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Abstract—Traffic monitoring and estimation of flow parameters
in high-speed routers have recently become challenging as the In-
ternet grew in both scale and complexity. In this paper, we focus on
a family of flow-size estimation algorithms we call Residual-Geo-
metric Sampling (RGS), which generates a random point within
each flow according to a geometric random variable and records all
remaining packets in a flow counter. Our analytical investigation
shows that previous estimation algorithms based on this method
exhibit bias in recovering flow statistics from the sampled mea-
surements. To address this problem, we derive a novel set of unbi-
ased estimators for RGS, validate them using real Internet traces,
and show that they provide an accurate and scalable solution to
Internet traffic monitoring.

Index Terms—Flow-size estimation, traffic sampling.

I. INTRODUCTION

G ROWTH of the Internet in both scale and complexity has
imposed a number of challenges on network manage-

ment, operation, and traffic monitoring. The main problem in
this line of work is to scale measurement algorithms to achieve
certain accuracy objectives while satisfying real-time resource
constraints of high-speed Internet routers (e.g., fixed memory
consumption and per-packet processing delay). This is com-
monly accomplished (e.g., [4], [7]–[13], [16], [17], [19]–[24],
and [33]) by reducing the amount of information a router has to
store in its internal tables, which comes at the expense of de-
ploying special estimation techniques that can recover metrics
of interest from the collected samples.
In this paper, we study two problems in the general area of

measuring flow sizes—1) determining the number of packets
transmitted by individual flows [13], [17], [19], [22]–[24]; and
2) building the distribution of flow sizes seen by the router in
some time window [9], [20], [33]—coupled in a single mea-
surement technique. The former problem arises in usage-based
accounting and traffic engineering [8], [13]–[15], [27], while the
latter has many security applications such as anomaly and intru-
sion detection [1], [18], [25].
Our interest falls within the family of residual sampling,

which selects a random point within each flow and then sam-
ples the remainder of that flow until it ends. Denoting by
the fixed size (in packets) of a particular flow, sampled residual
is a random variable . Stochastically larger results in
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fewer flows being sampled and leads to lower CPU/RAM over-
head, but also increases the amount of estimation error. Besides
omitting many small-size flows from counter tables, residual
sampling guarantees to capture large flows with probability

as their size . This allows ISPs to determine
“heavy-hitters” and charge the corresponding customers for
generated traffic.
Residual sampling has been modeled in the setting of peer-to-

peer (P2P) networks [31], where the initial point was uni-
formly distributed within each user’s lifetime. Flow-based esti-
mation [13], [19], however, usually employs geometric since
it can be easily implemented with a sequence of independent
Bernoulli variables. We call the resulting approach Residual-
Geometric Sampling (RGS) and note that it has received only
limited analytical treatment in [13], [19], which did not shed
light on the possibility of unbiased estimation of individual flow
sizes, asymptotically accurate recovery of the flow-size distribu-
tion, or space-CPU requirements in steady state. We overcome
these limitations in what follows.

A. Problem Statement

In this paper, we seek to develop a flow-measurement mech-
anism that can achieve the following objectives. First, the
algorithm should provide unbiased estimation of single-flow
usage [13], [17], [19], [22]–[24] and flow-size distribu-
tion [9], [20], [33]. Second, the method should be able to
reliably identify elephant flows as their size [8],
[13]–[15], [27]. Third, the algorithm must scale in terms of
memory consumption and processing speed. Specifically, the
number of flows maintained in RAM and the time spent on
each packet should not exceed certain constraints of the system.
Finally, the algorithm must be real-time and cannot assume
information only available offline. As we discuss in Section II,
none of the existing methods simultaneously satisfy these
criteria.

B. Single-Flow Usage

We start with the problem of obtaining sizes of individual
flows for accounting purposes. Since residual sampling requires
an estimator to convert residuals into the metrics of interest, our
first task is to define the proper notation and desired properties
for the estimation algorithm.
Assume that for a flow of size the sampling process

produces residual , where both and are now random
variables. In this setting, it is common to call estimator
unbiased if its expectation produces the correct flow size, i.e.,

. We further call an estimator
elephant-accurate if ratio in mean-square as

. If an estimator is unbiased, this condition is equivalent
to as , which implies that random
variable converges in probability to 1.
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Prior work on RGS [13], [19] has suggested the following
estimator:

(1)

where is the parameter of geometric variable .
To understand the performance of (1), our first contribution
is to build in Section III a general probabilistic model for
residual-geometric sampling and derive the relationship be-
tween flow size and its residual . Using this result, we
show in Section IV that (1) is generally biased and tends to
overestimate the original flow size by a factor of up to .
Motivated by this finding, our second contribution is to derive
in Section V a novel estimator that is not only provably
unbiased and elephant-accurate, but also unique. We obtain
its mean-square error for small , showing that it is orders
of magnitude smaller than the corresponding value for esti-
mator (1). We also discuss how to use our model to determine
when the considered estimators approximate the true flow size
with sufficient accuracy.

