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Temporal Update Dynamics under Blind Sampling
Xiaoyong Li, Daren B.H. Cline, and Dmitri Loguinov

Abstract—Network applications commonly maintain local
copies of remote data sources in order to provide caching,
indexing, and data-mining services to their clients. Modeling
performance of these systems and predicting future updates
usually requires knowledge of the inter-update distribution at
the source, which can only be estimated through blind sampling
– periodic downloads and comparison against previous copies. In
this paper, we first introduce a stochastic modeling framework
for this problem, where the update and sampling processes are
both renewal. We then show that all previous approaches are
biased unless the observation rate tends to infinity or the update
process is Poisson. To overcome these issues, we propose four
new algorithms that achieve various levels of consistency, which
depend on the amount of temporal information revealed by the
source and capabilities of the download process.

I. INTRODUCTION

Many distributed systems in the current Internet manipulate
objects that experience periodic modification in response to
user actions, real-time events, data-centric computation, or
some combination thereof. In these cases, each source (e.g.,
a webpage, DNS record, stock price) can be viewed as a
stochastic process NU that undergoes updates (i.e., certain
tangible changes) after random delays U1, U2, . . .

Consistent estimation of inter-update distribution FU (x) is
an important problem, whose solution yields not only better
caching, replication [21], and allocation of download budgets
[20], but also more accurate modeling and characterization of
complex Internet systems [5], [7], [9], [10], [11], [19], [25],
[27], [28], [29], [33], [35], [40], [42]. Similar issues arise
in lifetime measurement, where Ui represents the duration of
online presence for object or user i [3], [32], [36], [39].

The first challenge with measuring update-interval dynamics
is to infer their distribution using blind sampling, where
variables U1, U2, . . . are hidden from the observer. This sce-
nario arises when the source can only be queried over the
network using some process NS whose inter-download delays
S1, S2, . . . are bounded in expectation from below (e.g., due
to bandwidth and/or CPU restrictions). Unlike censored ob-
servations in statistics, which have access to truncated values
of each Ui, the sampling process here has a tendency to miss
entire update cycles and land in larger-than-average intervals.

The second challenge in blind sampling is to reconstruct the
distribution of Ui from severely limited amounts of informa-
tion available from each download. Specifically, the observer
can only compare the two most-recent copies of the source and
obtain indicator variables Qij of a change occurring between
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downloads i and j, for all i < j. This constraint is necessary
because the source generally has no ability to determine object
modification timestamps (e.g., dynamic webpages served by
scripts are considered new on each download). Furthermore,
even for static pages, object updates are very application-
specific (e.g., search engines may remove ad banners and
other superfluous information before indexing), which makes
variables U1, U2, . . . hidden not just from the observer, but also
the source.

Existing studies on this topic [2], [7], [15], [16], [22]
use Poisson NU and constant Si. Due to the memoryless
assumption on FU (x), the problem reduces to estimating just
rate µ = 1/E[Ui], rather than an entire distribution, and many
complex interactions between NS and NU are avoided in the
analysis. However, more interesting cases arise in practice,
where non-Poisson updates are quite common [2], [8], [17],
[23]. Furthermore, guaranteeing constant Si is impossible in
certain applications where the return delay to the same object
is computed in real-time and is governed by the properties of
trillions of other sources (e.g., in search engines). Thus, new
analytical techniques are required to handle such cases.

A. Contributions

Our first contribution is to formalize blind update sampling
using a framework in which both NU and NS are general re-
newal processes. We then consider a simplified problem where
the source provides last-modification timestamps for each
download. Our contribution here is to develop the necessary
tools for tackling the more interesting cases that follow, build
general intuition, consider conditions under which provably
consistent estimation is possible, and explain the pitfalls of
existing methods under non-Poisson updates.

Armed with these results, we next relax the availability of
last-modified timestamps at the source. For situations where
constant Si is acceptable, we show that unbiased estimators
developed earlier in the paper can be easily adapted to this
environment and then suggest avenues for reducing the amount
of numerical computation in the model, all of which forms our
third contribution. We finish the paper by considering random
Si and arrive at our last contribution, which is a novel method
that can accurately reconstruct the update distribution under
arbitrary FU (x) and mildly constrained FS(x).

II. RELATED WORK

Analytical studies on estimating the update distribution
under blind sampling have all assumed NU was Poisson and
focused on determining its average rate, i.e., µ for stationary
cases [2], [7], [15], [16], [22] and µ(t) for non-stationary [34].
Extension to general processes was achieved by [22] under the
assumption that sampling intervals Si were infinitely small;
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Fig. 1. Update/sample process notation.

however, the problem in these scenarios is trivial since every
Ui is available to the observer with perfect accuracy.

In measurement literature, the majority of effort was spent
on the behavior of web pages, including analysis of server
logs [26], page-modification frequency during crawling [2],
[4], [17], [23], RSS feed dynamics [33], and content change
between consecutive observations [1], [14], [25]. Problems
related to estimation of FU (x) have also emerged in prediction
of future updates [5], [6], [13], [18], [30], [37], with a good
survey in [24], and user lifetime measurement in decentralized
P2P networks [3], [32], [36], [39].

III. OVERVIEW

This section introduces notation, formulates objectives, and
lays down a roadmap of the studied methods.

