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Abstract—Existing methods of measuring lifetimes in P2P sys-
tems usually rely on the so-called Create-Based Method (CBM),
which divides a given observation window into two halves and sam-
ples users “created” in the first half every � time units until they
die or the observation period ends. Despite its frequent use, this ap-
proach has no rigorous accuracy or overhead analysis in the litera-
ture. To shed more light on its performance, we first derive a model
for CBM and show that small window size or large� may lead to
highly inaccurate lifetime distributions. We then show that create-
based sampling exhibits an inherent tradeoff between overhead
and accuracy, which does not allow any fundamental improvement
to the method. Instead, we propose a completely different approach
for sampling user dynamics that keeps track of only residual life-
times of peers and uses a simple renewal-process model to recover
the actual lifetimes from the observed residuals. Our analysis in-
dicates that for reasonably large systems, the proposed method
can reduce bandwidth consumption by several orders of magni-
tude compared to prior approaches while simultaneously achieving
higher accuracy. We finish the paper by implementing a two-tier
Gnutella network crawler equipped with the proposed sampling
method and obtain the distribution of ultrapeer lifetimes in a net-
work of 6.4 million users and 60 million links. Our experimental re-
sults show that ultrapeer lifetimes are Pareto with shape � �;
however, link lifetimes exhibit much lighter tails with � �.

Index Terms—Gnutella networks, lifetime estimation, peer-to-
peer, residual sampling.

I. INTRODUCTION

P EER-TO-PEER networks are popular platforms for many
applications such as file-sharing, content distribution, and

multimedia streaming. Besides modeling and simulating system
dynamics of P2P networks under churn (e.g., [4], [8], [10], [13]),
validation of proposed techniques in real networks has recently
become an important area for understanding P2P performance
and design limitations in practice. In this regard, several efforts
have been undertaken to characterize peer-to-peer systems by
measuring churn-related user behavior (e.g., distribution of life-
time, inter-arrival delays, and availability) [1], [2], [5], [7], [18],
[20], topological information (e.g., degree distribution and clus-
tering coefficients) [14], [22], and traffic flow rate [10], [19].
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Sampling of large-scale networks usually faces two funda-
mental problems—1) obtaining an unbiased distribution of the
target quantity and 2) keeping bandwidth overhead reasonable
as system size increases. While sampling bias in topology mea-
surement is understood fairly well [21], the same issue in life-
time sampling has not been addressed before. What makes the
latter problem different is that sampled users cannot be queried
for their lifetimes or even arrival instances. Measurement in
such cases generally requires taking repeated snapshots of the
system every time units, detecting new arrivals by user ap-
pearance in a given snapshot, and inferring departures based
on user absence in another snapshot. Since cannot be low-
ered below the delay it takes to crawl the network, the issue of
precisely reconstructing the lifetime distribution from measured
samples remains open.

In this paper, we aim to formalize the notion of lifetime sam-
pling bias, understand its source in existing methods, and de-
sign a robust and bandwidth-efficient sampling mechanism for
estimating peer and link lifetime distributions in unstructured
P2P networks (e.g., Gnutella [9], KaZaA [11]). Note that peer
lifetimes are important for understanding general user behavior,
their habits, and application performance offered by the peers to
the system. Link lifetimes, on the other hand, have a significant
impact on resilience [13], [23] and routing ability [12] of the
network since broken links, rather than dead peers, contribute
to formation of stale neighbor pointers, network disconnection,
and routing failure.1

We start by creating a novel analytical framework for under-
standing and characterizing bias in lifetime sampling. We first
explain what constitutes inaccuracy in measuring the target dis-
tribution of lifetimes and define sampling methods to be
biased if, given an infinite population of sampled users, they
cannot reproduce in all discrete points in the interval

. Armed with this definition, we then offer a closed-form
model for the measurements obtained by Create-Based Method
(CBM) [17], which is a widely used heuristic for sampling life-
times in computer systems. We show that both CBM and its
modification in [2], [18], [20] are generally biased as long as

, where the bias is caused by two factors—inconsistent
round-offs (i.e., some user lifetimes are rounded up and others
down) and missed users (i.e., users arrive and depart within a
interval). In fact, we generalize this result to show that any sam-
pling technique that attempts to directly measure user lifetimes
every time units is biased as long as and that the bias

1There are many reasons why peer lifetime may be different from link life-
time, which include peers reaching their maximum neighbor capacity and drop-
ping excess links, leaves migrating from one ultrapeer to another to achieve
better performance, path outages between certain nodes, and demotion of ultra-
peers to leaf status.

1063-6692/$25.00 © 2008 IEEE



WANG et al.: RESIDUAL-BASED ESTIMATION OF PEER AND LINK LIFETIMES IN P2P NETWORKS 727

is not removable regardless of the mathematical manipulation
applied to the measured samples.

To overcome the discovered limitations of direct sampling,
we next propose a technique called ResIDual-based Estimator
(RIDE), in which a crawler takes a snapshot of the entire net-
work and then tracks the residual (i.e., remaining) lifetimes of
the users seen in the first crawl. We show that this approach
produces an unbiased version of the residual distribution ,
which allows us to develop a simple mechanism based on re-
newal churn models of [13], [23] that accurately reconstructs
the lifetime distribution from the sampled residuals with
a negligible amount of error.

The next issue we address is bandwidth consumption of life-
time sampling. With small and large , CBM requires sig-
nificant overhead since it must track all users that appear in
the system in the observation interval, i.e., old peers discov-
ered early in the crawl and new ones constantly arriving into
the system.2 In RIDE, however, initial users die quickly and
the amount of bandwidth needed to sustain the crawl decays
to zero proportionally to the tail of the residual lifetime distri-
bution . Additional bandwidth savings are possible if the
initial set of users found in the system is uniformly subsam-
pled and only -fraction of the users is monitored during the in-
terval . For example, given Pareto lifetimes with
observed in our experiments, window hours, and sam-
pling interval minutes, the proposed technique reduces
the download overhead compared to that in CBM by a factor of
16 for and a factor of 125 for .

