tk, gI , s, n〉 in the series, i.e.,

g
(k)
O = (d

(k)
n −d

(k)
1 )/(n−1). The term E[gO] in (10) is defined

as the limiting average of the discrete-time sample-path g
(k)
O :

E[gO] = lim
m→∞

1

m

m∑

k=1

g
(k)
O . (35)

4.1 Bounds
We now obtain upper and lower bounds on the gap re-

sponse curve.

Theorem 3. When W (t) is probed by a Poisson packet-
train series 〈{Tm}, gI ≤ s/C, s, n〉, the following equality
holds:

E[gO] =
gIλ

C
+

s

C
. (36)

Rearranging the result of Theorem 3, we get:

λ =
E[gO]C − s

gI
= E

[gOC − s

gI

]
, (37)

which explains when and why ISE can form an unbiased es-
timator for traffic intensity and thus for the available band-
width.

Theorem 4. When W (t) is probed by Poisson packet-
train series 〈{Tm}, gI > s/C, s, n〉, the following holds:

max
(gIλ + s

C
, gI

)
≤ E[gO] ≤ min

(
gI(1 +

λ

C
), gI +

s

C

)
.

Theorem 4 provides both a lower bound and an upper
bound for E[gO] when gI > s/C. Combining the case when

gI ≤ s/C as is stated in Theorem 3, we get the lower bound
on E[gO] for the entire probing range 0 < gI < ∞ as fol-
lows4:

L(E[gO]) =





max
(gIλ + s

C
, gI

)
gI >

s

C
s + gIλ

C
gI ≤ s

C

=





gI gI >
s

C − λ
s + gIλ

C
gI ≤ s

C − λ

. (38)

That is exactly model (10) we are trying to validate. How-
ever, Theorem 4 shows that (10) is a lower bound of E[gO],
which does not necessarily equal to E[gO]. Likewise, com-
bining Theorems 3 and 4, we have the entire upper bound
summarized as follows:

U(E[gO]) =





min
(
gI(1 +

λ

C
), gI +

s

C

)
gI >

s

C
s + gIλ

C
gI ≤ s

C

=





s

C
+

gIλ

C
gI ≤ s

C

gI +
gIλ

C

s

C
≤ gI ≤ s

λ

gI +
s

C
gI ≥ s

λ

. (39)

The real gap response curve is contained between these
two bounds. We define the probing bias β(gI , s, n) as the
difference between the real gap response curve and the lower
bound given by (38). It can be expressed as following due
to Theorem 4, Lemma 5, and PASTA:

β(gI , s, n) =





E[Ĩ(t, t + (n− 1)gI)]

n− 1
gI ≤ s

C − λ
1

n− 1
E[Rn(t)] gI ≥ s

C − λ

. (40)

We next give a closed-form expression for the probing bias
and thus for the probing response curves.

4.2 Closed-from Expression
Assuming δ = gI , note that both Rn(t) and Ĩ(t, t + (n −

1)δ) can be expressed as deterministic functions of an (n−1)-
dimensional vector

~B
(n−1)
δ (t) =




Bδ(t)
Bδ(t + δ)

...
Bδ(t + (n− 2)δ)


 . (41)

The exact functional expressions, on the other hand, are not
very important at this point. Therefore, we can introduce
the following notation:

Ĩ(t, t + (n− 1)δ) = ϕ( ~B
(n−1)
δ (t)), (42)

Rn(t) = ψ( ~B
(n−1)
δ (t)), (43)

where ϕ(.) and ψ(.) are some vector functions. It then
becomes apparent that the probing bias depends on the

4L(.) and U(.) denote lower bound and upper bound of a
function respectively.
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sample-path limiting frequency distribution5 of ~B
(n−1)
δ (t).

Denoting by P
(n−1)
δ (~x) this distribution function, the prob-

ing bias can be expressed by the following vector integrals:

β(gI , s, n) =





1

n− 1

∫

Ω

ϕ(~x)dP
(n−1)
δ (~x) gI <

s

C − λ

1

n− 1

∫

Ω

ψ(~x)dP
(n−1)
δ (~x) gI ≥ s

C − λ

,

where Ω is an (n− 1)-dimensional cube [0, C]n−1.
To better understand these results, we now consider a

degenerated case where n = 2, i.e., the packet-pair probing
case. Note that both ϕ(~x) and ψ(~x) become scalar functions
and have simple expressions with respect to Bδ(t):

Ĩδ(t) = ϕ(Bδ(t)) = max
(
0,

Bδ(t)δ − s

C

)
, (44)

R2(t) = ψ(Bδ(t)) = max
(
0,

s−Bδ(t)δ

C

)
. (45)

Therefore, we have the following results for the packet-
pair probing response curve.