A. Notation and Assumptions

Let ui be the time of the i-th update at the source. Define
NU (t) = max{i : ui ≤ t} to be the number of updates in the
time interval [0, t] and suppose Ui = ui+1 − ui represents the
inter-update delay. Similarly, denote by sj the j-th sampling
time. Let NS(t) = max{j : sj ≤ t} be the number of samples
in [0, t] and Sj = sj+1−sj be the inter-sample delay. Assume
that processes (NU , NS) are renewal and independent of each
other. This allows us to define random variables U ∼ FU (x)
and S ∼ FS(x) to represent the lengths of update/sample
cycles, respectively. Furthermore, denote by µ = 1/E[U ] and
λ = 1/E[S] the corresponding rates.

At time t, define age AU (t) = t − uNU (t) and residual
RU (t) = uNU (t)+1 − t as the backward/forward delays to
the nearest update. These are illustrated in Fig. 1. Note that
interval Ui in the figure cannot be seen or measured by the
observer, which is why we called it “hidden” earlier. Suppose
AU and RU are the equilibrium versions of AU (t) and RU (t),
respectively, as t → ∞. From renewal theory [41], they have
the same CDF:

GU (x) := µ

∫ x

0

(1− FU (y))dy, (1)

whose density is gU (x) := G′
U (x) = µ(1 − FU (x)). We set

the goal of the sampling process to determine the distribution
FU (x) based on observations at times s1, s2, . . ., i.e., using a
single realization of the system.

B. Applications

Knowledge of FU (x) enables performance analysis in many
fields that employ lazy (i.e., pull-based) data replication. For

example, search engines implement a sampling process NS

using crawlers that periodically revisit web content and merge
updates into backend databases. These companies are often
concerned with staleness of pages in their index and the
probability that users encounter outdated results. In order
to determine the download frequency needed to maintain
staleness below a certain threshold, the expected number
of updates by which the index is trailing the source, or
the amount of bandwidth needed for a collection of pages,
accurate knowledge of source dynamics is required [20].

In another example, suppose a data center replicates a
quickly changing database (driven by some update process
NU ) among multiple nodes for scalability and fault-tolerance
reasons. Because of the highly dynamic nature of the source,
individual replicas may not stay fresh for long periods of time,
but their collection may offer much better performance as a
whole. In such cases, questions arise about the number of
replicas k that should be queried by clients to obtain results
consistent with the source [21] and/or the probability that
a cluster of n replicas can recover the most-recent copy of
the source when it crashes [20]. Similar problems appear in
multi-hop replication and cooperative caching, where service
capacity of the caching network is studied as well [21].

Finally, accurate measurement of FU (x) enables better
characterization of Internet systems, their update patterns in
response to external traffic, and even user behavior. While it
is possible to use the exponential distribution to approximate
any FU (x), as typically done in the literature [2], [7], [15],
[16], [22], this can lead to significant errors in the analy-
sis. As shown in [20] using the search-engine example and
Wikipedia’s update process NU , the exponential assumption
may produce errors in the download bandwidth that are two
orders of magnitude. In more complicated settings, such as
cascaded and cooperative systems [21], the impact of inaccu-
rate FU (x) may be even higher.

C. Caveats
The sample-path approach, in general, leads to a possibility

of phase-lock where the distance of download points from
the last update, i.e., {AU (sj)}j≥1, is not a mixing process.
For example, consider Ui = 1 for i ≥ 1 and Sj = 2 for
j ≥ 1, in which case update ages observed at {sj}∞j=1 are
all equal to zero. Since this case cannot be distinguished from
Ui = 0.5 or Ui = 2, it is easy to see how phase-lock precludes
consistent estimation of FU (x). The problem can be avoided
by requiring that the considered cycle lengths exhibit certain
mixing properties. This leads to our next definition.

Definition 1: A random variable X is called lattice if there
exists a constant c such that X/c is always an integer, i.e.,∑∞

i=1 P (X/c = i) = 1.
Lattice distributions are undesirable in our context as they

produce phase-lock. Therefore, for the problem to be solvable,
we must ensure the following.

Assumption 1: At least one of U and S is non-lattice.
This condition is easy to satisfy with any continuous random

variable, including exponential U in previous work. A more
esoteric example would be a discrete variable placing mass on
two numbers whose ratio is irrational, e.g., (π, 3) or (e,

√
2).
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Fig. 2. Method taxonomy (shaded boxes indicate Poisson-only techniques).

D. Roadmap

As illustrated in Fig. 2, we partition the various approaches
into two broad categories. In age sampling, the observer
has access to the last-modified timestamp uNU (sj) at each
download point sj , or equivalently, the update age AU (sj).
Although now rare, this information can still be sometimes
obtained from the HTTP headers, timestamps within the
downloaded HTML, or sitemaps [24]. As shown in the figure,
we call the two studied methods in this category M1 and
M2. They operate by deriving FU (x) from the collected age
samples, where M1 has been proposed in previous work [7],
[22] for Poisson-only cases and M2 is novel.

In comparison sampling, we assume that the observer
retains the most recent copy of the object or a fingerprint
of its relevant portions (e.g., after removing ads and repeated
keywords). Define Qij to be an update-indicator process:

Qij =

{
1 update occurs between si and sj

0 otherwise
. (2)

Unlike the previous scenario, estimation of FU (x) here must
use only binary values {Qij}. Going back to Fig. 2, we study
comparison sampling under two strategies. For constant S,
we first analyze two methods we call M3 and M4, which are
discrete versions of M1 and M2, respectively. We then propose
a novel method M5 that is both consistent and computationally
efficient. For random S, we introduce our final approach M6

that is unbiased under the most general conditions.

IV. AGE SAMPLING

This section is a prerequisite for the results that follow. It
starts with understanding state of the art in this field and its
pitfalls. It then shows that a simple modification allows prior
work to become unbiased under non-Poisson updates.