We finish the paper by implementing a Gnutella crawler that
is about 18 times faster than the fastest prior crawler [20], which
allows it to cover the entire network of 6.4 million users (1.2 mil-
lion contacted ultrapeers) in under 3 minutes. Our results using
RIDE indicate that ultrapeer lifetimes are Pareto distributed with
shape , which is very close to the results of [2]. At the
same time, Gnutella links are much more volatile and can be de-
scribed by a Pareto distribution with shape . These re-
sults, fed into the latest resilience models for unstructured sys-
tems [13], [23], suggest that node isolation among joining ul-
trapeers in Gnutella and thus partitioning of the network must
indeed be extremely rare events.

The remainder of the paper is organized as follows. In
Section II, we formalize sampling and bias. In Section III, we
derive the sampling bias of CBM and examine it under different
simulation settings. We propose the residual-based method and
discuss its simulation results in Section IV. We analyze the
subsampling technique in Section V, examine the bandwidth
overhead of the various methods in Section VI and present our
measurement study of Gnutella in Section VII. Section VIII
reviews prior work and Section IX concludes the paper.

II. FORMALIZING LIFETIME SAMPLING

A. Target Distribution

We start by defining the objective of our measurement
process. Assume that each user spends a random amount of

2Note that besides lifetimes CBM can measure additional metrics (e.g., ar-
rival/departure process of users) and its overhead might be justified when these
metrics are important.

time in the system, where the lifetime of joining users is
drawn from some distribution . This is similar to the
heterogeneous churn model proposed in [23]. Then, the goal
of the sampling process is to estimate with as much accuracy
as possible function , which we assume is continuous
almost everywhere3 in the interval . As shown in [23],
distribution represents the lifetimes of arriving rather
than existing peers in the system. The latter metric is known in
renewal process theory as the spread of user lifetimes and can
be obtained from using simple integration.

The measurement process is assumed to have periodic access
to the information about which users are currently present in
the system. This process allows the sampler to test whether a
given user is still alive as well as discover the entire population
of the system at any time . However, due to bandwidth and
connection-delay constraints on obtaining this information, the
sampling process cannot query the system for longer than or
more frequently than once per time units, where usually
varies from several minutes to several hours depending on the
speed of the crawler and network size.

Given the above requirements, notice that reconstructing the
entire from discrete samples is simply impossible. There
are three biases arising from discrete sampling: 1) the measuring
process cannot observe any lifetimes larger than ; 2) all sam-
ples are rounded to a multiple of ; 3) an empirical distribution
based on a finite sample size will not necessarily match the the-
oretical one. We are not concerned with the last issue since all
methods require an infinitely large sample size to converge to
the desired distribution . Instead, we are interested in the
bias arising from finite and non-zero .

We start with the following definition that formalizes samples
obtained during periodic measurements.

Definition 1: A non-negative random variable for some
is called lattice if

(1)

where is called the periodicity of and points
are called the support of .

For all lattice distributions, we assume that
and that the probability mass of starts from the

point .
We are now ready to define a sampling process.
Definition 2: A -sampling process is a lattice random

variable with periodicity and .
Note that the above defines a sampling process using the

limiting distribution of the values it measures (i.e., assuming
an infinite population size). The reason for doing so is to un-
derstand whether a method can provide accurate results given
a sufficiently large sampling size. As we show below, some
methods always exhibit bias, no matter how long they measure
the system.

Definition 3: For a random variable , function is
called an estimator of in some interval if it is the CDF
of some random variable that approximates in .

3The set of points in which � ��� is discontinuous must have measure 0.
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Note that can be arbitrarily dissimilar to , in which case
the estimator will be biased. We next explain what makes an
estimator unbiased.

Definition 4: A -sampling process with estimator
is unbiased with respect to a target continuous random

variable if it can correctly reproduce the distribution of in
all discrete points in the interval for any :

(2)

for and .
Since one may measure different aspects of the system, we

finally classify sampling methods based on whether they mea-
sures the target random variable or some other related distribu-
tion.

Definition 5: A -sampling process of a random vari-
able is called direct, if it measures quantities whose distribu-
tion is the same as that of . It is called indirect otherwise.

For example, direct lifetime sampling must measure session
lengths of all arriving users, while indirect sampling may record
the lifetimes of peers alive in the system at some time . Given an
established relationship between the two metrics, an estimator
can then be used to reconstruct lifetimes from indirect sam-
ples. In another example, direct sampling of network size must
count the number of users present in the system at different times
, while indirect sampling may measure the arrival process of

peers into the system. Properly selected indirect sampling may
be more accurate and/or may require lower overhead than direct
sampling. We demonstrate one such example later in the paper.

III. DIRECT SAMPLING

In this section, we first examine the source of bias in direct
sampling and study the problem of constructing an unbiased
estimator for measuring lifetimes. We then derive a model for
the distribution obtained by Create-Based Method (CBM) and
demonstrate examples of its bias.

A. General Results

In direct sampling, the measured random variable is the
lifetime of individual users conditioned on them being smaller
than and being present in the crawl:

(3)

where missed samples arise when a user joins and departs be-
tween consequent crawls. Note, however, that not all users with
lifetimes smaller than are missed and that some of them are
actually taken into account in the distribution of . Another
issue that we discover in this work is that some lifetime samples
are rounded up and others rounded down during the measure-
ment, which together with missed users gives rise to the bias we
derive below. We next formalize round-off errors and explain
how they affect direct sampling.

Definition 6: For a continuous random variable , a ( ,
) sampling process is consistent if measured samples are all

rounded up to the nearest multiple of .
Since a crawler in direct sampling never knows the exact ar-

rival time of users it observes, there is an ambiguity in how to
round-off the lifetimes of measured peers. Consider the example

Fig. 1. Round-off inconsistencies in direct sampling.

in Fig. 1, where sample is indistinguishable from
sample from the perspective of the crawler. This
causes both of these lifetimes to be rounded off to , which
using our terminology makes consistent and inconsis-
tent. Also observe in the figure that samples and

are completely missed by the crawler, even though
sample is captured. This case can also be treated as incon-
sistent round-off as we define below.

Let

inconsistently rounded down to
otherwise

to be an indicator variable of the event that a user’s lifetime
is inconsistently rounded down to by the

sampling process, where rounding down to represents
missing the entire sample. For simplicity of notation, we define

and obtain the probability of inconsistent
round-off in the interval in the next theorem.