C. Flow-Size Distribution

A seemingly related, but largely orthogonal, problem is to use
RGS to estimate the original flow-size probability mass function
(PMF), which we assume is given by , for

. We call PMF estimator asymptotically
unbiased if each converges in probability to as the number
of sampled flows .
As this problem has not been addressed in the context of RGS,

one may be at first tempted to compute the distribution of
based on the values produced by (1) or its unbiased replacement

proposed in this paper. However, we show in Section IV
that such almost always differ from the original distri-
bution , and the bias persists as sample size .
The reason for this discrepancy is that single-flow models can
only capture the sizes of flows that have been sampled by the
algorithm, which are not representative of the entire population
passing through the router. Since longer flows are more likely to
be selected by residual sampling, this approach severely over-
estimates their fraction and thus skews the PMF toward the tail.
Using the general model of RGS derived in the paper, our

third contribution is to obtain in Section V an entirely different
PMF estimator and show that it tends to in
probability as . We go a step further and provide
asymptotically unbiased estimators for other metrics of interest
(e.g., the total number of flows and the number of them with ex-
actly packets). We call the resulting combination of algorithms
Unbiased Residual-Geometric Estimators (URGE).

D. Properties and Evaluation

Since prior work has not discussed how residual sampling
should be implemented nor examined its overhead, our fourth
contribution is to provide in Section VI a detailed exposition
on these topics, including deriving the expected number of ac-
tive flows and the number of them sampled by the router (i.e.,
kept in RAM). We also address the issue of optimizing accuracy
while simultaneously satisfying certain constraints on RAM uti-
lization and processing speed. Our results show that residual-
geometric sampling admits a unique optimal pair of sampling
probability and hash-table size , which we derive in closed
form based on our model.

Our final contribution is to apply in Section VII the proposed
technique to real Internet traces. We discover that URGE is not
only very accurate for all studied metrics of interest, but also
quite robust against noise when sample size becomes very small,
whichmakes it suitable for extremely high-speed operation (due
to the small hash-table requirement) and/or monitoring of indi-
vidual customer networks and specific protocols that transmit
only a limited amount of packets.

II. RELATED WORK

In this section, we review several sampling algorithms in the
area of traffic monitoring. In particular, we classify existing
work into two categories: packet sampling and flow sampling,
where the former makes per-packet and the latter per-flow de-
cisions to sample incoming traffic.

A. Packet Sampling

Sampled NetFlow (SNF) [4] is a widely used technique in
which incoming packets are sampled with a fixed probability .
The general goal of SNF is to obtain the PMF of flow sizes.
However, [16] shows that it is impossible to accurately recover
the original flow-size distribution from sampled SNF data.
Estan et al. [12] propose Adaptive NetFlow (ANF), which
adjusts the sampling probability according to the size of
the flow table. However, ANF’s bias in the sampled data is
equivalent to that in SNF and is similarly difficult to overcome
in practice.
Instead of using one uniform probability for all flows as in [4]

and [12], another direction in packet sampling is to compute
for each flow based on its currently observed size . This

approach has been studied by two independent papers, Sketch-
Guided Sampling (SGS) [22] and Adaptive Non-Linear Sam-
pling (ANLS) [17]. A common feature of these two methods
is to sample a new flow with probability 1 and then monotoni-
cally decrease as grows. Both methods must maintain a
counter for each flow present in the network and are difficult to
scale due to the high RAM/CPU usage.

B. Flow Sampling

In flow thinning [16], each flow is sampled independently
with probability , and then all packets in sampled flows are
counted. Hohn et al. [16] show that flow thinning is able to accu-
rately estimate the flow-size distribution. However, this method
typically misses percent of elephant flows and thus does
not support applications such as usage-based accounting and
traffic engineering [8], [13]–[15], [27]. For highly skewed dis-
tributions with a few extremely large flows and many short ones
(which is typical for Internet links), this method may also take
a long time to converge.
To address these problems of flow thinning, Estan et al. [13]

introduce an algorithm called Sample-and-Hold (S&H), which
captures flows of size with probability . While
S&H identifies large flows with probability as ,
it does not provide an estimate of the flow-size distribution. An-
other direction of size-dependent flow sampling has been ex-
plored by Duffield et al. in [7], [8], and [10], which present
a method called Smart Sampling. Their approach selects each
flow of size with probability , where is
some constant. Since this method requires flow size before de-
ciding whether to sample it or not, it can only be applied offline.



1092 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 4, AUGUST 2013

Fig. 1. Residual-geometric of a flow with size .

Kompella et al. [19] examine a technique called Flow
Slicing (FS), which combines SNF and S&H with a variant
of smart sampling. Other nonsampling methods include exact
counting [3], [28], [30], [34] and lossy counting [20], [24],
which are orthogonal to our work.

III. UNDERLYING MODEL

In this section, we build a general probabilistic model of
Sample-and-Hold [13] and establish the necessary analytical
foundation for the results that follow.