A. Basics

In age sampling, the observer has a rich amount of infor-
mation about the update cycles. This allows reconstruction of
FU (x) in all points x ≥ 0, which we set as our goal.

Definition 2: Suppose F̃ (x, T ) is a CDF estimator that uses
observations in [0, T ]. Then, we call it consistent with respect
to distribution F (x) if it converges in probability to F (x) as
the sampling window becomes large:

lim
T→∞

F̃ (x, T ) = F (x), x ≥ 0. (3)
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Fig. 3. Illustration of M1.

Note that consistent estimation of FU (x) is equivalent
to that of GU (x) since there is a one-to-one mapping (1)
between the two functions. Specifically, knowledge of GU (x)
allows numerical differentiation and/or kernel density esti-
mators to obtain gU (x) = G′

U (x), from which FU (x) =
1 − gU (x)/gU (0) follows. Furthermore, the update rate µ =
1/E[U ] is also readily available as gU (0). Under Poisson
NU , the memoryless property ensures that FU (x) = GU (x);
however, in more general cases, this distinction is important.

B. Modeling M1

To estimate the mean µ of a Poisson update process, prior
studies [7], [22] proposed that only a subset of age samples
{AU (sj)}j≥1 be retained by the observer. Specifically, when
multiple sample points land in the same update interval, only
the one with the largest age is kept, while the others are
discarded. As shown in Fig. 3, points sj−1 and sj hit the same
update cycle [ui−1, ui], in which case only AU (sj) is used in
the measurement and AU (sj−1) is ignored. It was perceived
in [7], [22] that doing otherwise would create a bias and lead
to incorrect estimation, but no proof was offered. We call this
method M1 and study its performance next.

From Fig. 3, notice that M1 collects ages AU (sj) at such
points sj that satisfy RU (sj) < Sj , or equivalently Qj,j+1 =
1. All other age measurements are ignored. Defining 1A as
the indicator variable of event A, the fraction of age samples
retained by M1 in [0, T ] is given by:

p(T ) :=
1

NS(T )

NS(T )∑
j=1

1RU (sj)<Sj
, (4)

which is an important metric that determines the overhead of
M1 and its bias later in the section. Expansion of (4) in the
next result follows from Assumption 1, the renewal equation
for non-lattice intervals, and the law of large numbers [41].

Theorem 1: As T → ∞, p(T ) converges in probability to:

p := lim
T→∞

p(T ) = P (RU < S) = E[GU (S)]. (5)

This result shows that p is affected not just by the update
distribution FU (x), but also the sample distribution FS(x). To
see this effect in simulations, we use constant and exponential
S to sample Pareto FU (x) = 1− (1 + x/β)−α, where α = 3
and β = 1 throughout the paper. Fig. 4 confirms a good match
between the model and simulations. As expected, p decreases
as the sampling rate λ = 1/E[S] increases, which is caused
by an increased density of points landing within each update
interval and thus a higher discard rate. The figure also shows
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Fig. 4. Verification of (5) under Pareto U (µ = 2).

that constant S samples more points than the exponential case.
In fact, it is possible to prove a more general result – constant
S exhibits the largest p (i.e., highest overhead) for a given λ.

Let K(x, T ) be the number of samples that M1 obtains in
[0, T ] with values no larger than x:

K(x, T ) :=

NS(T )∑
j=1

1RU (sj)<Sj
1AU (sj)≤x. (6)

Then, it produces a distribution in [0, T ] given by:

G1(x, T ) :=
K(x, T )

K(∞, T )
. (7)

Theorem 2: Denoting by F̄ (x) = 1−F (x) the complement
of function F (x) and letting T → ∞, the tail distribution of
the samples collected by M1 converges in probability to:

Ḡ1(x) := lim
T→∞

Ḡ1(x, T ) =
E[GU (x+ S)−GU (x)]

E[GU (S)]
. (8)

Proof: Under Assumption 1 and T → ∞, AU (sj) and
RU (sj) converge to their equilibrium versions AU and RU ,
respectively. Therefore:

lim
T→∞

K(x, T )

NS(T )
= P (AU ≤ x,RU < S). (9)

From Theorem 1, we know that:

lim
T→∞

K(∞, T )

NS(T )
= p = E[GU (S)]. (10)

Dividing (9) by (10) yields:

G1(x) = lim
T→∞

G1(x, T ) =
P (AU ≤ x,RU < S)

E[GU (S)]
, (11)

where E[GU (S)] > 0 is guaranteed for all cases except S
being zero with probability 1. To derive the numerator of (11),
condition on RU and S:

P (AU ≤ x,RU < S)

=

∫ ∞

0

[∫ z

0

P (AU ≤ x|RU = y)gU (y)dy
]
dFS(z), (12)

Expanding the probability of event AU ≤ x given a fixed
residual RU = y leads to:

P (AU ≤ x|RU = y) =
P (y < U ≤ x+ y)

P (U > y)

=
FU (x+ y)− FU (y)

1− FU (y)
. (13)
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Fig. 5. Simulation results of M1 under exponential S (λ = 1, µ = 2).