Theorem 1: In direct sampling, the probability that lifetime
samples are inconsistently rounded down to

is:

(4)

where is the CDF of the lifetime distribution of samples.
Proof: Without loss of generality, shift the time axis such

that a given user arrives at time into the system
and its lifetime is . Then, the user is sampled
inconsistently with probability:

(5)

Since arrival point can be any uniformly random point in
, we have:

(6)

which leads to the desired result.
Equipped with (4), we next derive an unbiased estimator for

the continuous random variable .
Theorem 2: For direct lifetime sampling, the following is an

unbiased estimator of :

(7)

where is given in (4).
Proof: Note that for a measured lifetime sample

, either the actual lifetime holds, or
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but is inconsistently rounded down to , i.e., .
Therefore, (3) becomes

(8)

Denoting by the event and expanding the
conditional probability on the right side of (8), we get

(9)

where the second equality is from the fact that implies .
Next, we derive the numerator and denominator of the right-
hand side of (9) separately.

Rewrite the numerator of (9) as follows:

(10)

where can be expanded by

(11)

Since implies , we have

(12)

Substituting (11)–(12) into (10), we obtain

(13)

Expanding the denominator of (9) establishes that

(14)

Substituting (13)–(14) into (9) gives

(15)

Considering that an unbiased estimator should equal
, (7) follows from (15).

We next verify (4) and (7) in simulations using the example
of a Pareto distribution commonly used to model user lifetimes
[13], [23]:

(16)

with . We use , ,
hours, and hours. We count the number of in-

consistent round-offs for each and plot the
corresponding empirical probability in Fig. 2, which shows
that (4) predicts reality very well. Furthermore, we compute the
empirical values of and supplement the measured
data with the knowledge of to obtain according to (7).
Fig. 3 plots the values of obtained both from model (7)
and the actual distribution (16), which indicates a perfect match.

From the result of Theorem 2, it becomes clear that unbiased
measurement requires access to the distribution of observed

Fig. 2. Comparison of � computed from (4) to simulations. (a) � � 3 min.
(b) � � 15 min.

Fig. 3. Verifying estimator (7) in simulations. (a)� � 3 min. (b)� � 15 min.

samples (i.e., variable ), the fraction of observed lifetimes
that are no larger than (i.e., ), and all
individual . While the first two metrics are easily measurable
in practice, recovery from inconsistent round-offs requires the
exact join time of each sampled user and the number of missed
users. Unfortunately, within the constraints of our problem (i.e.,
crawling of alive users with a period no less than ), the effect
of round-off errors is impossible to overcome no matter what
manipulation is applied to .

B. Create-Based Method (CBM)

We next study how inconsistent round-offs exhibit them-
selves in a widely used [2], [18], [20] direct sampling algorithm
called Create-Based Method (CBM), first introduced by [17] in
the context of operating systems. Recall from [17] that CBM
uses an observation window of size , which is split into small
intervals of size . Within the observation window , the
algorithm takes a snapshot of the system at the beginning of
each interval. To avoid sampling bias, [17] suggests dividing
the window into two halves and only including samples that
appear during the first half of the window, disappear somewhere
within the window, and stay in the system no longer than
time units. Fig. 4 shows an example of create-based sampling
with three valid, four invalid, and two missed lifetime samples.
The invalid cases include users who join the system before the
observation window or in its second half, a peer that survives
beyond time , and a user whose lifetime is larger than .

Assume that is the number of users that arrive into the
system in the first half of the window and is the
number of such users with lifetimes less than or equal to .
Observe that is the number of valid samples collected
by CBM and is the simply metric
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Fig. 4. Illustration of sampling in CBM.

defined earlier. One possible way to estimate
is to take the ratio of to as the estimator of the
probability , which leads to our first CBM estimator
[17]:

(17)

Recent work in [2], [18], [20] normalizes by the per-
centage of samples no larger than (i.e., ) and defines
the following modified estimator:

(18)

With the result in (7), we can express both CBM estimators
as functions of the actual distribution .

Theorem 3: Both CBM estimators (17)–(18) are generally bi-
ased when any and produce the following distributions:

(19)
Proof: Expanding using (7), we have:

(20)

We now use the following reasoning. Observe that
, which can be

rewritten as follows:

(21)

The second equality in (21) is from the fact that implies
. The result of is a direct consequence of (7).

The result in [19] shows that is closer to than
since its accuracy is not affected by the value of . Next, we
explore in more detail the effect of on the fidelity of these
estimators using model [19] and simulations.

C. Effect of Bias on CBM

We first explain how and skew the shape of estimator
. To simplify the discussion below, define

to be the tail distribution of any CDF function . It then
follows from [19] that:

(22)

Fig. 5. Estimator � with Pareto lifetimes (� � �� users, � � �� hours,
� � ���, � � ����, and ���� � ��� hours). (a) 	 � 3 min. (b) 	 � 15 min.

Fig. 6. Estimator � with Pareto lifetimes (� � �� users, � � �� hours,
� � ���, � � ����, and ���� � ��� hours). (a) 	 � 3 min. (b) 	 � 15 min.

which shows that the measured tail distribution is a shifted and
scaled version of the true tail. The influence of the shift/scale
factors on the right side of (22) could be illustrated through sim-
ulations. We use CBM with hours in a hypothetical
network with users that join and depart using
the churn model of [23]. Even though of users
have lifetimes smaller than , Fig. 5 shows that suffers from
significant bias that increases as becomes larger. Not only
does the measured distribution produce incorrect estimates

, of Pareto parameters when fitted with the
corresponding curve, but the shape of the tail in Fig. 5 does not
even resemble that of , which may lead to erroneous con-
clusions about the family of distributions belongs to.

We now study how affects the shape of . It follows from
[19] that for :

(23)

which is the true tail shifted by and then scaled by .
For small , this transformation on log scale preserves
the Pareto shape parameter as seen in Fig. 6, but makes scale
parameter inaccurate (i.e., , for

minutes). For cases of non-negligible that arise when
is very large or when distribution does not admit shape
invariance during scaling (e.g., Gaussian, uniform), estimator

may produce significantly misleading results.