Theorem 5. Assuming that W (t) is probed by Poisson
packet-pair series 〈{Tm}, gI , s, 2〉, observation interval δ =
gI , and the δ-interval available bandwidth sample-path Bδ(t)
has frequency distribution function Pδ(x), the following holds:

E[gO] =
gIλ + s

C
+

∫ C

s/δ

xδ − s

C
dPδ(x)

= gI +

∫ s/δ

0

s− xδ

C
dPδ(x). (46)

It immediately follows that the packet-pair probing bias
is as following (where gI = δ):

β(gI , s, 2) =





∫ C

s/δ

xδ − s

C
dPδ(x) gI <

s

C − λ
∫ s/δ

0

s− xδ

C
dPδ(x) gI ≥ s

C − λ

. (47)

The probing bias is one of the previously unknown fac-
tors causing measurement errors in available bandwidth es-
timation techniques based on (10). Our closed-from expres-
sions show that the probing bias is exclusively decided by
the packet-train parameters and the available bandwidth
sample-path distribution. Next, we show the full picture
of the response curves for both the gap version and the rate
version.

4.3 Full Picture
We now investigate the relationship between the probing

bias given in (40) and the input gap gI while keeping all
other parameters fixed. We first present the results for the
case of packet-pair probing.

Theorem 6. When W (t) is probed by Poisson packet pair
series 〈{Tm}, gI , s, 2〉, the probing bias β(gI , s, 2) equals zero
when input gap gI ∈ (0, s/C]; it is a monotonically increas-
ing function of gI in the input gap range (s/C, s/(C − λ)];
and it is a monotonically decreasing function of gI in the in-
put gap range (s/(C − λ),∞). Furthermore, bias β(gI , s, 2)

5Refer to [15, pages 46-50] for the definition of sample-path
frequency distribution.

monotonically converges to 0 as gI approaches infinity. Fi-
nally, in the whole input gap range (0,∞), the probing bias
is a continuous function of gI .

Packet-pair probing bias has very nice functional proper-
ties in terms of continuity and monotonicity. The probing
bias β(gI , s, 2) is a hill-shaped function with respect to gI as
shown in Figure 4(a), where it reaches its maximum when
gI = s/(C − λ). Our next theorem presents an inequality
that links the packet-train and packet-pair probing biases.

Theorem 7. For any n ≥ 2, the following holds:

1

n− 1
β((n− 1)gI , (n− 1)s, 2) ≤ β(gI , s, n) ≤ β(gI , s, 2).

This result tells us that the packet-train probing bias
β(gI , s, n) has similar hill-shaped evolving trend with re-
spect to gI since it is both lower-bounded and upper-bounded
by hill-shaped functions. We conjecture that it is also con-
tinuous and has similar monotonicity properties described
in Theorem 6.

In summary, the probing bias is significant only in the
middle part of the whole probing range. We call that range
the biased probing range. The full picture of the gap response
curve is illustrated in Figure 4(b). The whole probing range
(0,∞) is divided into three segments. Interval (0, s/C] is an
unbiased region where the ISE formula (CgO − s)/gI forms
an unbiased intensity estimator for λ. Region (s/C, α) is
a biased region where E[gO] is larger than what is given
in (10), but smaller than the upper bound in (39) and the
ISE formula overestimates λ. Finally, interval (α,∞) is the
second unbiased probing range where E[gO] = gI . Theo-
retically, this range often does not exist due to infinite α.
Practically, a sufficiently small bias is taken as none. The
probing point s/(C − λ), associated with available band-
width, is the point where the probing bias is maximized and
is not the same as the turning point α. Further note that
the upper bound of gap response curve as given in (39) is
actually not a tight bound.