A. Formalizing Sample-and-Hold

Consider a sequence of packets traversing a router, and as-
sume that its flow-measurement algorithm checks each packet’s
flow identifier in some RAM table. If is found in the table,
the corresponding counter is incremented by 1; otherwise, with
probability , a new entry for is created in the table (with
counter value 1), and with probability , the packet is
ignored.
To model this process, we first need several definitions. As-

sume that flow sizes are i.i.d. random variables, and define geo-
metric age to be the number of packets discarded from the
front of a flow with size before it is sampled (see Fig. 1). Let
be a shifted-by-one geometric random variable with success

probability , i.e., for It
thus follows that is simply

(2)

Now define geometric residual to be the final counter
value of a flow of size conditioned on the fact that it has been
sampled (i.e., )

(3)

which is also illustrated in Fig. 1. From the perspective of
traffic monitoring in this paper, geometric residual is the
only quantity collected during measurement and available to
an estimation algorithm. Since this approach belongs to the
class of residual-sampling techniques [31] and specifically uses
geometric age, this paper calls S&H by a more mathematically
specific name, Residual-Geometric Sampling.
Assume that is distributed according to some PMF

, where Then, we have the following
result.
Theorem 1: RGS samples flows with probability

(4)

Proof: Observe that for a fixed flow size , we have
. Unconditioning , we get (4).

Next, let be the PMF of geometric residual
. The following result expresses in terms of .
Theorem 2: The PMF of geometric residual is

(5)

Proof: Using (3), we have

(6)

where . Substituting (2) into (6) and com-
bining the fact that , we establish

(7)

which gives the desired result in (5) after substituting the PMF
of into (7).
The result of Theorem 2 is fundamental as many of the results

in this paper are conveniently derived from (5).

B. Fixed Flow Size

We next analyze a special case of residual sampling where
the original flow size is fixed at . Note that residuals are
now instead of since the original flow size is no longer a
random variable. The properties of are given next.
Theorem 3: Given flow size , the PMF of is

(8)

and its expectation is

(9)

Proof: For , we have and for all .
Writing , we get from (5)

(10)

which is exactly (8).
We next derive by expanding it as

(11)

Recall that for any nonnegative discrete random variable
taking values over the integer set , its expectation is
given by . It thus follows that (11)
reduces to

(12)
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Substituting into (12), we have

(13)

which can be simplified to (9).
Next, we apply the results obtained in this section to analyze

existing estimation methods that have been proposed for RGS.

IV. ANALYSIS OF EXISTING METHODS

In this section, we examine prior approaches [13], [19] to
estimating single-flow usage and whether their results can be
generalized to recover the PMF of .

A. Single-Flow Usage

To evaluate single-flow estimators, we use the following def-
inition that is commonly used in statistics [2].
Definition 1: Estimator is called unbiased if

for all .
One commonly faces an additional requirement to not only

capture all large flows, but also to accurately estimate their size
with just a single value , which is formalized next.
Definition 2: Estimator is called elephant-accu-

rate if in mean-square as , i.e.,
. For unbiased estimators, this is

equivalent .
Elephant-accuracy guarantees that the amount of relative

error between and decays to zero as . As before,
suppose that a flow of size produces a counter with value .
Recall that [13] and [19] suggest the following estimator:

(14)

where is the probability of \samplingname. The next result
directly follows from (9).
Corollary 1: The average value produced by (14) is

(15)

Note that (15) indicates that (14) is generally biased, espe-
cially when is small. Indeed, for , we have

and regardless of , which shows that
in such cases carries no information about the orig-
inal flow size. However, as , it is straightforward to verify
that the bias in vanishes to zero, which is consistent with
the conclusion in [19].
To see the extent of bias in (14) and verify (15), we apply

residual-geometric sampling to flows of size ranging from 1
to 10 packets, feed the measured sizes to (14), and average the
result after 1000 iterations for each . Fig. 2 plots the obtained

along with model (15). The figure indicates that (15)
indeed captures the bias and that (14) tends to over-estimate the
size of short flows even in expectation, where smaller sampling
probability leads to more error.
To quantify the error of individual values in esti-

mating flow size and to understand elephant-accuracy, denote

Fig. 2. Expectation of estimator (14) in simulations and its model (15). (a)
. (b)

by and define the relative root mean square
error (RRMSE) to be

(16)

Note that indicates that in mean square
and thus implies elephant-accurate estimation. The next result
derives in closed form.
Theorem 4: The RRMSE of (14) is given by

(17)

Proof: Using and
in (16), we have

(18)

Since geometric age , (18) becomes

(19)

Defining and applying (8) and (9), we get

(20)

and

(21)

As the summation term in (20) simplifies to [32]

(22)
the statement of the theorem follows after several arithmetic
manipulations.
Fig. 3 plots (17) against simulations, indicating a close match.

The relative error starts at for and decays
approximately as as . It generally does not drop
below percent until reaches approximately packets
(e.g., 100% error requires flows with size at least , and 1%
error at least ). As , and the estimator is
elephant-accurate.

B. Flow-Size Distribution

We now investigate whether defined in (14) can
be used to estimate the actual flow-size distribution .
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Fig. 3. RRMSE of (14) in simulations and its model (17). (a) . (b)
.

Fig. 4. Distribution in simulations and its model (23). (a) .
(b) .