D. Limitations of CBM

From now on, we refer to when mentioning CBM since
exhibits less bias than as shown by model (19) and

Figs. 5–6. We next investigate whether there exists a lifetime
distribution such that . Notice from (23) that
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there are two ways for CBM to be unbiased, either
or . The next two theorems shows that only spe-
cial lifetime distributions satisfy these conditions.

Theorem 4: The only lifetime distribution that allows CBM to
avoid all round-off errors (i.e., , )
is a step function with support for some integer .

Proof: It follows from (4) that for to hold,
we must have

(24)

which specifies a step function with support , where

Note that in real-life systems, the assumption that the life-
time distribution follows a step function with periodicity equal
to crawl delay is too restrictive. Therefore, we next seek
non-step functions that satisfy the second condition of CBM
being unbiased.

Theorem 5: The only lifetime distribution that allows CBM
to be unbiased simultaneously for all is exponential.

Proof: We prove the theorem by first verifying that the
exponential function satisfies and show its
uniqueness. Substituting into (4), we obtain

for exponential distributions

(25)

Substituting (25) into (23) establishes .
We next show that if , then must be

an exponential function. Assuming , we can
reduce (23) to:

(26)

Expanding and in (26) using (4), we get

(27)

For (27) to hold for all , we must have for all

(28)

which can be simplified to

(29)

Note that the only solution to is given
by the exponential function , which establishes
the desired result.

Given that the observed lifetimes in peer-to-peer systems [2],
[20] are heavy-tailed, we next explore a different method that
works without any assumptions on .

IV. INDIRECT SAMPLING

In this section, we seek a solution to the problem of achieving
both high accuracy and low overhead using indirect sampling.
It has been suggested [1], [13], [23] that users in peer-to-peer
systems can be modeled as alternating between available (ON)

Fig. 7. Process � ��� depicting user �’s ON/OFF behavior.

and unavailable (OFF) states. Inspired by these efforts, we now
propose our measurement algorithm, called ResIDual-based Es-
timator (RIDE), that exploits renewal theory [15] to reconstruct

from sampled residual lifetimes.

A. Churn Model

Consider a P2P system with participating users, where each
user is either alive (i.e., present in the system) at time or dead
(i.e., logged off). This behavior can be modeled by an ON/OFF
process for each user :

user is alive at time
otherwise.

(30)

This framework is illustrated in Fig. 7, where and are
i.i.d. durations of user ’s ON (life) and OFF (death) periods,
respectively, and is the remaining lifetime of user at time
. Assume that variables are drawn from a user-specific dis-

tribution and denote by the
expected lifetime and by the expected offtime of
user . Further define to be the arrival rate of user normal-
ized by the total arrival rate into the system [23]:

(31)

Then, it has been proven in [23] that the aggregate lifetime of
all users seen by the system is drawn from a weighted distribu-
tion:

(32)

As before, is the random lifetime of peers visiting the
system and the goal of our and other measurement studies is
not to sample each of , but rather to measure the users’
aggregate behavior . In order to accomplish
this task, define be the residual lifetime of a random alive
user at time and denote by its limiting distribution:

(33)

Then, can be inferred from using the following
relationship established in [23]:

(34)

where is the expected lifetime of a joining peer and
is given by (32).
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Fig. 8. Sampling residuals in RIDE.

B. RIDE

We first define the sampling algorithm in RIDE and then dis-
cuss its estimator . At time , RIDE takes a snapshot
of the whole system and records in set all users found to
be alive. For all subsequent intervals of

time units, the algorithm keeps probing peers in set ei-
ther until they die or expires. After the observation window is
over, the algorithm obtains the distribution of residual lifetime

of the users in set .
Two important properties about residual sampling can be

drawn from its definition: 1) no valid samples can be missed
since only users who are alive at time are valid measure-
ments; 2) no samples can be inconsistently rounded off since
all valid residual lifetimes start from the time of the first crawl.
Fig. 8 illustrates an example of five valid samples captured
in the first crawl and five irrelevant lifetimes that are safely
ignored by the algorithm.

Define to be an estimator of the residual distribution
using users in set and assuming the system is in equi-

librium:

(35)

where denotes the number of users in whose lifetimes
are shorter than or equal to . Since RIDE does not miss or in-
correctly round off samples, its estimation of residual lifetimes
is unbiased, which leads to . Combining with
(34), we establish the next theorem.

Theorem 6: For residual lifetime sampling, the following is
an unbiased estimator of :

(36)

where and is the PDF of . Further-
more, the expected user lifetime is .

Proof: Differentiating both sides of (34), we get
. Setting , it follows that .

Solving for , we get (36).
Since is computed without bias, it is now possible to

numerically compute its derivative using Taylor expansion
with error bounded by , where is
the number of samples in the curve. For any analytic function

, the convergence of the error to zero is guaranteed as
becomes large. For minutes and hours com-
monly used in our experiments, the resulting error for Pareto
lifetimes with and is upper bounded by

, which for all practical pur-
poses can be considered zero. In simulations, however, we find
that using only 3 points is often sufficient for achieving good
estimation accuracy (see below).

V. SUBSAMPLING

In this section, we examine under what conditions CBM and
RIDE allow reduction of measurement overhead through some
type of user subsampling. We then discuss the algorithm used
in RIDE and show its performance.

A. Preliminaries

Assume that the target P2P system is fully distributed and
supports the operation of building a list of currently alive
peers. We assume that it takes time units to create and
that this process requires bandwidth overhead proportional to
the number of alive users, i.e., bytes where is some fixed
bandwidth needed to find an alive user and download its param-
eters (e.g., IP address and port number). Note that we do not
require that the P2P system provide any other mechanisms that
aid our measurement process (e.g., notifications about user ar-
rival, departure, or dynamic link changes).

Once is built, we assume that each alive user can be mon-
itored using a mechanism independent of the P2P network to
detect its departure (e.g., using TCP connection requests). This
monitoring also incurs overhead units per user and can be
done no more often than once per time units per peer in order
to keep the process non-intrusive and scalable to large . Decou-
pling lifetime probing from the initial collection of alive users,
we allow for a range of subsampling techniques where only a
subset of alive users is monitored at any given time. With such
algorithms, the goal is to simultaneously reduce the total over-
head in the observation window and preserve estimation
accuracy.