It is often more informative to look at the rate version
of the response curve rather than the gap version, because
it has a direct association with our measurement interests:
traffic intensity and available bandwidth. Transforming (10)
into the corresponding rate version, we get the rate upper
bound:

U

(
s

E[gO]

)
=





rI 0 < rI ≤ C − λ

C
rI

rI + λ
rI > C − λ

. (48)

Although (48) looks similar to (2), they are in fact very
different since E[rO] = E[s/gO] 6= s/E[gO] and E[rO] has
a different behavior from that of s/E[gO]. Our conclusions
are meant for s/E[gO], not for E[s/gO]. Although TOPP
proposes (2) as its rationale, its actual implementation is
however based on (48). It is important to clarify this confu-
sion.

Transforming (39) gives us the rate lower bound as follows.

L

(
s

E[gO]

)
=





rIC

rI + C
0 < rI ≤ λ

rIC

λ + C
λ < rI ≤ C

rIC

rI + λ
C < rI

. (49)
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Figure 4: Illustrations of (a) the gap probing bias, (b) gap response curve, and (c) rate response curve in the
entire input range.

As illustrated in Figure 4(c), along the vertical direction,
the rate response curve appears between the two bounds
given above. Along the horizontal direction, the curve shows
one negatively biased probing region sandwiched by two un-
biased probing regions.

4.4 The Impact of Packet Train Parameters
First, we consider the rate response curve of packet-pair

probing and examine the impact of probing packet size on
probing bias. At any fixed input rate point r < C − λ, let
s →∞. This causes the sampling interval δ = s/r approach
to infinity proportionally. Recall (47), we have:

β
(s

r
, s, 2

)
=

∫ r

0

s− xδ

C
dPδ(x) =

δ

C

∫ r

0

Pδ(x)dx. (50)

Hence, a sufficient and necessary condition for packet-pair
probing bias at input rate r < A to vanish when s →∞ is:

lim
δ→∞

δ

∫ r

0

Pδ(x)dx = 0. (51)

Similarly, for any input rate r ∈ (A, C), a sufficient and
necessary condition for packet-pair probing bias to vanish
is:

lim
δ→∞

δ(C − r −
∫ C

r

Pδ(x)dx) = 0. (52)

These conditions require the cross-traffic not only exhibit
decaying variance when the observation interval δ becomes
large, but also show sufficient decaying speed. Our expri-
ments show that cross-traffic often satisfies these properties.
Hence, larger probing packet size usually implies less prob-
ing bias. The same conclusion also holds for packet train
probing due to the following theorem.

Theorem 8. For any input probing rate r, If

lim
s→∞

β
(s

r
, s, 2

)
= 0, (53)

then for packet train of any length n, we have:

lim
s→∞

β
(s

r
, s, n

)
= 0. (54)

As to the impact of packet train length, (27) shows that
Rn depends on a partial sum of series of random variables
yi, i = 1, 2, . . . , n − 1 summed in the reverse order. This is

a classic form in random walk theory [23], which deals with
partial sums of i.i.d random variables. Although it is un-
likely for yi = s/C − I(ai, ai+1) to be i.i.d, we make this
assumption to keep the derivations tractable and apply ran-
dom walk theory to conceptually understand the impact of
train length on probing bias. Using the probing bias ex-
pression in (40), random walk theory says that if E[yi] < 0,
which is the case when gI > s/(C − λ), Rn converges in
distribution to a finite-mean random variable as n →∞:

lim
n→∞

E[Rn] < ∞. (55)

Consequently,

lim
n→∞

E[Rn]

n− 1
= 0. (56)

On the other hand, when E[yi] ≥ 0, as is the case when
gI ≤ s/(C − λ), Rn goes unbounded with probability 1 as
n → ∞. Note the following relationship between Rn and
Ĩ(an, an+1):

Ĩ(an, an+1) = max
(
0, I(an, an+1)− s

C
−Rn

)
. (57)

Thus, there is a random point n0 such that Ĩ(an, an+1)
becomes 0 if n > n0. And this n0 converges in distribution
to a finite-mean random variable as n →∞, Thus we have

lim
n→∞

E[Ĩ(a1, an)] < ∞, (58)

lim
n→∞

1

n− 1
E[Ĩ(a1, an)] = 0. (59)

This explains why the probing bias can be overcome by
long packet trains. Even when yi are not i.i.d random vari-
ables and the above argument does not fully apply, it at
least tells us why the probing bias can be mitigated, which
is quite non-intuitive.