Recalling that gU (y) = µ(1−FU (y)) is the residual density
and applying (13), the inside integral of (12) becomes:∫ z

0

P (AU ≤ x|RU = y)gU (y)dy

= µ

∫ z

0

(FU (x+ y)− FU (y))dy

= µ

∫ z

0

F̄U (y)dy − µ

∫ z+x

x

F̄U (w)dw

= GU (z) +GU (x)−GU (x+ z). (14)

This transforms (11) to:

G1(x) =

∫∞
0

(GU (z) +GU (x)−GU (x+ z)) dFS(z)

E[GU (S)]

=
E[GU (S)−GU (x+ S)] +GU (x)

E[GU (S)]
, (15)

which is the complement of the tail in (8).
Observe from (8) that M1 generally measures neither the

update distribution FU (x) nor the age distribution GU (x). To
see the extent of this bias, Fig. 5(a) plots simulation results
for exponential S and Pareto U in comparison to (8). Observe
in the figure that our model closely tracks the simulated tail
Ḡ1(x), which remains heavy-tailed, albeit different from that
of the target distribution FU (x). Fig. 5(b) shows that M1 is
indeed unbiased for Poisson NU . We next investigate other
conditions under which this approach may work well.

C. Quantifying Bias in M1

Suppose D1 ∼ G1(x) is the random variable observed by
M1 over an infinitely long measurement period. Our goal in
this subsection is to determine the relationship between D1,
U , and AU under different sampling strategies and update
distributions. We first re-write (8) in a more convenient form.

Theorem 3: The tail distribution measured by M1 can be
expressed in two alternative forms:

Ḡ1(x) = ḠU (x)
P (AU < x+ S|AU > x)

P (AU < S)
(16)

= F̄U (x)
E[

∫ S

0
P (U > x+ y|U > x)dy]

E[
∫ S

0
P (U > y)dy]

. (17)

Proof: We first show (16). Recalling that GU (x) =
P (AU < x) yields:

Ḡ1(x) =
P (AU < x+ S)− P (AU < x)

P (AU < S)
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= ḠU (x)
P (x < AU < x+ S)

P (AU < S)P (AU > x)
. (18)

From the definition of conditional probability, we get:

P (x < AU < x+ S)

P (AU > x)
= P (AU < x+ S|AU > x). (19)

Substituting (19) into (18), we get (16).
To establish (17), rewrite (18) as:

Ḡ1(x) = F̄U (x)
P (x < AU < x+ S)

P (AU < S)P (U > x)
, (20)

whose numerator can be transformed to:

P (x < AU < x+ S) = µE
[∫ x+S

x

F̄U (y)dy
]

= µE
[∫ S

0

F̄U (x+ y)dy
]
, (21)

where we use the fact that gU (x) = µF̄ (x). Dividing (21) by
F̄U (x) produces:

P (x < AU < x+ S)

P (U > x)
= µE

[∫ S

0

P (U > x+ y|U > x)dy
]
.

Similarly, we can expand:

P (AU < S) = µE
[∫ S

0

P (U > x)dy
]
. (22)

Substituting the last two equations into (20), we obtain the
desired result in (17).

Theorem 3 suggests that the tail of D1 may indeed have
some relationship to those of AU and U . In order to establish
this formally, we need to define three classes of variables.

Definition 3: Variable X is said to be NWU (new worse
than used) if P (X > x + y|X > y) > P (X > x) for all
x, y ≥ 0. If this inequality is reversed, X is said to be NBU
(new better than used). Finally, if P (X > x + y|X > y) =
P (X > x) for all x, y ≥ 0, the variable is called memoryless.

Note that NWU distributions are usually heavy-tailed, with
two common representatives being Pareto and Weibull. Con-
ditioning on U ’s survival to some age y, its residual length
U − y is stochastically larger than U itself. NBU are typically
light-tailed distributions, exemplified by uniform and constant.
Finally, the memoryless class consists of only exponential
distributions, where past knowledge has no effect on the future.

When both U and AU are NWU, as is the case with Pareto
distributions, Theorem 3 shows that Ḡ1(x) is “sandwiched”
between the other two tails, i.e., F̄U (x) serves as a lower bound
and ḠU (x) as an upper. This means that D1 is stochastically
smaller than AU , but stochastically larger than U . Fig. 6 shows
an example confirming this, where the faster sampling rate
in (b) moves the curve closer to F̄U (x). The relationship
among the tails is reversed if U and AU are NBU. For
exponential update distributions, all three tails are equal;
however, this is the only obvious case where M1 produces
consistent estimation. We examine a few other cases next.
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Fig. 6. Tail sandwich of M1 under Pareto updates and constant S (µ = 2).

D. Achieving Consistency in M1

Now that we know that Ḡ1(x) is contained between the tails
of update and age distributions, there are two intuitive ways
how bias can be removed. First, we could tighten the distance
between tails F̄U (x) and ḠU (x); however, this can only be
achieved by forcing the source to undergo updates with U
that is “closer” to exponential. As this is usually impractical,
the second technique is to adjust the sampling distribution
FS(x) such that the distance of Ḡ1(x) to one of U ’s tails
shrinks to zero. To this end, our next result demonstrates that
D1 “leans” towards U or AU solely based on the fraction of
retained samples p.

Theorem 4: For p → 1, variable D1 sampled by M1 con-
verges in distribution to AU . For p → 0 and mild conditions
on S, variable D1 converges in distribution to U .

Proof: Recall that p = E[GU (S)]. When E[GU (S)] → 1,
so does E[GU (S + x)]. Therefore:

Ḡ1(x) =
E[GU (S + x)]−GU (x)

E[GU (S)]
→ ḠU (x). (23)

To prove the second part, assume that S/E[S] converges
to a random variable with mean 1. Since p → 0 implies that
S → 0 almost surely, we get:

GU (S)

E[S]
=

∫ S

0
F̄U (y)dy

E[U ]E[S]
=

S
∫ 1

0
F̄U (Sy)dy

E[U ]E[S]
→ µ, (24)

where we use the fact that F̄U (Sy) → 1 for all fixed y.
Noticing that GU (S)/E[S] is upper bounded by random

variable µS/E[S], the latter of which has a finite mean, and
applying the dominated convergence theorem (DCT), we get:

lim
p→0

E[GU (S)]

E[S]
= µ. (25)

Similarly, we obtain:

GU (S + x)−GU (x)

E[S]
=

∫ S+x

x
F̄U (y)dy

E[U ]E[S]

=
S
∫ 1

0
F̄U (Sy + x)dy

E[U ]E[S]
, (26)

which converges to µF̄U (x). Applying the DCT again, we get:

lim
p→0

E[GU (S + x)−GU (x)]

E[S]
= µF̄U (x). (27)
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Fig. 7. Verification of (30) under Pareto updates and λ = 1.