Our earlier description of CBM required repeated crawls of
the system to refresh set , detect new arrivals, and measure
their lifetimes. With certain additional restrictions (see below),
there are two possible mechanisms for subsampling in CBM.
The first method, which we call direct, obtains the initial snap-
shot of the system at time and then selects each user with
an independent probability into a smaller subset . The mea-
surement process then monitors the ON/OFF behavior of each
user for time units and estimates based on
the collected lifetimes (ignoring the first ON cycle of each user
since it contains a residual rather than a lifetime). The second
method, which we call indirect, monitors the neighbors of users
in to detect new arrivals and uses their lifetimes for esti-
mating the distribution of .

RIDE subsampling is similar to the first CBM technique in
the sense that only residuals of users in are monitored and
used in estimation.

B. Direct CBM Sampling

We start our analysis with direct subsampling. There are sev-
eral restrictions that this method imposes: 1) users between ses-
sions must appear with the same (IP, port) combination; 2) OFF
durations are small in comparison to ; and 3) the distribution
of lifetimes for users in is indeed . In many current
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P2P networks, the user is likely to use a new IP address as-
signed by its DHCP/PPP server [20] or choose a new port for
each join into the system [9], which makes detection of its re-
turn into the system and monitoring of its ON/OFF cycles im-
possible without periodic re-crawls of the system. The second
assumption depends on user behavior and may significantly im-
pact CBM subsampling if users do not return into the system
within time units, which has been observed in BitTorrent net-
works [20]. Even if both conditions 1) and 2) are satisfied, our
next result shows that even with direct CBM subsam-
pling is biased in general networks and does not converge to

.
Assume that is a random variable representing the set of

currently alive users, is the average number of lifetimes
less than collected by CBM from users in during , and

is the average number of samples observed by CBM in the
same interval. Then, define a new CBM estimator that measures
the lifetime of users in :

(37)

Theorem 7: For , the distribution of user lifetimes in
is

(38)

Proof: Denote by the set of all lifetime samples ob-
tained from monitoring users in in the interval . We use
average-case analysis where each user is included into with
probability , i.e., with probability that it is alive at
time . It then follows that the expected fraction of samples
from user in as is [23]

(39)

Therefore, the probability that a randomly selected lifetime
in an infinite set is from user and less than is

, which leads to

(40)

and thus establishes (38).
Since uniformly random subsampling of produces users

with the same bias as in the original set, we immediately obtain
the next result.

Corollary 1: For sufficiently large , direct CBM sub-
sampling estimates distribution (38).

Due to limited space, we omit simulations showing the ac-
curacy of (38) and the extent of its deviation from in
(32). Theorem 7 shows that, compared to peers arriving into the
system, set is more heavily skewed towards users with sig-
nificant online presence. The key difference between CBM and
RIDE is that the former requires observation of new arrivals into
the system, while the latter needs to monitor users currently in
the system. Therefore, RIDE naturally expects bias among users

in , which it overcomes using a reconstruction technique in
(36). CBM has no such mechanism.

Our final observation regarding direct CBM subsampling
is that it can be used only in systems consisting of homoge-
neous peers (i.e., all users exhibit identical characteristics with

). However, since measurement studies [20]
show that P2P users are often heterogeneous, this assumption
is of limited practical use.

C. Indirect CBM Sampling

Indirect sampling imposes the following restrictions: 1)
neighbors of alive users can be monitored using some P2P
protocol; 2) arrivals into a certain neighbor set only include
new users (i.e., peers do not dynamically switch links); 3)
neighbors of peers in set have unbiased lifetimes; 4) set

is popular enough to attract a sufficient number of new
neighbors in ; and 5) users in depart from the system
slower than new users become their neighbors.

The first restriction is relatively easy to satisfy in certain sys-
tems (e.g., Gnutella), but may be more problematic in cases
when the current population is known to some server-like en-
tity (e.g., BitTorrent tracker) in the form of a list, but individual
peer-to-peer links are unknown. The second restriction does not
hold even in Gnutella since users frequently migrate from one
ultrapeer to another. These migrating users then arrive into ex-
isting neighbor sets with non-zero age, which creates bias in all
cases except exponential .

The third constraint depends on the neighbor selection algo-
rithm and may introduce bias in lifetimes of observed arrivals
if users make neighbor selection based on the characteristics of
their future neighbors. Since set is already biased from the
perspective of CBM, arriving neighbors may also exhibit bias if
links are formed based on some similarity between of new
users and of existing peers. Without a specific graph-con-
struction algorithm, further analysis of this bias is impossible.
The last two restrictions also depend on how P2P graphs are con-
structed and may become a problem when new users for what-
ever reason do not choose peers in as neighbors or when
shrinks to zero before enough new arrivals have been detected.

D. RIDE Subsampling

The accuracy of RIDE’s subsampling algorithm can be in-
ferred from the fact that users in have the same distribution
of residuals as those in .

Corollary 2: For sufficiently large , RIDE subsampling
produces an unbiased estimate of .

Compared to CBM, RIDE allows subsampling under the most
general conditions and requires only two main assumptions in-
troduced in the beginning of this section (i.e., ability to construct

and monitor alive users until they die). RIDE subsampling
does not impose any restrictions on link structure, user migra-
tion, lifetime homogeneity, user appearance in subsequent ses-
sions, OFF durations, or neighbor selection. As a result, for the
most general case assumed throughout the paper, CBM must
perform full crawls to build its estimates of , while RIDE
can monitor residuals in .

It is worthwhile mentioning that residual sampling acquires
all valid samples during the very first crawl. Therefore, given
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Fig. 9. Original and subsampled estimator � with Pareto lifetimes (�� � �
�� users, � � �� hours, � � �� minutes, � � ���, � � ����, and ���	 �
��� hours). Both examples use 3-point derivatives. (a) � � 1. (b) � � 0.01.

that is sufficiently large, Corollary 2 shows that it is pos-
sible to randomly subsample the initial set of users and track the
residuals of only percent of the entire user population. This
significantly reduces traffic requirements and allows RIDE to
achieve orders of magnitude lower bandwidth overhead in prac-
tice compared to CBM. We leave the overhead analysis of sub-
sampling to the next section and now show in Fig. 9 one example
of using this technique, where a system of 1 million users in the
same setup as in Fig. 6(b) is subsampled by a factor of 100. First
notice in Fig. 9(a) that RIDE recovers with much higher
accuracy than and obtains and .
Second, observe in Fig. 9(b) that RIDE achieves reasonable esti-
mation accuracy even with just 10 000
users; however, the tail of the subsampled distribution is highly
variable, which potentially makes it difficult to understand the
distribution’s qualitative behavior. We next deal with this issue.