Denote by the PMF of estimated sizes
among the sampled flows. To understand our objectives with
approximating the PMF of , another definition is in order.
Definition 3: An estimator of PMF is called

asymptotically unbiased if converges in probability to for
all as the number of sampled flows .
The next theorem follows directly from (5).
Theorem 5: The PMF of flow sizes estimated from (14) is

(23)

where and is in (4).
The result in (23) indicates that each is different from

regardless of the sampling duration and thus cannot be used to
approximate the flow-size distribution. We verify (23) with a
simulated packet stream with 5M flows, where flow sizes follow
a power-law distribution for
and . Fig. 4 plots the complementary cumulative distri-
bution function (ccdf) of random variable obtained from
simulations as well as model (23), both in comparison to the tail
of the actual distribution. The figure shows that (23) accurately
predicts the values obtained from simulations and that PMF
is indeed quite different from .
So far, our study of existing methods in residual-geometric

sampling has shown that they are generally biased in single-flow
usage and unable to recover the flow-size distribution from
residuals . This motivates us to seek alternative estimation
approaches, which we perform next.

V. URGE

This section proposes a family of algorithms calledUnbiased
Residual-Geometric Estimators, proves their accuracy, and ver-
ifies them in simulations.

Fig. 5. Expectation of estimator (25) in simulations. (a) . (b)
.

A. Single-Flow Usage

For estimating individual flow sizes, we first consider an es-
timator directly implied by the result in (9). Notice that solving
(9) for and expressing it in terms of , we get

(24)

where and is Lambert’s function
(i.e., a multivalued solution to ) [6]. Thus, a possible
estimator can be computed from (24) with replaced by
the measured value of geometric residual .
However, there are two reasons that (24) is a bad estimator of

flow sizes. First, Lambert’s function has no closed-form
solution and has to be numerically solved using tools such as
MATLAB. Second, (24) is still biased due to the crude approx-
imation of with a single instance of random variable .
Abandoning this direction, our next approach is to directly solve

for function .
Theorem 6: The following is a unique unbiased estimator:

(25)

Proof: Our goal is to derive such function that satisfies
. First, it follows from (8) that

For to hold, we must have

(26)

Writing (26) twice for and and subtracting the two
equations from each other, we get

(27)

Simplifying (27), we obtain (25) as the unique solution.
We plot in Fig. 5 simulation results obtained from (25). The

figure indicates that accurately estimates actual sizes for
all . Next, we derive the corresponding error.
Theorem 7: The RRMSE of (25) is given by

(28)
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Fig. 6. RRMSE of (25) in simulations and model (28). (a) . (b)
.

Proof: Define and
observe that

(29)

Setting and leveraging (8), we get

(30)

where and . We next split

(31)

into six summations , respectively. Note that is
available from (22) and

(32)

(33)

(34)

(35)

For , one requires the following result [32]:

(36)

which produces

(37)

Finally, combining the various summations and canceling re-
dundant terms, we get (28).
It is easy to verify from (28) that URGE has zero RRMSE

not just for , which confirms its elephant-accuracy, but
also for . We plot obtained from simulations along with
the model in Fig. 6, which shows that (28) accurately tracks the
actual relative error. From Figs. 5 and 6, it is clear that
significantly improves the accuracy of estimating small flow
sizes compared to , with always staying below 100%.

In terms of practical applications for (28), observe that it can be
used by ISPs to decide what pairs of lead to desired accu-
racy when relying on a single sample of random variable
to estimate .

B. Flow-Size Distribution

It is worth mentioning that while (25) produces unbiased es-
timation of individual flow sizes, is not suitable for com-
puting the flow-size distribution, as we show in the following.
Denote by the PMF of . Then, we
have the following result.
Theorem 8: PMF of is given by

(38)

where is in (4), function is

(39)

and .
Proof: We first solve

(40)

for and express it in terms of , i.e., , where
is given by (39), ignoring approximate roundoffs to the nearest
integer. Combining with (5), we have

(41)

where is in (5). This directly leads to (38).
Notice from (38) and (39) that distribution does not even

remotely approximate the original PMF . This problem is fun-
damental since residual sampling exhibits bias toward larger
flows and, even if we could recover from exactly, the dis-
tribution of sampled flow sizes would not accurately approxi-
mate that of all flows passing through the router.
We thus explore another technique for estimating the flow-

size distribution. Before doing that, we need the next result.
Theorem 9: The flow-size distribution can be expressed

using the PMF of geometric residuals in (5) as

(42)

Proof: From (5), we obtain that

(43)

It then immediately follows that is given by

(44)

Notice that in (4) is a function of , which are un-
known from the measurement perspective. The last step of the
proof is to express in terms of known quantities , which
can be accomplished by applying the normalization condition

. It is easy to verify that

and (45)
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Fig. 7. Estimator (47) in simulations. (a) , . (b)
, .