Combining (25) and (27) produces:

lim
p→0

E[GU (S + x)−GU (x)]

E[GU (S)]
= F̄U (x), (28)

which is what we intended to prove.
To understand this result, we discuss several examples. In

order to converge p to 1, method M1 has to sample with
sufficiently large S to achieve P (S > RU ) = 1. For general
FU (x), this can be guaranteed only if S converges to infinity,
in which case the measurement process will be quite slow. If
an upper bound on U is known, then setting S to be always
larger can also produce p = 1. In these scenarios, however,
M1 will sample GU (x) and additional steps to recover FU (x)
must be undertaken.

To achieve p = 0, M1 has to use high sampling rates
such that each update interval contains an infinite number of
samples, i.e., S must converge to zero. In this case, the method
may consume exorbitant network resources and additionally
create undesirable load conditions at the source.

E. Method M2

Instead of using the largest age sample for each detected
update, a more sound option is to use all available ages. While
extremely simple, this method has not been proposed before.
We call this strategy M2 and define G2(x, T ) to be the fraction
of its samples with values smaller than or equal to x in [0, T ]:

G2(x, T ) :=
1

NS(T )

NS(T )∑
j=1

1AU (sj)≤x. (29)

The next result follows from Assumption 1 and the renewal
equation [41].

Theorem 5: Method M2 is consistent with respect to the
age distribution:

G2(x) := lim
T→∞

G2(x, T ) = GU (x). (30)

Next we use simulations to verify the usefulness of (30).
From Fig. 7, observe that the sampled distribution of M2 does
in fact equal GU (x). To obtain FU (x) = 1 − gU (x)/gU (0)
from an empirical CDF GU (x), we adopt numerical differen-
tiation from [38]. This method uses bins of size h and k-point
derivatives, bounding Taylor-expansion errors to O(hk/k!).
For the estimator to work, it must first accurately determine
gU (0) = 1/E[U ]. Using k = 5 and non-symmetric (i.e.,
one-sided) derivatives around x = 0, Fig. 8(a) demonstrates
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Fig. 8. Performance of M2 under Pareto U and constant S (µ = 2, λ = 100).

that the estimated E[U ] monotonically decreases in h and
eventually stabilizes at the true value. Since h is a user-defined
parameter independent of (NU , NS), it can be arbitrarily small.
Thus, a binary search on h to find the flat region in E[U ] can
always determine its value with high accuracy. Applying this
technique, the update distribution estimated by M2 is shown in
Fig. 8(b) in comparison to FU (x). Notice that the two curves
are indistinguishable.

F. Discussion
Although M1 has fewer samples, its network traffic remains

the same as that of M2, because they both have to contact the
source NS(t) times in [0, t]. However, the smaller number of
retained values in M1 may lead to lower computational cost
and better RAM usage in density-estimation techniques that
utilize all available samples (e.g., kernel estimators). For the
route we have taken, i.e., differentiation of G2(x), the two
methods exhibit the same overhead.

We now focus on the performance of M2 in finite observa-
tion windows [0, T ]. One potential issue is the redundancy
(and high dependency) of samples that it collects (i.e., all
ages within the same update interval are deterministically
predictable), which is what M1 tried to avoid. While necessary,
can this redundancy lead to slower convergence? For a given
T , would it be better to collect fewer samples that are spaced
further apart?

Define

ζ(T ) :=
1

NS(T )

NS(T )∑
j=1

AU (sj) (31)

to be the average age observed by M2 in [0, T ] using one
realization of the system. We now use deviation of ζ(T ) from
E[AU ] = µE[U2]/2 as indication of error. Specifically, let

ϵ(T ) := E
[
|1− ζ(T )

E[AU ]
|
]
. (32)

be the expected relative error computed over m sample-paths.
First, we fix the sampling rate λ = 1 and change T

from 100 to 10M time units. As expected, ϵ(T ) in Fig.
9(a) monotonically decreases as the observation window gets
larger, confirming asymptotic convergence of M2 discussed
throughout this section. Next, we keep T constant at 10K and
vary E[S]. As shown in Fig. 9(b), the error drops with E[S],
but then stabilizes. This means that having more samples,
regardless of how redundant, improves performance only up
to a certain point.
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Fig. 9. Average relative error of ζ(T ) of M2 under Pareto U and exponential
S (µ = 2,m = 1000).

V. COMPARISON SAMPLING: CONSTANT INTERVALS

In contrast to the previous section, the remaining methods
do not have access to age; instead, they must work with binary
observations Qij , which indicate whether an update occurred
between two sampling points si and sj . This section deals with
constant inter-download delay. This special case of comparison
sampling is not just simple to implement and the only one
considered in the literature, but also maximally polite (i.e.,
least bursty) for a given download rate λ.

A. Basics

Assume constant inter-sample delays S = ∆ and notice that
all observations related to update intervals must be multiples
of ∆. It is therefore impossible to reconstruct FU (x), or
even GU (x), in every point x. This requires an adjustment
in objectives.