E. Inverse Averaging

To overcome the tail noise arising when is heavily sub-
sampled, we next present an algorithm for reducing the variance
in the measured distribution . Notice that is a map-
ping between two discrete sets, i.e., from set to set

for . For each , we
find all such that and calculate the corre-
sponding average :

(41)

where is the indicator function of event . Denote by the
set of all possible from (41), i.e., and
define inverse averaging to be a relation for all .
By smoothing out the tail, inverse averaging improves the shape
of the distribution and allows better accuracy in estimation.

Next, we examine two cases of inverse averaging using the
example in Fig. 9(a) subsampled with and .
The resulting distributions are shown in Fig. 10, which demon-
strates much better preservation of the Pareto shape in the tail
and less oscillations than without the use of inverse averaging.
For in Fig. 10(a), curve fitting produces ,

, and for in Fig. 10(b), we obtain
, . This shows that even when is compa-

rable to the average lifetime and with very few samples,
RIDE is capable of reasonably accurate estimation.

Fig. 10. Inverse averaging applied to � for Pareto lifetimes (�� � � ��
users, � � �� hours, � � �� minutes, � � ���, � � ����, and ���	 �
��� hours). Both examples use 3-point derivatives. (a) � � 0.1. (b) � � 0.01.

F. Evaluation

In this section, we provide comparison results between sub-
samplied RIDE and original CBM that cover various parameter
settings and lifetime distributions. We start with defining a sta-
tistical metric that characterizes the extent of difference between
two distribution functions. The metric that we use in this section
is the Weighted Mean Relative Difference (WMRD), which is
often used for comparing heavy-tailed distributions [6]. Denote
by the actual CDF function and by its estimator. De-
fine to be the WMRD distance between and , which
is computed as

(42)

where . Note that the asymptotic value of in CBM
(i.e., for ) can be computed from [19] given any life-
time distribution and sampling parameters. It can also be in-
ferred from [19] that CBM’s limiting is generally non-zero for
non-lattice, non-exponential lifetimes. On the other hand, with

, RIDE’s converges to zero.
Setting asymptotics aside, we next examine CBM and RIDE

using in simulations with finite systems. Fig. 11 plots the
values of obtained from simulations with Pareto lifetimes. In
the figure, we vary each of the four parameters while fixing the
others according to the basic setting of , min,

, and min. For each scenario, we simulate a
measurement process that captures samples, estimates the
lifetime distribution using CBM and RIDE, and computes the
resulting difference between the estimated and actual distri-
butions. The figure shows that RIDE even using 1% sub-sam-
pling exhibits smaller errors than the original CBM
in all parameter configurations. Fig. 12 also compares CBM
and RIDE with lifetimes drawn from the uniform distribution
in and the Weibull distribution with shape

and scale , where is the expected life-
time. The figure indicates that RIDE achieves similar and even
better performance than CBM in all studied cases.

VI. OVERHEAD

This section formalizes the overhead of the various studied
sampling methods and compares the bandwidth requirement of
RIDE to that of CBM.
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Fig. 11. Comparing CBM and RIDE for Pareto lifetimes (� � �� ���, � �
� min, � � 	�	, and �
�� � �� min, 3-point derivatives). (a) Varying � .
(b) Varying �. (c) Varying �. (d) Varying �
��.

Fig. 12. Comparing CBM and RIDE for uniform and Weibull lifetimes (3-point
derivatives). (a) Uniform. (b) Weibull.

A. Models

For general P2P networks where CBM subsampling is im-
possible, we assume that the algorithm performs full crawls of
the system every time units in the interval and
then keeps probing peers that were present in the system at time

until they die or their observed lifetime exceeds
time units. Based on these rules, we formulate in the next the-
orem the overhead for CBM.

Theorem 8: Total bandwidth overhead of -sampling
using CBM is given by

(43)

where is the number of alive users in the system, is the
cost of probing or crawling a user, and is the CDF of
residual lifetimes.

Proof: Denote by , the overhead of CBM in intervals
and , respectively. For all

points in the first interval, each snapshot will capture users
and thus the overhead is simply .

Now, we examine the overhead in the second interval. Con-
sider the snapshot that captures users at time , i.e.,

the last snapshot in the first interval. Denote by the remaining
sampling duration of a random user alive at . Then, the
expected overhead incurred by probing in
is given by

(44)

Next, we focus on deriving . Denote by the age of a
user at time . From time , we only need to track
peers whose age is less than , since . Thus,

can be rewritten as follows:

(45)

where is the expected sampling duration of a user
given that its age is . Denote by the residual lifetime
of a randomly selected user given that its age . Note that
from time , we keep probing a user with age
until either it dies, i.e., for time units, or the remaining
observation duration expires, whichever happens first.
Thus, it follows that

(46)

Note that can be expressed in terms of :

which together with (45), (46) gives

(47)

The second equality in (47) comes from the fact that
. Substituting

into (47) establishes:

from which we obtain . Summing up , gives (43).
Next, we examine the overhead of RIDE sampling. Note that

RIDE only probes users that are captured in the first crawl until
they die or expires. Taking into account -subsampling, we
have the following theorem.

Theorem 9: Total bandwidth overhead of -sampling
using RIDE is given by

(48)
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Fig. 13. Verification of models (43) and (48) against simulations. (a) Varying
����. (b) Varying �. (c) Varying �� �. (d) Varying � .

where is the fraction of peers retained in the initial set .
Proof: In RIDE, we have one full crawl and then each user

is sampled until it dies or expires. The average duration a user
survives in the system is given by

(49)

where for

With subsampling, we have one full crawl of cost and
then repeated crawls over systems of size , which gives us

(50)

which together with (49) leads to (48).