4.5 Discussion
We now briefly mention how sensitive our results are with

respect to the assumptions made in this paper. First, notice
that the simple traffic-arrival assumption is made solely to
avoid getting into unnecessary technical details. Even when
batch arrivals are allowed, simple arrivals occur almost ev-
erywhere along the time axis, and all the results in this paper
remain valid.

This paper also assumed infinite buffer space in the hop.
Hence, our results are valid when buffer space is sufficiently
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large and packet loss can be neglected. In the case of other-
wise, the equality A = C − λ becomes invalid. The analysis
of the impact of buffer size on bandwidth estimation requires
future work.

We further assumed a Poisson inter-probing pattern. This
can be relaxed to more general ASTA [11] sampling and as
long as the sampling pattern has decent ASTA properties,
all of our conclusions hold. In the case of non-negligible
ASTA bias, most measurement techniques would fail and
nothing interesting is left for discussion. ASTA bias is an-
other source of measurement error that has never been stud-
ied or evaluated before. We consider it beyond the scope of
this paper.

Finally, we made two sample-path assumptions on cross-
traffic and tried to avoid assuming cross-traffic stationarity,
which was an assumption commonly agreed upon in prior
work. Our results are applicable to but not limited to sta-
tionary cross-traffic. For more detail of this issue, we refer
the reader to [10].

Next, we present our experimental methodology to com-
pute the probing response curve and observe the probing
bias quantitatively.

5. EXPERIMENTAL RESULTS
To characterize the probing bias, we need to obtain the

limiting averages of the probing output. In this section, we
propose two experimental procedures to compute the prob-
ing response curves with supervised precision. The first pro-
cedure is period testing, applicable to periodic traffic such as
CBR. The second procedure is trace-driven testing, applica-
ble to aperiodic traffic. We first apply the former to CBR
traffic to verify our analytical results. We then apply the
latter to several additional traffic traces to examine the re-
lationship between probing bias and probing constructions.

5.1 Period Testing
The CBR (Constant Bit Rate) traffic we consider here is

the one with a fixed packet size, fixed inter-packet delay,
and periodical triangle-wave workload sample-path showed
in Figure 2(b). CBR cross-traffic is arguably the simplest
type of bursty6 traffic; however, it is also very important
since we believe that any available bandwidth estimation
technique must be shown accurate in CBR cross-traffic be-
fore being tested in more complex environments.

It is clear that CBR traffic satisfies both stability as-
sumptions we made. Period testing on CBR traffic oper-
ates as follows. Assume a scenario with CBR cross-traffic
packet size sc, inter-packet delay T , hop capacity C, and
sc/C < T . Without loss of generality, we let the first
packet arrive to the router at time instance 0. We divide
the time interval [0, T ] into m equal-size sub-intervals. For

all k = 0, 1, 2...m−1, we compute the output gap g
(k)
O of the

probing train 〈T (2k + 1)/2m, gI , s, n〉. The average metric∑m−1
k=0 g

(k)
O /m of the output gaps is used as an approxima-

tion of E[gO]. The departure time of the last packet in the
probing train is calculated using (25), where W (an) can be
easily computed due to the periodicity of the CBR work-
load sample-path. Also note that Rn(a1) can be recursively
computed using (26). Thus, period testing can be conducted

6In this paper, a traffic is called bursty if its cumulative
arrival sample-path V (t) is not a linear function of t. Hence,
all but constant-rate fluid traffic is bursty.
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Figure 5: Packet pair probing in CBR cross-traffic:
(a) Rate response curves, (b) relative rate probing
biases. C=10mb/ps, λ=2.5mb/ps.

using deterministic computation without the use of ns2.
The validity of period testing is due to the following the-

orem:

Theorem 9. Let E[gO] be the asymptotic average of out-
put gaps when the hop is probed by Poisson packet train se-
ries 〈{Tm}, gI , s, n〉. Let gO(t) be the output gap when the
hop is probed by a single packet train 〈t, gI , s, n〉. Assuming
the workload sample-path W (t) associated with cross-traffic
is a periodic function in the time interval (0,∞) and T is
period duration, the following holds:

E[gO] =
1

T

∫ T

0

gO(u)du. (60)

Period testing essentially approximates the right-side item
in (60) using

∑m−1
k=0 gO(T (2k+1)/2m)/m. This approxima-

tion can be made arbitrarily precise by choosing sufficiently
large m. Next, we introduce two supervision strategies to
help decide the number of samples m. Both are also appli-
cable to trace-driven testing.