Then, summing up both sides of (44) for from 1 to infinity
gives us

(46)

which together with (44) establishes (42).
This result leads to a new estimator for the flow-size

distribution

(47)

where is the total number of sampled flows and is the
number of them with the geometric residual equal to . Since

in probability as (from the weak law of
large numbers), we immediately get the following result.
Corollary 2: Estimator (47) is asymptotically unbiased.
We next verify the accuracy of in simulations with

5M flows in the same setting as in the previous section. We
plot in Fig. 7 the ccdf estimated from (47) along with the actual
distribution. The figure shows that accurately follows the
true distribution for both cases of .

C. Convergence Speed

We next examine the effect of sample size , whose expec-
tation depends on both and the flow-size distribution

(48)

on the convergence of PMF estimator . To illustrate the prob-
lems arising from small , we study (47) with and

in simulations with the same 5M flows. The estimator ob-
tained flows for and just for

. Fig. 8 indicates that while the estimated curves under
both choices of still approximate the trend of the original dis-
tribution, they exhibit increasing levels of noise as reduces.
To shed light on the choice of proper for RGS, we show how

to determine the minimum that would guarantee a certain
level of accuracy in . Define to be an estimate of

. The next result follows from Theorem 9 and
Corollary 2, indicating that the accuracy of directly depends
on whether approximates accurately.
Theorem 10: Suppose that holds with prob-

ability for , where both and are in [0,1].
Then, there exists a constant

(49)

such that as and .

Fig. 8. Estimator (47) in simulations with very small . (a) ,
. (b) , .

Proof: Our goal is to find such that guarantees
. Applying (47) and expanding

(50)

First, consider the right inequality and notice

(51)

where , , ,
and . We now need to solve

(52)

Using the fact that is positive, this reduces to

(53)

Now, returning to the left inequality in (50), we get

(54)

Similar to the previous case, we obtain

(55)

Of the two lower bounds (53) and (54), the former is clearly
larger. Expanding it, we obtain (49).
Next, we derive constraints on imposed by the require-

ment that be bounded in probability within a given range
.

Theorem 11: For small constants and ,
holds with probability if sample size is no less than

(56)

where is the cdf of the standard Gaussian distribution
and is its inverse.

Proof: Notice that is a random variable whose dis-
tribution is given by Binomial and that
can be approximated by a Gaussian random variable with mean

and variance . Define

(57)
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and observe that it is a Gaussian random variable with mean 0
and variance 1. It then follows that

(58)

where is the cdf of the standard Gaussian distribution
. Therefore, we establish that

(59)

We can guarantee the desired accuracy by setting
and , which simplifies to

(60)

Substituting into the above equation
and solving for , we obtain (56).
For example, to bound to within 10% of (i.e., )

with probability for all , the following
must hold:

(61)

which indicates that flows must be sampled to
achieve this accuracy. If we reduce to 1%, increase to
99%, and require the approximation to hold for all ,
then must be at least 66M flows. Converting into
using (49), one can establish similar bounds on the deviation
of from .

D. Estimation of Other Flow Metrics

Besides flow sizes and the flow-size distribution, URGE also
provides estimators for the total number of flows and the number
of them with size . Before introducing these estimators, we
need the next result.
Theorem 12: The expected number of flows with sampled

residuals is

(62)

where is the PMF of geometric residuals and is in (4).
Proof: Writing

(63)

notice that (62) follows from the fact that
and .

Based on this, we next develop two estimators and prove their
accuracy. Let be an estimator of the total number of flows
observed in the measurement window

(64)

and be an estimator of the number of flows with size

(65)

Then, the next result shows that both of these estimators are
asymptotically unbiased.
Theorem 13: Ratios and , for all such that ,

converge to 1 in probability as .

Proof: To prove convergence in probability, it suffices
to show that and as .
From (64), we have

(66)

Applying (48) and (62), we get

(67)

which simplifies to using (46).
To tackle the variance of , first notice that can be rep-

resented as a sum of i.i.d. Bernoulli variables (i.e.,
), each with fixed probability . Therefore

(68)

where the last term is bounded by . Applying similar rea-
soning to , we obtain that . Since we
assumed that the number of sampled flows , this im-
plies that and thus from (46) that , which
establishes that . Convergence in probability
immediately follows (in fact, an even stronger convergence in
mean-square holds, but this distinction is not essential in our
context).
For the second part of the theorem, define and

. We first prove that both and converge in
probability to . We then argue that their ratio con-
verges to 1, also in probability.
Using (62), (46), and finally (42), we have

(69)

Since is the number of flows with size , its expectation
is and thus . Using
reasoning similar to that in the first half of this proof, we obtain
that and , which shows convergence
of these variables to in probability.
For the final step, consider two sequences and

that converge to the same positive constant . Then, simple
manipulation shows that their ratio converges to 1 in probability.
We leave details to the reader.
Note that [19] provided a similar estimator as (64) and proved

using a different approach from ours. However, our
results are stronger as they show convergence in probability
and additionally address estimation of . Simulations verifying
(64) and (65) are omitted for brevity.

VI. STEADY-STATE PROPERTIES

We are now ready to discuss the various implementation de-
tails and run-time efficiency of URGE.