B. Simulations and Discussion

We first verify models (43) and (48) in simulations and com-
pare RIDE to CBM in terms of overhead. We set and

minutes in (43), (48). When simulating RIDE, we do
not use subsampling and set . Users have lifetimes drawn
from a power-law distribution and each departure event triggers
a new arrival. Additional simulations show that this simplified
treatment of departure times does not affect the result.

We plot in Fig. 13 the overhead of CBM and RIDE obtained
from both simulations and models (43), (48) by fixing three pa-
rameters from the set , hours, ,

hours and varying the fourth. The figure shows that both
models track simulation results pretty accurately for all studied
cases and that RIDE (even without subsampling) exhibits sig-
nificantly less overhead than CBM. The curves in Fig. 13(a)–(b)
are almost horizontal, predicting that neither method is very sen-
sitive to the changes in or . Fig. 13(c)–(d) displays linear
increasing curves for both methods, but CBM’s slope is signif-
icantly more aggressive.

TABLE I
COMPARISON OF OVERHEAD USING ���� � � hour, � � � minutes

Fig. 14. Effect of � on the accuracy and overhead of RIDE subsampling in
simulations (40-point derivatives). (a) WMRD. (b) Overhead ratio.

Next, define to be the ratio for the same
. Assuming Pareto lifetimes with shape , Table I shows

the exact savings gained by using residual subsampling. The
table shows that RIDE can reduce traffic overhead by a factor
of 16–800 compared to CBM depending on the tail weight of

, sampling duration , and subsampling factor .
As long as is sufficiently large, RIDE has the same ac-

curacy as its original (non-subsampled) version, but at signif-
icantly smaller overhead. In practice, one can choose based
on the size of the initial set such that is fixed at some
pre-determined value, which can be computed using standard
methods of statistical inference for any given accuracy require-
ment specified in terms of confidence intervals [3]. Given this
dynamic selection of , it becomes clear that RIDE can scale
to arbitrarily large systems since it requires monitoring only a
fixed number of users that does not depend on system size .

We finish this section with illustrating how affects the
accuracy and overhead of RIDE. We use different values of in
simulations with a fixed set of parameters: ,

minutes, , hour, , and
hours. Fig. 14 plots the resulting metrics and . The

figure shows that as increases, RIDE’s tends to zero. By
tuning , the measurement application can decide how the solve
the tradeoff between accuracy and overhead. For the specific
example in Fig. 14, RIDE with reduces overhead by
two orders of magnitude compared to CBM while keeping the
corresponding WMRD at 10% of CBM’s. These observations
suggest that RIDE is indeed more suitable for large systems and
long measurements than CBM.

VII. EXPERIMENTS

In what follows in this section, we apply the residual-based
algorithm to crawl the Gnutella network and estimate the distri-
butions of peer/link lifetimes.

A. Gnutella Crawler

Recent Gnutella networks are implemented in a two-tier
structure that contains ultrapeers and leaves. Ultrapeers are
responsible for forwarding search requests between each other,
while leaves stay at the “edge” of the network and connect



WANG et al.: RESIDUAL-BASED ESTIMATION OF PEER AND LINK LIFETIMES IN P2P NETWORKS 737

TABLE II
COMPARISON OF P2P MEASUREMENT STUDIES

to several ultrapeers that provide them with search capabil-
ities. A recent extension to the Gnutella protocol provides a
crawler-friendly mechanism: upon receiving a crawl request
(i.e., a handshake message with the “Crawler” field), a Gnutella
client replies with a complete list of the identities of its neigh-
boring peers.

To sample lifetimes of real Internet users using RIDE, we de-
signed and built a scalable Gnutella crawler called GnuSpider
that can operate in networks with millions of hosts and main-
tain reasonably small values of sampling period . As most
other crawlers, GnuSpider starts the crawl using a default seed
file of ultrapeers and then contact them to obtain their neighbor
lists, which are then used in a BFS search to discover all cur-
rently alive ultrapeers in the system. Neighbor lists in Gnutella
include other ultrapeers with whom a connection is currently
active, suggested ultrapeers who may or may not be online, and
leaf peers currently attached as children. The crawler records
leaf peers for statistical purposes, but only contacts nodes found
in the other two lists.

Our GnuSpider implementation is a single-threaded Win-
dows process that uses asynchronous completion ports (IOCP)
to manage up to 60,000 simultaneous connections to other
hosts. To reduce the effect of timeouts and allow scalability,
GnuSpider limits all TCP connection timeouts to 9 seconds,
includes a low-overhead management of the BFS queue, and
avoids socket re-binding between connections. Fig. 15(a)–(b)
show bandwidth consumption in one crawling example and the
number of connections per second generated by the crawler. As
seen in the figure, the crawler downloads data at sustained rates
of 30 mb/s and attempts on average 400,000 connections per
minute. Since a certain percentage of SYN requests encounter
dead or firewalled peers, the number of successful ultrapeer
contacts lingers at 216,000/min.

Experiments with GnuSpider show that we can cover the en-
tire Gnutella network in 3 minutes and typically discover close
to 6.4 million users in the process (1.2 million of which are
the ultrapeers that we attempt to contact and 5.2 million are
leaf nodes). During the first 120 seconds of the crawl, the dis-
covery rate of new leaves shown in Fig. 15(c) varies between
40,000/second and 10,000/second and that of new ultrapeers
stays on average at 3000/second. It can also be seen from the
figures that the last 60 seconds of the crawl usually produce a
very small number of new peers since most of these connections
experience a timeout. As illustrated in Fig. 15(d), 90% of ultra-
peers (i.e., 1.1 million) and leaf nodes (i.e., 4.5 million) can be
discovered in just 100 seconds.

Fig. 15. Statistics of a 3-minute crawl on July 22, 2006 (single-core, dual-CPU
Xeon computer @ 3 GHz). (a) Throughput. (b) Connection rate. (c) Discover
rate. (d) Success percentage.

Comparison of GnuSpider to crawlers in prior experimental
P2P work is shown in Table II, which provides the sampling pe-
riod , window duration , the number of peers periodically
probed with SYN packets or discovered during an actual crawl,
and the crawling speed in terms of contacted hosts per minute.
Observe in the table that GnuSpider is not only 18 times faster
than the fastest crawler in prior literature [20], but it also dis-
covers almost 5 times more concurrent users than any other
study.