In the first method called self supervision, we iteratively
double the number of samples and stop when there is little
or no difference between the results produced in consecutive
iterations. In the second method called region supervision,
we make sure that m is large enough so that the results of
period testing are in agreement with those predicted by (10)
or (48) in the unbiased probing range.

In our experiment, we choose sc = 1, 500 bytes, C = 10
mb/s, and λ = 2.5 mb/s. Thus, the inter-packet spacing of
CBR cross-traffic is 4.8 ms. Using our supervision strategies,
we find that 500 samples can provide very good precision and
the results do not significantly differ from those obtained
using 1, 000 or more samples.

Figure 5(a) shows the rate response curves when the hop
is probed by packet pairs. The legends are sorted in the
same order as their corresponding curves appear vertically
in the figure, and we do this whenever possible for all figures
to make them easier to read.

Figure 5(b) shows the relative rate probing bias, defined
as:

min
(
rI ,

rIC

λ + rI

)
− s

E[gO]

C − λ− (C − λ)C

λ + C

, (61)

where the numerator is the absolute rate probing bias and
the denominator is the difference between the rate upper
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bound and the rate lower bound when the input probing
rate equals to the available bandwidth C−λ. This difference
is an upper bound of absolute rate probing bias. Hence, the
relative bias metric takes values in [0, 1].

As shown in Figure 5, the probing bias is clearly notice-
able for all three cases. The biased regions are around (5
mb/s, 10 mb/s) for s = 1500 bytes, (3.5 mb/s, 10 mb/s) for
s = 750 bytes, and (1.7 mb/s, 10 mb/s) for s = 250 bytes.
The relative bias (61) also exhibits high amplitude up to
0.5-0.8, meaning that, at certain probing ranges, the rate
response curves are much closer to the lower bound than to
the upper bound. Also note that as probing packet size s
increases, both the bias range and bias amplitude shrink.
Further, the strongest probing bias appears at the available
bandwidth point for all three cases, which is 7.5 mb/s in our
case. Finally, the biases appear monotonic at both sides of
the available bandwidth probing point. These observations
are in agreement with our theoretical findings.

Figure 6 shows gap and rate response curves when the
hop is probed by packet trains. The probing packet size
is 50 bytes. The reason why we use small probing packet
size is to show that long trains can compensate for the bias
introduced by the small probing packet size. The figure
shows the response curves for train lengths 16, 64, and 256
packets. From Figure 6, we see that the probing bias is clear,
but diminishes as train length increases.

5.2 Trace-Driven Testing

5.2.1 Traffic Traces and Testing Procedure
In this section, we compare probing biases using four dif-

ferent cross-traffic types: CBR traffic, Poisson traffic with
constant packet size (PCS), Poisson traffic with packet sizes
(in bytes) uniformly distributed in [1, 1500] (PUS), and Pareto
on/off traffic (POF). Hop capacity C is fixed at 10 mb/s.
The cross-traffic packet size is 750 bytes for CBR, PCS, and
the on period of POF. The average sending rate is 500 pack-
ets per second for CBR, PCS, and PUS. The mean duration
of POF on/off periods is 10 and 5 ms, respectively. The
Pareto shape parameter α for the duration of both on/off
periods is set to 1.9 so that their variance is infinite. In POF
on periods, the source sends CBR traffic at 750 packets per
second. Given these settings, all four cross-traffic types have
an average traffic intensity equal to 3 mb/s.

Since all but CBR traffic have aperiodic hop workload
sample-path, we cannot apply period testing to obtain their
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Figure 7: (a) Function I(t) shows the convergence
delays, and (b) Function R(t) shows convergence er-
rors for the four traffic traces.

response curves. Instead, we employ trace-driven testing to
compute the response curves for the other three traffic types.
We use RNGs (random number generators) to produce four
packet-arrival traces, one for each traffic type. These traces
record the time instances of all packet arrivals and their
sizes within a period of 100 seconds. Before we explain how
trace-driven testing works, we first show that these traffic
traces satisfy the two cross-traffic stability assumptions we
made.