A. General Structure

For each incoming packet, URGE extracts the packet’s flow
ID (e.g., the IPv4 five-tuple consisting of the protocol field,
source/destination IP addresses, and both ports) and checks if
the flow table has an existing entry for . If so, the corresponding
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counter is incremented by 1; if not, a new entry is created for
with probability , and its counter is initialized to 1. At the end
of the measurement process, the collected counter values from
the flow table are passed through URGE estimators to obtain the
desired flow statistics.
The flow-counter table keeps a mapping between flow IDs

and associated counters. This is a chained hash table of size
with three operations: 1) to retrieve the record of
flow ; 2) to insert a new entry for flow in the table
with the initial counter value 1; and 3) to add 1
to the counter of flow . We assume that hash function
produces a uniformly random integer in and is
fast enough to keep up (e.g., efficient hardware hash functions
can be found in [29]).
We maintain an array of size , and each entry points

to a linked list that keeps the set of flows whose IDs have the
same hash value . Each node in the list contains two fields:
1) flow data that keep the flow ID, the packet counter, and the
timestamp of the last packet; and 2) a pointer to the next node.
An important element of our algorithm is to ensure that the table
keeps only active flows, which is accomplished by continuous
removal of dead flows (i.e., either using FIN/RST packets or
upon expiration of some idle timeout ). Upon purging, flow in-
formation is saved to disk (single-flow usage) or aggregated into
a RAM-based PMF table (flow-distribution usage). Operations

and automaticallymodify the timestamps
associated with each flow and allow timeout-based expulsion of
dead connections.
Notice that the flow table is accessed by residual-geometric

sampling upon each packet arrival. Therefore, both scalability
and overhead depend on the size of this data structure, which
we investigate next.

B. Active Flows

Assume stationary flow arrivals and a measurement window
, where is given in packets seen by the router. For each

flow with size , let interpacket delays within the flow
be given by a random variable , which counts the number
of packet arrivals from other flows between adjacent packets of
. Note that , which we assume is independent of , is a
measure of intraflow spareseness at the router (i.e., an inverse
of its arrival rate). Denoting by across all flows ,
we have the following result.
Theorem 14: The expected number of active flows seen

by a packet arriving at time is given by

(70)

Proof: Represent as the sum of
indicator variables, where is 1 if flow is alive at and 0
otherwise. Observe that

(71)

and notice that each flow “exists” at the router for

(72)

packet units, where are i.i.d. instances of vari-
able and 1 is added to each gap to account for the corre-
sponding packet from flow . The very first packet of each flow
is excluded from this computation as the flow does not belong
to the hash table yet and does not contribute to the processing
cost of its own front packet.
Now, the probability that lands within a given flow

is simply the flow’s expected footprint (in packets seen by the
router) normalized by the window size

(73)

Since , we get (70) using (71).
Our baseline reduction in flow volume comes from geometric

sampling, which reduces the number of flows by a factor of
. Now, additionally define ratio

(74)

and notice that longer observation windows (i.e., larger ),
smaller flow sizes (i.e., smaller ), and more bursty arrivals
(i.e., smaller ) imply more savings of memory. In fact,

results in if the other parameters are fixed.
However, even more reduction is possible by discarding dead
flows. Denote by the number of sampled flows that are
currently alive at and consider the next result.
Theorem 15: The expected number of flows seen in the hash

table by a packet arriving at time is given by

(75)

where in (4) is the probability to sample a flow.
Proof: Following Theorem 14, packet footprint is the

number of arriving packets that see flow in the hash table
within window . Define as the number of interpacket
gaps during which a flow of size stays in the table (as before,
the footprint does not include the first packet that triggers the
router to sample the flow and add it to the table)

flow sampled
otherwise.

(76)

Then, the flow’s footprint , conditioned on , is

(77)

where as before are i.i.d. interpacket delays induced by
cross-traffic. Next

Using (9) and , we have

(78)

Unconditioning , we have the expected footprint as

(79)
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Fig. 9. Verifying models (70) and (75). (a) Live flows . (b) Sampled live
flows .

TABLE I
COMPARISON OF (70) AND (75) TO SIMULATION RESULTS

where is the probability that a flow is
sampled by the router. Multiplying by and dividing by
, we get (75).
Performing a self-check, observe that , and there-

fore , which means that the former in-
deed always results in more reduction in table size than the
latter. Also, notice that (75) reduces to (70) when . De-
fine as the expected reduction of space when
tracking only active flows compared to all seen flows at the
router, and notice that this ratio now also grows as decreases.
In fact, for small , Taylor expansion of shows that

is approximately a linear
function of , assuming of course that .
We evaluate models (70) and (75) in simulations with 1000

iterations through window with randomly generated
flows from the a distribution with flow-size cdf ,
where and . Fig. 9 plots the evolution of

and along with the expected values computed
from the models. Table I compares the models with
and computed in simulations, where each value is
averaged using the same 1000 iterations of the traffic stream.
Both indicate a very close match.