Definition 4: An estimator F̃ (x, T ) is ∆-consistent with
respect to distribution F (x) if it can correctly reproduce it
in all discrete points xn = n∆ as T → ∞:

lim
T→∞

F̃ (xn, T ) = F (xn), n = 1, 2, . . . (33)

As we discuss above and confirm below, none of the
methods can measure FU (x) directly (unless the sampling rate
is infinite or U is exponential). As a result, all algorithms
generally face the issue of recovering FU (x) from GU (x).
The main caveat of this section is that knowledge of the
age distribution in discrete points is generally insufficient
for ∆-consistent estimation of FU (x). This occurs because
the estimated GU (x) lacks data in every interval (xn, xn+1),
which precludes differentiation and leaves gU (x) unobtainable.

Depending on the smoothness of GU (x) and/or prior knowl-
edge about the target distribution, one can use interpolation
between the known points GU (xn). In such cases, FU (x)
may be reconstructed with high accuracy using kernel density-
estimation techniques; however, the result is application-
specific. We thus do not dwell on numerical methods needed
to perform these manipulations and instead focus on ∆-
consistency in regard to GU (x).

B. Method M3

Prior work in several fields [3], [7], [22], [32], [36] has
suggested an estimator, which we call M3, that rounds the
distance between each adjacent pair of detected updates to
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Fig. 10. Comparison sampling in M3 with constant intervals of size ∆.
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Fig. 11. Pitfalls of M3.

the nearest multiple of ∆, from which it builds a distribution
G3(x). This technique was used in [7], [22] to track webpage
updates, in [31] to estimate lifetimes of storage objects, and
in [3], [32], [36] to sample user lifetimes in P2P networks. In
the OS/networking literature, the approach is known as Create-
Based Method (CBM) because it tracks each object from its
creation, as opposed to other methods that track deletions.

Define rk to be the number of downloads after which the
k-th update is detected, i.e.,

rk := min
{
m ≥ 1 :

m∑
j=1

Qj,j+1 = k
}
. (34)

Then, the samples collected by M3 are (rk+1−rk)∆ for k =
1, 2, . . . To understand this better, Fig. 10 shows an example
where updates are detected after downloads j and j+4, which
produces rk+1 − rk = 4 and a single sample 4∆. Based on
the description in prior work, this technique serves the purpose
of directly measuring Ui by counting full intervals of size ∆
that fit in [ui, ui+1]. As a result, the output of M3 is usually
expected to produce the update distribution FU (x).

While this makes sense for the case in Fig. 10, the method
becomes grossly inaccurate when multiple updates occur
within ∆ time units of each other, which brings us back to
the issue of hidden variables Ui. Consider Fig. 11, where 2/3
of the visible update durations are less than ∆. Since M3 in
this scenario produces one sample 4∆, it skews the mass of
the distribution to much higher values than needed.

We now model the performance of M3 under general U and
obtain the limiting distribution of its samples. Define G3(x, T )
to be the CDF of observed durations in [0, T ]:

G3(x, T ) :=

∑∞
k=1 1rk≤T1(rk+1−rk)∆≤x∑∞

k=1 1rk≤T
. (35)

Then, we have the following result.
Theorem 6: The tail distribution of M3 is a step-function:

Ḡ3(xn) := lim
T→∞

Ḡ3(xn, T ) =
GU (xn+1)−GU (xn)

GU (∆)
. (36)

Proof: Notice from Fig. 11 that age samples collected by
M3 can be viewed as discrete versions of those in M1. Indeed,



8

define x+ = ∆⌈x/∆⌉ to be x rounded-up to the nearest
multiple of ∆. Then, the sample obtained by M3 at download
instance sj is A+

U (sj). Since condition A+
U (sj) < xn is

equivalent to AU (sj) < xn for xn = n∆, we obtain:

G3(xn, T ) =

∑NS(T )
j=1 1RU (sj)<Sj

1AU (sj)≤xn∑NS(T )
j=1 1RU (sj)<Sj

, (37)

which is exactly the same as G1(xn, T ) in (7). Therefore,
the tail of G3(xn, T ) converges to the result in (8), with S
replaced by ∆. Doing so produces (36). Since G3(x) has no
information between discrete points xn, it must be constant in
each interval [xn, xn+1), which means it is a step-function.

Define a random variable D3 ∼ G3(x). With the result
above, its average becomes readily available.

Theorem 7: The expectation of D3 is given by:

E[D3] =
∆

GU (∆)
. (38)

Proof: It is well-known that the mean of a non-negative
lattice random variable can be obtained by summing up its tail
distribution:

E[D3] = ∆
∞∑

n=0

Ḡ3(xn). (39)

Expanding Ḡ3(xn) using (36) and canceling all but two
remaining terms leads to the desired result.

Similar to M1, method M3 is consistent when FU (x) is
exponential. However, in broader NWU/NBU settings, its dis-
tribution lies between FU (x) and GU (x). As sampling interval
∆ → ∞, which corresponds to p → 1, variable D3 converges
in distribution towards AU . When ∆ → 0, which reflects
p → 0, D3 tends to U . Unfortunately, neither scenario is
usable in practice, which makes the method generally biased.

C. Method M4

Using the rationale behind M2, we now propose another
new method, which we call M4. At each sampling point sj ,
the obtained value is:

D4(sj) :=

{
∆ Qj−1,j = 1

D4(sj−1) + ∆ otherwise
. (40)

For the example in Fig. 10, this method collects four
samples – ∆, 2∆, 3∆ and 4∆. Denote by G4(x, T ) the
distribution generated by M4 in [0, T ]. Then, we have the
following result.