In Figure 7(a), we plot function I(t) = V (t)/t for the four
traffic traces. As shown in the figure, all traffic types exhibit
intensity stability despite the big differences in their conver-
gence delays. Figure 7(b) shows the intensity convergence
error defined as:

R(t) =
|I(t)− 3 mb/s|

3 mb/s
. (62)

As demonstrated in Figure 7, CBR shows the fastest con-
vergence speed. In about 10 seconds, CBR converges to
the 0.2%-neighborhood of the limiting value, i.e., R(10) ≤
0.002. PCS and PUS also converge relatively fast, but much
slower than CBR. In 10 seconds, both PCS and PUS con-
verge to the 1%-neighborhood of the desired 3 mb/s. PCS
converges a little faster than PUS but the difference is small.
POF shows the slowest convergence speed. It reaches the
1.5%-neighborhood in about 60 seconds.

The four traffic traces also exhibit workload stability when
they are injected in a hop of capacity C = 10 mb/s. This
is theoretically provable. Using queueing theory, we can di-
rectly compute the limiting time average of the workload
process for these four traffic types. The existence of work-
load limiting time average implies workload stability [10].

Trace-driven testing is supported by the following corol-
lary:

Corollary 3. Let E[gO] be the asymptotic average of
output gaps when the hop is probed by Poisson packet train
series 〈{Tm}, gI , s, n〉. Let gO(t) be the output gap when the
hop is probed by a single packet train 〈t, gI , s, n〉. Then the
following holds due to PASTA:

E[gO] = lim
τ→∞

1

τ

∫ τ

0

gO(u)du. (63)

Trace-driven testing essentially approximates the right-
side item in (63) by computing the time average of gO(t)
in a finite time interval [0, t0]. The approximation can be
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Figure 8: Rate response curve for the four cross-
traffic traces: (a) probing pairs, (b) 16-packet trains
(probing packet size 750 bytes).

made arbitrarily accurate when sufficiently large t0 is used.
We choose t0 based on the convergence error function R(t)
of the traffic traces, since a small value of R(t0) is a good
indication that the traffic statistics in [0, t0] has sufficiently
converged to its equilibrium statistics.

Once t0 is chosen, trace-driven testing computes the sam-
ple average

∑m−1
k=0 gO(t0(2k + 1)/2m)/m and uses it as an

approximation of
∫ t0
0

gO(u)du/t0, where m is decided by the
two supervision strategies discussed before. The compu-

tation of the output gap g
(k)
O of the probing packet train

〈t0(2k +1)/2m, gI , s, n〉 again relies on (25) and (26), where
the workload W (t) at any time instance can be computed
based on cross-traffic trace and hop capacity.

In our experiment, we choose t0 = 20 seconds for PCS
and PUS, which leads to R(t) ≤ 0.01, and t0 = 60 seconds
for POF, which ensures R(t) ≤ 0.015. For CBR, we still
use period testing. In what follows, we first compute the
response curves for several fixed probing constructions. We
then study the impact of probing constructions on probing
bias.

5.2.2 Results and Discussion
Figure 8(a) shows the rate response curves for the four

traces when the hop is probed using packet pairs. We com-
puted the output rate s/E[gO] at 140 input rate points, from
1.0 mb/s to 14.0 mb/s with a 0.1 mb/s increment. We ap-
plied region supervision to decide the number of samples.
That is, at each input rate in [10.0 mb/s, 14.0 mb/s], the
number of samples is made large enough so that the output
rate s/E[gO] computed in trace-driven testing is within the
1%-neighborhood of the value predicted by fluid model (48).
This required 500 samples for CBR, 1,000 samples for PCS
and PUS, and 2,000 samples for POF.

As showed in Figure 8(a), the rate response curve of POF
is virtually indistinguishable from that of CBR. The PCS
and PUS curves are also very close to each other. However,
it is interesting to note that the curve for POF is closer
to rate upper bound than the curves for PUS and PCS,
meaning that it suffers less probing bias. This indicates
that, for fixed packet train parameters, cross-traffic of more
burstiness does not necessarily imply larger probing bias.
We explain the reasons in a short while.