C. Memory Consumption

The memory used by the flow table can be divided into two
parts: one for the hash table, which contains an array of pointers,
and the other for flow records, which are organized in a set of
linked lists. Define to be the number of bytes used by each
memory pointer and to be that needed for flow counter, time-
stamp, and flow ID. Then, the average number of bytes required
by URGE in steady state is

(80)

From (80), observe that memory consumption can be reduced
by lowering either or . However, as discussed in
the previous section, the number of sampled flows cannot
be arbitrarily small as it leads to lower estimation accuracy.

At the same time, small leads to more conflicts in the hash
table, longer linked lists, and thus may slow down the sampling
process, which are the issues we study next.

D. Processing Time

The time spent in processing each packet depends on how
linked lists are built. We examine an approach that sorts flow
entries of each linked list based on flow IDs. In this approach,
function returns a pointer to the entry of flow if it
exists in the table; otherwise, the function returns a pointer to
where the new entry should be inserted.
For each packet with flow ID , we perform the following

steps in sequential order: 1) compute the ; 2) re-
trieve the linked-list head pointer from the hash table; 3) it-
erate through the linked list until a flow record is matched or a
flow with ID larger than is reached; 4) if is not found, a new
entry for is created with probability and inserted to the lo-
cation returned by . Notice that creating of the record
in the fourth step is executed only when a new flow arrives
and is sampled, which is much less frequent than continuous
per-packet table lookups. Thus, we consider its contribution to
the overall overhead negligible and omit it from the analysis.
Denote by the time spent in computing a hash, by that

of memory access, and by that of each comparison of flow
IDs. Define to be the processing delay/latency of each in-
coming packet at time . It is not difficult to notice that is
directly determined by the expected depth of lookups in a hash
table with keys. Define to be the number of items in
bin at time , and recall that each chain is sorted by the key. As-
suming the next lookup hits each bin with an equal probability,
the expected lookup depth is , as both successful and
unsuccessful searches terminate on average after traversing half
the chain. Since is binomial with parameters and

, we immediately obtain that the expected per-packet pro-
cessing time is

(81)

This result indicates that larger hash tables and smaller popu-
lations of sampled flows reduce the CPU overhead. Since larger
reduces (81), but increases (80), we next examine how to

properly select and to simultaneously satisfy certain target
constraints on and , given their conflicting
dependency on .

E. Tradeoff Analysis

Now, we are ready to explore the design space of constants
to strike a balance between accuracy and scalability.

Suppose that a router requires that and
. Further assume that the number of sampled

flows is known1 and fixed. Define two constants

(82)

and

(83)

1In actual routers, can be predicted based on short-term and/or long-
term history of the link.
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Fig. 10. Tradeoff: (a) memory consumption and (b) processing time with
. Gray areas display the acceptable ranges of .

(a) . (b) .

TABLE II
CONSTANTS USED IN (80) AND (81)

Assuming , it then follows from (80) and (81) that
one can choose any value to satisfy the two con-
straints on memory and speed. We show below how to vary in
order to maximize accuracy while ensuring .
To understand this better, consider the following example.

Assume that the original traffic contains flows with
a power-law distribution . With

, residual-geometric sampling obtains
sampled flows. Table II gives the constants we use to compute
the expected memory consumption and processing time in (80)
and (81). We also impose the following constraints on memory
and delay: MB and ns.2 Fig. 10 illustrates
the acceptable ranges of table size derived from the models.
The figure indicates that table size can be any value between

and to simultaneously satisfy
both requirements and .
Note that for some values of , it is possible that
is larger than , and thus the constraints cannot be met.

Therefore, we next vary to show how the choice of will
be affected. Fig. 11 plots and as functions of , where
both curves are obtained from the corresponding models.
Notice from the figure that monotonically increases and

monotonically decreases in . This implies that interval
eventually shrinks to a single point , after which

no feasible assignment of table size exists.
Since larger implies more accurate estimation (i.e., the

router sees more flows in the interval and thus es-
timates distribution more accurately), it is desirable to
select the maximum that allows the router to satisfy the space
and speed constraints. This occurs in a single optimum point
that corresponds to . In our example, we get

and .
An optimal strategy in practice would be to dynamically ad-

just [e.g., using our model (75), or a closed-loop feedback
controller for nonstationary arrival processes] so that the av-
erage table size stays around some constant, which is

2These values allow to hold about 10 flow records (each with a flow ID and
a counter) and process 1-kb packets at OC-768 rates (i.e., 40 Gb/s).

Fig. 11. Lower and upper bounds on table size with varying probability .
Gray areas display the acceptable range of and .

large enough for to track any nonstationary effects in the flow
population and overcome sampling noise, but not too large for
URGE to become unreasonable in terms of consumed memory
and CPU overhead. In fact, for stationary systems, this method
allows as the observation window ,
which can be accomplished with any slowly decaying that
maintains and . In any case,
the main problem becomes how to recover flow statistics from
the data collected by RGS using time-varying . We leave
this adaptive sampling for future work and proceed to perfor-
mance analysis.