B. Peer Lifetimes

Users arriving into Gnutella immediately attempt to establish
several neighboring connections to other peers currently in the
system to increase their own resilience and enable themselves to
route requests into the network. However, since leaves and users
behind firewalls do not generally accept connection requests,
selection of neighbors is often limited to non-firewalled, or as
we call them responsive, ultrapeers.4 Therefore, measurement
of responsive ultrapeers provides the most useful information
about the lifetime of future neighbors acquired by arriving users
and allows parameter selection for existing P2P models based

4The Gnutella protocol suggest that peers behind firewalls should not become
an ultrapeer. But in our measurement, about 5% of users behind firewalls act as
an ultrapeer.
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Fig. 16. Inverse-averaged estimator � ��� for responsive peers and links in
Gnutella. Both cases use 3-point derivatives. (a) Responsive ultrapeer. (b) All
links.

on lifetime distributions [12], [13], [23]. Thus, our experiments
below focus only on lifetimes of ultrapeers that respond to our
connection requests and the links associated with them.

To measure peer lifetimes for the plots shown below, we
first obtained using GnuSpider the initial set of about
468 thousand responsive ultrapeers and subsampled it using

. Then, GnuSpider probed users for
hours checking if each peer was alive every 3 minutes.

It should be noted that we found that in our experiments that
a certain amount of peers exhibited erratic behavior, i.e., they
would respond to one request, then become silent for several
subsequent requests, and eventually become responsive again.
This phenomenon appeared when a peer either was too busy to
reply or implemented a certain rate-limiting strategy. To filter
out the effect of this behavior, we set a threshold for how
many times a peer must appear unresponsive before we declare
that user dead. In the crawls below, we use .

After the observation window in GnuSpider had expired, an
off-line program read the GnuSpider logs and applied RIDE to
reconstruct . Fig. 16(a) shows the resulting inverse-aver-
aged tail distribution for the set of responsive ultra-
peers. The figure matches well with a Pareto distribution with

and , where the shape parameter is very close
to the 1.06 observed in [2]. Denote by the expected residual
lifetime conditioned on the fact that is within the obser-
vation window , i.e., . Crawl results
show that hours, but 5% of the peers in leave the
system in just 8 minutes.

We next proceed to compare the associated link lifetime dis-
tribution with that of peers in terms of and .

C. Link Lifetimes

It is straightforward to apply the residual-based algorithm to
measure the link lifetime distribution in Gnutella networks. In
the experiment of Section VII-B, GnuCrawler kept track of the
links of responsive ultrapeers found in and updated their
status (i.e., connected or broken) in subsequent crawls. Using
this information, we applied the same processing program to
extract link residuals from GnuSpider logs and perform the pro-
posed recovery technique to obtain . Fig. 16(b) shows that
the resulting distribution of all link lifetimes is also power-law,
but this time with , which is much larger than that in
the peer lifetime distribution. This observation establishes that
the lifetime of a link is probabilistically smaller than that of a

Fig. 17. Inverse-averaged estimator � ��� for different types of links in
Gnutella. Both cases use 3-point derivatives. (a) Ultra-leaf links. (b) Ultra-ultra
links.

peer and one may expect more frequent changes in neighboring
relationships. We also find that is 3.8 hours and 16.4% of links
disappear within 8 minutes.

Next, we treat the links between ultrapeers and leaves sepa-
rately from those among ultrapeers and plot the corresponding
distributions in Fig. 17. Interestingly, the figure shows that the
ultra-leaf links are slightly more stable (i.e., exhibit a heavier
tail) than ultra-ultra links: the former has and the latter
has ; the conditional expected lifetimes of the two
types of links are 3.9 and 3.5 hours, respectively. This can be
plausibly explained by the fact that a leaf is usually inactive in
collecting information about alternate ultrapeers and is thus less
likely to switch its attachment point.

D. Discussion

With the experimental results of this section, we are now able
to study resilience properties of Gnutella networks by applying
models from [13], which use the average residual link lifetime
and average node degree as input parameters. Given
neighbors observed in our experiments and a 1-minute failed-
neighbor replacement delay, we obtain that the probability for
the network to disconnect at the ultrapeer level is below .
However, leaves may be isolated with a non-negligible proba-
bility, because they only have one or two attachment points, i.e.,

, which we plan to explicitly study in future work.

VIII. RELATED WORK

Some of the first P2P sampling studies date to 2001 [16], [18]
and the first use of CBM can be traced to Saroiu et al. [18]
who sampled 17 000 Gnutella peers every 7 minutes using TCP
SYN packets over a period of 60 hours. In a follow-up effort
in [5], Chu et al. used a similar method, but probed 5000 peers
every 7 minutes for 10 weeks. Bhagwan et al. [1] improved over
[5], [18] by implementing the Overnet protocol and probing a
randomly chosen subset of peers in the system to measure their
availability (i.e., the portion of time they were present online).
Their experiment selected 2400 out of around 90 000 peers and
kept probing them every 20 minutes for 7 days. Liang et al. [14]
measured lifetime distributions of links in the KaZaa network,
but these experiments were limited to the connections passing
through the authors’ monitoring hosts.

More related work can be found in [2] and [20]. Bustamante
et al. [2] implemented a Gnutella sampler using 17 monitoring
clients that periodically probed 500 000 peers in the network
every 21 minutes for 7 days. In more recent work, Stutzbach et
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al. [20] developed a much faster crawler that in 2004 was able to
cover the entire Gnutella network of 158 000 ultrapeers within
7 minutes. The closest approach to understanding sampling bias
is another recent paper by Stutzbach et al. [21], which focused
on capturing unbiased snapshots of joint properties of users cur-
rently alive in P2P systems using random walks.

IX. CONCLUSION

In this paper, we showed that direct lifetime sampling
suffered from estimation bias and did not admit any funda-
mental improvement besides reducing probing interval . To
overcome this limitation, we proposed and analyzed a novel
residual-based lifetime sampling algorithm, which measured
lifetime distributions with high accuracy and required several
orders of magnitude less bandwidth than the prior approaches.
Using this method, we sampled Gnutella users and discovered
that lifetimes of peers and links exhibited power-law distri-
butions, but with different shape parameters, where links are
indeed much more volatile than actual peers.
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