Theorem 8: Method M4 is ∆-consistent with respect to the
age distribution:

G4(xn) := lim
T→∞

G4(xn, T ) = GU (xn). (41)

Proof: It is not difficult to see that M4 collects samples
A+

U (sj) in all points sj . Therefore,

G3(xn, T ) =

∑NS(T )
j=1 1A+

U (sj)≤xn
,

NS(T )
(42)
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Fig. 12. Verification of (45) under Pareto U (µ = 2).

where x+ = ∆⌈x/∆⌉ as before. Since the CDF is computed
only in discrete points xn, the above can be written as:

G3(xn, T ) =

∑NS(T )
j=1 1AU (sj)≤xn

NS(T )
= G2(xn, T ), (43)

which converges to GU (x) using (30).
Define a random variable D4 ∼ G4(x), where G4(x) is

a continuous step-function taking jumps at each xn. Inter-
estingly, even though M3 keeps the largest age sample in
each detected update interval [ui, ui+1], the mean of its values
E[D3] is not necessarily larger than that of D4. For example,
with Pareto updates and ∆ = 1, we get E[D4] = 1.63 and
E[D3] = 1.33. This can be explained by our previous discus-
sion showing that under NWU update intervals the tail Ḡ3(x)
is upper-bounded by Ḡ4(x), which implies E[D4] ≥ E[D3].
Note that if U is NBU, this relationship is again reversed.

D. Method M5

From the last two subsections, we learned that M4 is always
∆-consistent with respect to GU (x), while M3 is biased unless
U is exponential or ∆ is infinitely small. One advantage
that M3 may have is that it operates with significantly fewer
samples. This raises the question of whether one can achieve
∆-consistency using the same number of samples as M3.

To this end, and define:

G5(xn, T ) :=
1

T

T/∆∑
j=1

min(xn, A
+
U (sj))Qj,j+1 (44)

to be an estimator that takes samples of M3, passes them
through the min function, and normalizes the resulting sum
by window size T . Note that the number of terms in the
summation is K(∞, T ), i.e., the number of detected updates.

Theorem 9: Estimator M5 is ∆-consistent with respect to
the age distribution:

G5(xn) := lim
T→∞

G5(xn, T ) = GU (xn). (45)

Proof: We start with an auxiliary result:
n−1∑
k=0

1AU (sj)>xk
=

n−1∑
k=0

1A+
U (sj)>xk

=
n−1∑
k=0

1⌈AU (sj)∆⌉>k
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TABLE I
CONVERGENCE OF BOTH ∆-CONSISTENT

METHODS UNDER PARETO U (µ = 2, λ = 1)

T
M4 M5

w(T ) κ(T ) w(T ) κ(T )
102 3.5× 10−2 6.4× 10−2 3.7× 10−2 6.7× 10−2

103 1.4× 10−2 2.2× 10−2 1.4× 10−2 2.2× 10−2

104 4.7× 10−3 7.2× 10−3 4.7× 10−3 7.3× 10−3

105 1.5× 10−3 2.4× 10−3 1.5× 10−3 2.4× 10−3

106 4.1× 10−4 5.8× 10−4 4.1× 10−4 5.8× 10−4

107 2.2× 10−4 2.6× 10−4 2.2× 10−4 2.6× 10−4

= min(n, ⌈AU (sj)∆⌉)

=
min(xn, A

+
U (sj))

∆
. (46)

Next, applying this to expansion of (44):

G5(xn, T ) =
∆

T

T/∆∑
j=1

Qj,j+1

n−1∑
k=0

1AU (sj)>xn

=
∆

T

n−1∑
k=0

T/∆∑
j=1

1AU (sj)>xn
Qj,j+1

=
K(∞, T )

NS(T )

n−1∑
k=0

Ḡ3(xn, T ), (47)

where K(x, T ) is given by (6) and Ḡ3(xn, T ) by (37). Since
K(∞, T )/NS(T ) converges to p, we get after applying (36)
to the expansion of Ḡ3(xn, T ):

G5(xn) = p
GU (xn)

GU (∆)
= GU (xn),

where we use the fact that p = GU (∆).
Fig. 12 shows that M5 accurately obtains the tail of GU (x),

even for ∆ bounded away from zero. We next compare M5

with M4 to see if the reduction in the number of samples has a
noticeable impact on accuracy. The first metric under consid-
eration is the Weighted Mean Relative Difference (WMRD),
often used in networking [12]. Assuming H(x, T ) is some
empirical CDF computed in [0, T ], then the WMRD between
H(x, T ) and GU (x) is:

w(T ) :=

∑
n |H(xn, T )−GU (xn)|∑

n(H(xn, T ) +GU (xn))/2
. (48)

The second metric is the Kolmogorov-Smirnov (KS) statis-
tic, which is the maximum distance between two distributions:

κ(T ) := sup
x

|H(x, T )−GU (x)|. (49)

Simulations results are shown in Table I. Observe that M4

performs slightly better for T ≤ 103, but then the two methods
become identical and their error decays as 1/

√
T . Even if T is

small, the minor loss of accuracy in M5 may well be worth a
20% reduction in the number of samples. As given in Fig. 4(a),
larger λ leads to even higher savings, e.g., 80% for λ = 10.
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Fig. 13. Illustration of G-M4.
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Fig. 14. Bias of G-M4 with Pareto updates (µ = 2, λ = 1).