VII. EVALUATION

In this section, we evaluate our models using several Internet
traces in Table III from NLANR [26] and CAIDA [5]. Trace
FRG was collected over a period of 92.5 h from a gigabit link
between UCSD and Abilene in 2006. We extracted from it aux-
iliary traces with only Web, DNS, and NTP flows (also seen
in the table). Additionally, we use three datasets from CAIDA:
LARGE, a 1-h trace from an OC48 link; MEDIUM, a 1-min
trace from a OC192 link; and SMALL, a 7-min trace from a
gigabit link.
As the table shows, URGE typically sees a reasonably large

number of flows over the entire interval . However,
the number of active flows and those constantly kept in
memory is much smaller. For example, in the FRG trace,

is 15 times smaller than , while is 81 and
is 658 times smaller.

It should be noted that FRG benefits more from removal of
dead flows than CAIDA, partially because the former was col-
lected over four consecutive days and thus had a significantly
larger observation window . The same reasoning can help ex-
plain the fact that the LARGE trace exhibits much higher
than the MEDIUM or SMALL traces. However, determination
of the exact underlying reasons for these phenomena requires
more intricate parameters of arriving traffic (e.g., interpacket
gap , its correlation with flow size , nonstationary prop-
erties of ), which are beyond our scope.

A. Memory and Speed

We use the settings of Table II to compute the amount of
memory consumed byURGE according to (80). As shown in the
third column of Table IV for and , the
average requiredmemory size is small and rarely exceeds 40 kB.
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TABLE III
RESIDUAL SAMPLING WITH

TABLE IV
PERFORMANCE OF URGE WITH AND HASH TABLE SIZE

Even for the LARGE trace that has the most flows in this com-
parison, the expected RAM utilization of URGE is only 132 kB,
much smaller than roughly 120 MB required for all flow coun-
ters. Note that while our model provides the mean RAM usage,
it may be wise in practice to equip routers with enough memory
to hold several times to account for random fluctua-
tion in the flow population. The specific overprovisioning factor
can be determined by administrators using the history of the link
and/or other models that describe the flow-arrival process of the
network.
We also compute per-packet processing time from (81) based

on Table II and show in the fourth column of Table IV that
ns in the majority of the studied cases. If

suffers from prolonged periods of highly variable fluctuation
(e.g., in nonstationary systems), then it is also advisable to de-
sign the processing capabilities of the router to handle the worst-
case based on the knowledge of its distribution and diurnal
fluctuation patterns.

B. Estimation Accuracy

First, we examine the problem of estimating the total number
of flows in and size-one flows in this interval. The
seventh and tenth columns of Table IV list the absolute error of
models (64) and (65), respectively. With the exception of the
Web NLANR trace, these estimates are within approximately
3% of the correct value.
We next evaluate the performance of URGE in estimating

single-flow usage. Fig. 12 plots the expectation of estimated
flow sizes (averaged over 100 iterations) along with the actual
values obtained from the FRG trace using . The figure
shows that the estimator from previous work tends to
overestimate the sizes of small flows, while URGE’s estimator

accurately follows the actual values. We also compare the
relative errors of the two studied methods in Fig. 13, which indi-
cates that URGE has RRMSE bounded by 1 for all flows, while

exhibits very large for small and medium flows, which
is an increasing function of .
For the flow-size distribution, we first examine three values

of to compare its effect on the accuracy of URGE in the FRG
trace. Fig. 14 indicates that estimation for all three values of

Fig. 12. Estimating single-flow usage in the FRG trace with .
(a) . (b) .

Fig. 13. RRMSE of single-flow usage in the FRG trace with . (a) .
(b) .

are very consistent and follow the actual distribution very
well. In our experiments with , URGE recovered
the original PMF using only total flows out of

.
We next apply URGE with to NLANR traces of

different traffic types and plot in Fig. 15 the estimated distribu-
tions along with the actual ones. As the figure shows, URGE
estimates flow statistics of different applications/protocols very
accurately as well. A similar match is observed in our experi-
ments with the three CAIDA traces as shown in Fig. 16.
It should be finally noted that residual sampling and URGE

have applications beyond traffic monitoring, e.g., detection
of most frequently referenced objects (i.e., “elephants”) in
streaming databases, where can be viewed as the number
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Fig. 14. Estimating the flow-size distribution using URGE in the FRG trace. (a) . (b) . (c) .

Fig. 15. Estimating the flow-size distribution using URGE in NLANR traces with . (a) Web. (b) NTP. (c) DNS.

Fig. 16. Estimating the flow-size distribution using URGE in CAIDA traces with . (a) LARGE. (b) MEDIUM. (c) SMALL.

of times item appears in the stream, and simultaneously
constructing the distribution of object popularity .

VIII. CONCLUSION

In this paper, we proved that previous methods based on
residual-geometric sampling had certain bias in estimating
single-flow usage and were unable to recover the flow-size
distribution from the sampled residuals. To overcome this limi-
tation, we proposed a novel modeling framework for analyzing
residual sampling and developed a set of algorithms that were
able to perform accurate estimation of flow statistics, even
under the constraints of small router RAM size, short trace
duration, and low CPU sampling overhead.
Future work includes developing mechanisms that adjust

sampling probability based on varying traffic conditions
and designing algorithms to recover flow statistics from such
adaptive sampling.
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