On Zone Balancing of Peer to Peer Networks: Analysis of Random Node Join

Xiaoming Wang, Yueping Zhang, Xiafeng Li, and Dmitri Loguinov

Computer Science Texas A&M University College Station, TX 77843

Motivation

• Structured P2P systems construct DHTs (Distributed Hash Tables) for efficient routing

– Chord, CAN, de Bruijn

- Data objects are hashed into some virtual coordinate spaces
- Each user holds a zone in the DHT space
 - Stores data objects within its zone and answers queries for these objects

An instance of zone partition

Motivation 2

- Notice that the amount of user load is proportional to zone size
 - Imbalance can lead to "hotspots" and lower performance
- In addition, graph structure is unbalanced
 - Which leads to increased diameter, smaller node degree, lower bisection width
- Our paper studies how zone-balancing decisions during node join affect the resulting zone sizes
 - We derive the probability bounds on the maximum and minimum zone sizes

Basics

- Consider a system with n users
 - Assume a sequential join process
- Define two metrics for load balancing:

• We focus on the bounds of these two metrics that hold with probability $1 - n^{-\varepsilon}$ ($\varepsilon > 0$)

Random Join Process

- Each new user randomly samples one or more existing peers and splits one of their zones
- The join decision includes two factors:

Random Join Process 2

- We will compare these algorithms in terms of f_{max} and f_{min}
 - The optimal bound for the two metrics is 2
 - No method can achieve better load-balancing
- Due to the time limit, we skip the single-point algorithms
 - Summary for random and center splits:

Random	Center
$f_{max} \leq (1+\varepsilon) \log n$	$f_{max} \leq (1+\varepsilon) \log n$
$f_{max} \le n^{1+\varepsilon}$	$f_{max} \leq 3.246^{\sqrt{\log n}}$

Multi-Point Center-Split

- Next we examine multi-point schemes
 - We use center-split for the rest of the talk
- Greedy methods
 - Motivated by the "power of two choices"
- Idea: extend the center-split model to sample *d* random points before the actual join
- Intuitive observation:
 - The more points sampled, the better the graph is balanced, but what are the actual bounds?

Multi-Point Center-Split 2

- The extreme case is to sample every peer
 - The resulting f_{max} is always optimal and concentrates on the ideal value 2
- However, this method will suffer from huge traffic overhead
- Thus, the tradeoff is between:
 - The balancing performance of the algorithm, and
 - The amount of sampling traffic
- Next we study two multi-point schemes and present our analysis of this problem

Purely Random *d*-sampling

• The method samples d independent uniformly random points X_1, X_2, \ldots, X_d

– Splits the largest zone among the d choices

- How does the performance improve as a function of *d*?
- Based on the "balls-into-bins" model, we derive an asymptotic bound on f_{\max}
 - The analysis is intractable when applying this model to f_{\min}
 - We leave this direction for future work

Purely Random *d*-sampling 2

- <u>Theorem 1</u>: Under *d*-point sampling and centersplits, the following bound holds with probability at least $1 - n^{-\varepsilon}$ $f_{max} \leq 2 + \frac{(1 + \varepsilon) \log n}{d} - \frac{\Theta(\log(d + \log n))}{d}$
- For d = 1, it reduces to the single-point model $f_{max} \le (1 + \varepsilon) \log n \Theta(\log \log n)$
- For d ≥ 2, the term (1 + ε) log n is scaled down by a factor of d
 - The "power of two choices" bound log log n / log d is not achieved here 13

Simulating Random *d*-sampling

• Each of the following simulations is run for 1,000 graphs with 30,000 nodes each

Further Discussion

• For
$$d = c \log n$$
,

$$f_{max} \leq 2 + \frac{1+\varepsilon}{c} - o(1)$$

- For $c \rightarrow \infty$, the second term goes to zero - And f_{max} is bounded by 2 with high probability
- Recall from the single-point method,