Figure 8(b) shows the rate response curves for the four
traces when the hop is probed using 16-packet trains. For
the CBR trace, the response curve is almost unbiased and
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Figure 9: Log-scale NBR for the four cross-traffic
traces: (a) probing train length from 2 to 512. (b)
probing packet size from 50 bytes to 1500 bytes.

hardly distinguishable from the rate upper bound in the fig-
ure. The probing biases are still clear for the other three
traces; and those three curves are very close to each other.
This shows that, as the probing train length increases, the
probing bias diminishes. For cross-traffic of different bursti-
ness, the diminishing rate is different. The probing bias for
POF vanishes at a rate lower than those of the other three.

Since we constantly observe that the response curves suffer
the largest probing bias at the available bandwidth point,
we define a metric called NBR (Normalized Bias Ratio) to
characterize the amount of bias in a rate response curve.
Assuming r is the output rate s/E[gO] when the input rate
is A = C − λ, we define:

NBR =
A− r

r− AC

C + λ

, (64)

which is the distance of the actual curve to its upper bound
divided by the distance to its lower bound, given that the
input probing rate is equal to the available bandwidth A.
The NBR metric takes values in [0,∞), where larger NBR
values indicate more probing bias in the response curve. We
next investigate the relationship between NBR and packet-
train parameters.

For all four traces, we computed NBR using probing packet
sizes between 50 and 1500 bytes with 50-byte increasing
step and probing train lengths between 2 and 512 pack-
ets with 2-packet increasing step. Thus, in total, we have
256 × 30 = 7, 680 different probing constructions for each
of the four traces. For each probing construction, we calcu-
late the output rate r in (64) using trace-driven testing with
2,000 samples.

Figure 9(a) shows NBR for the four traces using s = 750
bytes. In all four traces, NBR decreases as the probing
train length increases and this relationship appears to be
a power-law function as is confirmed by our log-log scale
plotting. Figure 9(b) shows NBR when train length is fixed
at 16 packets and the probing packet size varies from 50
bytes to 1500 bytes in log-log scale. We again observe a
power-law decrease of NBR with respect to the increase in
the probing packet size. Conjecturing that the relationship
between NBR, probing size s, and train length l can be
modeled using function NBR = k/(sα1 lα2), we get:

log(NBR) = log(k)− α1 log(s)− α2 log(l), (65)

To obtain further insight into this formula, we plot 3D
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Figure 10: NBR(s, l) for two types of cross-traffic.

α1 α2 log(k)
CBR 1.103± 0.017 0.993± 0.008 10.53± 0.175
PCS 0.562± 0.006 0.534± 0.003 6.300± 0.058
PUS 0.524± 0.008 0.539± 0.004 6.111± 0.077
POF 0.413± 0.007 0.338± 0.003 4.000± 0.074

Table 1: 3D-fitting results for NBR planes.

charts of NBR(s, l) on a log-log scale for all four traces and
indeed observed four flat planes. Figure 10 shows two of
them, the NBR planes for PCS and POF.

We use 3D-fitting to find the parameters of the four planes.
All least-square fitting errors are less than 2%, indicating
that the power-law function (65) is a reasonable model for
NBR. Curve-fitting results are given in Table 1, which shows
that traffic with more burstiness has smaller values of α1 and
α2. This explains why the probing bias in POF is harder to
overcome than those in the other three cross-traffic traces.

The experimental results we obtained in trace-driven test-
ing agree with our analytical findings very well. Further-
more, our results show that with fixed probing construc-
tions, more cross-traffic burstiness does not necessarily im-
plies more probing bias. This probing bias, however, is more
difficult to overcome by increasing the probing packet size
or probing train length.

To understand this phenomenon, recall that traffic bursti-
ness relates to how fast the traffic becomes ”smooth” with
respect to the increase of observation intervals rather than
how ”smooth” the traffic appears given a fixed observation
interval. Hence, it is usual that for a given observation in-
terval, POF has smaller second order statistics than Poisson
traffic and appears ”smoother”, leading to less probing bias
when packet trains are constructed to sample the traffic in
such an observation interval. As the train length or packet
size increases, the observation interval increases, Poisson
traffic becomes smooth quicker than POF. Therefore, the
probing bias is also overcome quicker.

Even though we do not offer a precise interpretation for
the power-law relation between NBR metric and probing
constructions, we believe that it is related to the evolving
trend of available bandwidth frequency distribution with re-
spect to the increase of observation interval. This view is
supported by the closed-form expression of probing bias,
which shows that there is no other factor that can decide
the NBR metric.