VI. COMPARISON SAMPLING: RANDOM INTERVALS

Although M4 and M5 are consistent estimators of GU (x),
they do not generally guarantee recovery of FU (x). Further-
more, constant S may not always be achievable in practice.
For instance, search engine juggle trillions of pages, whose
download rate is dynamically adjusted based on real-time
ranking and budgeting. It may thus be difficult to ensure
constant return delays to each page. Additional problems stem
from lattice update processes, where constant S fails to satisfy
Assumption 1, rendering measurements arbitrarily inaccurate.

In this section, we consider comparison sampling with ran-
dom intervals. We first show that extending M4 to this scenario
delivers surprisingly biased results. Then, we present our new
method M6 and verify its correctness using simulations.

A. Straightforward Approaches

Our first attempt is to generalize M4 to random S, which
we call G-M4. For a given sj , define the most-recent sample
point after which an update has been detected as:

s∗j := max
i<j

{si : Qij = 1}. (50)

Then, G-M4 rounds age AU (sj) up to sj − s∗j . An example
is shown in Fig. 13, where the measured value is sj+2 − sj .
For constant S, this method is identical to M4, which we know
is consistent. The main difference with random S is that the
amount of round-off error in G-M4 varies from interval to
interval. This issues has a profound impact on the result, as
shown in Fig. 14. Observe that the exponential case becomes
somewhat consistent only for xn ≫ 0 and the Pareto case
produces a tail that is completely different from the actual
ḠU (x). This motivates us to search for another approach.

B. Method M6

Our rationale for this technique stems from the fact that
Qij = 1 if and only if AU (sj) < sj − si. Therefore, counting
the fraction of pairs (i, j) that sustain an update may lead to
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GU (x). Define y◦ = h⌈y/h⌉ to be the rounded-up value of y
with respect to a user-defined constant h. Let yn = nh and:

Wij(yn) :=

{
1 (sj − si)

◦ = yn

0 otherwise
. (51)

Then, the number of inter-sample distances sj −si in [0, T ]
that round up to yn is given by:

W (yn, T ) :=

NS(T )∑
i=1

NS(T )∑
j=i+1

Wij(yn) (52)

and the number of them with an update is:

Z(yn, T ) :=

NS(T )∑
i=1

NS(T )∑
j=i+1

QijWij(yn). (53)

We can now define estimator M6 by its CDF:

G6(yn, T ) :=
Z(yn, T )

W (yn, T )
(54)

For a given λ, method M6 has the same network overhead
as the other methods; however, it utilizes Θ(n2) pairwise
comparisons, significantly more than the other methods, which
are all linear in n. Despite a higher computational cost, M6

gains significant accuracy advantages when distances si − sj
are allowed to sweep all possible points x ≥ 0. Combining this
with bins of sufficiently small size creates a continuous CDF,
which allows recovery of not only GU (x), but also FU (x).

Theorem 10: Assume h → 0 and FS(x) > 0 for all
x > 0. Then, method M6 is consistent with respect to the
age distribution:

G6(y) := lim
T→∞

G6(y, T ) = GU (y). (55)

Proof: First, it helps to observe that:

Qij = 1RU (si)≤(sj−si). (56)

Since the download process is renewal, it follows that:

sj − si ∼ F
∗(j−i)
S , (57)

where F ∗k(x) denotes a k-fold convolution of distribution
F (x). Furthermore, the renewal nature of NS implies that
variable sj − si is independent of si. Now, let

Yk ∼ F ∗k
S (x) (58)

be a random variable with the same distribution as S1+. . .+Sk

and define the renewal function driven by FS(x) as [41]:

MS(t) = 1 +
∞∑
k=1

F ∗k
S (t). (59)

Then, renewal theory shows for x > h and n → ∞ that:

1

n

n∑
i=1

n∑
j=i+1

1RU (si)≤(sj−si) 1sj−si∈(x−h,x] (60)

converges to
∞∑
k=1

P (RU ≤ Yk, Yk ∈ (x− h, x])
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Fig. 15. Simulations of M6 under Pareto updates (h = 0.05, µ = 2, λ = 1).

=
∞∑
k=1

∫ x

x−h

GU (y) dF
∗k
S (y) =

∫ x

x−h

GU (y) dMS(y). (61)

Let n = NS(T ) and assume that h(T ) = T−δ , where δ ∈
(0, 1) ensures that h diminishes to zero at some appropriate
rate1. Since GU (x) is continuous, it follows that:

lim
T→∞

Z(yn, T )

W (yn, T )
= lim

h→0

∫ x

x−h
GU (y) dMS(y)∫ x

x−h
dMS(y)

= GU (x) (62)

for each x > 0.
The assumption that FS(x) contains non-zero mass in the

vicinity of zero is necessary for accurate estimation of gU (x) at
x = 0, which then leads to FU (x). This can be accomplished
by a number of continuous distributions, e.g., exp(λ) or
uniform in [0, 2λ]. It should also be noted that M6 works for
lattice S, but in that case it offers no benefits over M4. Fig. 15
compares the M6 estimator against GU (x) under two sampling
distributions FS(x), both satisfying Theorem 10. Compared to
Fig. 14, this result is overwhelmingly better.

VII. CONCLUSION

This paper studied the problem of estimating the update
distribution at a remote source under blind sampling. We
analyzed prior approaches in this area, showed them to be
biased under general conditions, introduced novel modeling
techniques for handling these types of problems, and proposed
several unbiased algorithms that tackled network sampling
under a variety of assumptions on the information provided
by the server and conditions at the observer.

Future work includes analysis of convergence speed, inves-
tigation of non-parametric smoothing techniques for density
estimation, and modeling of non-stationary update processes.
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