 $-f_{max} \leq 28$ for $n = 10^6$ with probability 1 - 1/n

- The improvement is significant
 - But results in additional traffic overhead

Reducing Traffic Overhead

- How to reduce the join overhead?
 - While keeping the graph balanced
- Idea:
 - Randomly sample a peer
 - Then deterministically sample its neighbors
 - Subsequently walk along the edges of the graph to find additional peers to sample
- Two walking strategies:
 - Random walk selects arbitrary (random) neighbors
 - Biased walk selects the largest neighbors

Reducing Traffic Overhead 2

- Intuition: "larger" nodes are more likely to know additional "large" nodes
- This reduces the join overhead by a factor of $\Theta(kD_{av})$
 - -k is graph degree and D_{av} is the average distance
- The exact analysis is nontrivial since the walk process depends on the state of peers

- We leave the exact model for future work

- Instead, we study a similar deterministic model
 - According to our analysis, it provides a lower bound on the performance of the other *d*-walk models

Deterministic *d*-sampling

- The model samples a random point X_1
 - Then checks d-1 additional points according to a simple deterministic rule
 - Points $X_2, ..., X_i$..., X_d are obtained by adding i/d of the total size of the DHT space to X_1
- An example of d = 4
 - $-X_1$ is the first random sample
 - The points X₂, X₃, X₄
 are found by adding
 1⁄4, 1⁄2, and 3⁄4 of the circle's circumference to X₁

Deterministic *d*-sampling 2

- <u>Theorem 2</u>: In deterministic sampling, the following bound holds with probability at least $1 n^{-\varepsilon}$ $f_{max} \leq 2 + \frac{(1 + \varepsilon) \log n}{d} + \eta - \frac{\Theta(\log \log n)}{d}$ where $\eta = \log \left(1 + \frac{1 + \varepsilon}{c} + \log \left(1 + \frac{1 + \varepsilon}{c} + \dots \right)\right)$
- This result differs from that of random $d\mbox{-sampling}$ by a constant η
- Notice that η is positive
 - Thus, the deterministic model is worse than the random model
 - But how much is the difference?

Simulating Deterministic Sampling

- The model is conservative on some points
 - Round-off errors at d not powers of 2

Purely Random vs Deterministic

• With the previous results on f_{max} , we compare the two multi-point models ($\varepsilon = 0.22$)

 $n = 10^{6}$

 $n = 10^{7}$

Purely Random vs Deterministic

- Further question:
 - How many samples does the deterministic model need to approximate the random model?
- <u>Theorem 3</u>: Assuming that the random method samples $c_1 \log n$ points and the deterministic method samples $c_2 \log n$ points, the corresponding upper bounds on f_{max} are equal if

$$c_2 = \frac{(1+\varepsilon)c_1}{1+\varepsilon-c_1\log(1+\frac{1+\varepsilon}{c_1})}$$

Pure Random vs Deterministic 3

- For $c_1 = 1$ ($f_{max} \le 4$) and $\varepsilon = 1$ (probability 1–1/n), the two methods are equivalent if
 - The deterministic model samples 2.2 times more points than the random model
- For $c_1 = 2$ ($f_{max} \le 3.5$) and $\varepsilon = 2$ (probability 1–1/ n^2), the difference is by a factor of 5.1
- In summary:
 - Each model has its benefits (low overhead vs. performance)
- What about graph properties?

P2P Simulations

- We next compare the performance of multi-point methods in P2P simulations
 - Our main metric of interest is the degree distribution
- Three models
 - Purely random *d*-sampling
 - Random walk
 - Biased walk
- De Bruijn DHT (based on ODRI, SIGCOMM 2003) with n = 30,000 nodes and degree k = 8

Degree Distribution - CDF

 Single-point, center-split scheme sets the basis for comparison

- 100 iterations
- Largest degree 81
- 5.7% of all nodes have degree 1
- 13% with degree 1
 or 2

Degree Distribution - CDF

• Multi-point schemes perform much better

- Purely random
 - $-d_1 = 11$
- Deterministic

$$-d_2 = 24 = 2.2d_1$$

 40% of the nodes have the ideal degree 8

Degree Distribution - PDF

 Overhead: random 55 messages per join and deterministic 7 per join, but performance is similar

Conclusion