6. IMPLICATIONS
Among the five representative proposals TOPP, IGI/PTR,

Spruce, pahtload, and PathChird, the first three directly fall
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Figure 11: TOPP-transformed rate response curves.

estimated C estimated λ estimated A
CBR 11.11 4.44 6.67
PCS 35.81 32.38 3.43
PUS 32.51 29.24 3.28
POF 23.38 18.36 5.02

Table 2: TOPP results (in mb/s) using the biased
segment (correct values: C = 10 mb/s, A = 7 mb/s).

under the umbrella of our work. The last two techniques
have quite a few tunable parameters and their behavior is
complex. We will consider them in our future work.

6.1 TOPP
Figure 11 shows the rate response curves for the four

traces when the hop is probed using 1, 500-byte packet pairs
(as suggested in [14]). The curves are transformed using
formula (4) so that TOPP can apply segmented linear re-
gression to obtain the hop capacity and available bandwidth
information. In the order of closeness to TOPP’s expected
piece-wise linear curve appear the response curves of CBR,
POF, PCS and PUS. TOPP uses the second segment, as-
suming that it is the one with the hop information. However,
the biased probing range usually appears as the second seg-
ment unless it is very small and undetectable. In Figure 11,
all the biased ranges are very clear and will be incorrectly
acted upon by TOPP. Table 2 shows the results of a linear
regression applied to the biased response curves according to
the basic algorithm in TOPP. As the table shows, the avail-
able bandwidth is significantly underestimated, especially for
PUS and PCS. Both the hop capacity and cross traffic in-
tensity are significantly overestimated. To assure asymptotic
accuracy, TOPP has to apply additional techniques to by-
pass these segments in the biased probing range.

6.2 IGI/PTR
PTR uses the probing output rate, s/E[gO], at the turn-

ing point to estimate the available bandwidth. As we estab-
lished, the turning point usually is not the available band-
width point. It can be associated with a rate much smaller
than available bandwidth. Thus, theoretically-speaking, PTR
is a negatively biased available bandwidth estimator in all
single-hop paths.

As an estimator of cross-traffic intensity, the IGI formula

λ = E

[∑
1≤i<n,di+1−di>gI

C(di+1 − di − s
C

)

dn − d1

]
(66)
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is negatively biased when gI ≤ s/C. This is clear when
comparing (66) with the ISE equation (37), which has the
same numerator but smaller denominator than those of IGI.
Recall that in [5], the IGI estimator is applied at the turn-
ing point where an − a1 = E[dn − d1]. In that case, IGI has
the same denominator, but a smaller numerator compared
to ISE. According to Theorem 4, ISE is a positively-biased
intensity estimator at the turning point, which suggests that
IGI can be viewed as an estimator with a heuristical compen-
sator for this bias. We use trace-driven testing to examine
the performance of IGI’s bias compensation. We use probing
packet size 750 bytes and train length 64 packet as suggested
in [5]. For comparison purposes, we also examine the ISE
estimator and the PTR available bandwidth estimator.

Figure 12 shows these results for PCS cross-traffic. The
results for the other three traffic traces are similar. The fig-
ure clearly shows that IGI provides a good estimate of cross-
traffic intensity λ at the available bandwidth point A = 7
mb/s, while not at the turning point T ≈ 6 mb/s. When the
input probing rate is small, IGI formula is not a converging
estimator and the results are unstable.

6.3 Spruce
Spruce uses ISE with input probing rate C to estimate

cross-traffic intensity. Thus, it is unbiased according to The-
orem 3. Although this approach is more susceptible to cross-
traffic interference from non-tight hops, our paper focus on
single-hop analysis and we skip this issue.

7. CONCLUDING REMARKS
This paper focused on developing a theoretical under-

standing of single-hop bandwidth estimation in non-fluid
cross-traffic conditions. Our main contributions include a
rigorous formulation of all relevant factors in probing-based
bandwidth estimation, an analytical methodology featur-
ing intrusion residual analysis, and a thorough discussion
of single-hop probing response curves.

While we identified the probing bias as one potential con-
tributing source of measurement errors, there are certainly
other important issues related to the performance of mea-
surement techniques such as multi-hop effects, timing errors,
and layer-2 effects [17].

Our future work involves extending this analysis to multi-

hop paths and understanding the behavior of current mea-
surement techniques in arbitrary network paths.
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