
Around the Web in Six Weeks:
Documenting a Large-Scale Crawl
Sarker Tanzir Ahmed, Clint Sparkman†, Hsin-Tsang Lee, Dmitri Loguinov∗

Department of Computer Science and Engineering
Texas A&M University, College Station, TX 77843, USA

Email: {tanzir, sparkman}@cse.tamu.edu, htlee@microsoft.com, dmitri@cse.tamu.edu

Abstract—Exponential growth of the web continues to present
challenges to the design and scalability of web crawlers. Our
previous work on a high-performance platform called IRLbot
[28] led to the development of new algorithms for realtime
URL manipulation, domain ranking, and budgeting, which were
tested in a 6.3B-page crawl. Since very little is known about the
crawl itself, our goal in this paper is to undertake an extensive
measurement study of the collected dataset and document its
crawl dynamics. We also propose a framework for modeling the
scaling rate of various data structures as crawl size goes to infinity
and offer a methodology for comparing crawl coverage to that
of commercial search engines.

I. INTRODUCTION

Web crawling is not just an important component of major
search engines, but also a vital experimental activity that pro-
vides indispensable research data for such fields as networking,
distributed systems, databases, machine learning, information
retrieval, security, and linguistics. For years, research into
large-scale web crawling has been led by industry players
(e.g., Google, Microsoft, Yahoo) and has remained shrouded
in secrecy. While many academic crawlers have been proposed
in the literature [3], [8], [14], [15], [18], [17], [19], [22], [24],
[25], [27], [30], [36], [37], [41], their scale, Internet coverage,
download speed, and ability to deal with spam have not kept
up with the evolution of the web.

Part of the problem is the perceived impossibility, and thus
lacking attempts, to rival commercial search engines using a
research implementation. This notion commonly stems from
a belief that to achieve meaningful results web crawlers must
be heavily parallelized and even distributed across multiple
domains [8], [16], [29], [31], [32], [37], [39], [40]. As a
consequence, not much effort has been put into optimizing
individual servers, improving their algorithms, or reducing
complexity, all under the assumption that arbitrary scalability
could be achieved just by acquiring “enough” hardware. Un-
fortunately, due to the serious financial investment needed for
this vision, few academic crawlers have gone beyond small-
scale prototypes.

The second problem is that prior crawls are often poorly
documented and difficult to interpret. As the field stands today,

†Major Clint Sparkman is an active duty member of the United States
Air Force. The views expressed in this article are those of the author and
do not reflect the official policy or position of the United States Air Force,
Department of Defense, or the U.S. Government.

∗Supported by NSF grants CNS-1017766 and CNS-1319984.

there exists no standard methodology for examining web
crawls and comparing their performance against one another.
With each paper providing different, and often very limited,
types of information, little can be said about the relative
strengths of various crawling techniques or even their web
coverage. Setting aside the financial aspect discussed above,
this lack of transparency has helped stifle innovation, allowing
industry to take a technological and scientific lead in this area.

Finally, the majority of existing web studies have no pro-
visions to handle spam [8], [12], [17], [30], [36], [37], [41].
One technique for tackling the massive scale, infinite script-
generated traps, and uncertainty about content quality is to
select a handful of “good” sites and then crawl them until
some maximum number of pages is reached within each host
[8], [17]. While suitable in some cases, this approach does not
easily generalize to Internet-wide crawling scenarios.

To overcome these limitations, our contribution in this
paper is to propose a new methodology for understanding
web crawls, set forth guidelines for systematically analyzing
crawler performance, provide evidence that high-performance
web exploration is possible using a research implementation,
and dissect the main IRLbot experiment that still remains the
largest and fastest endeavor in the literature. It is also the
only documented crawler that used real-time prioritization of
downloaded pages in an effort to avoid spam. Our additional
contribution is to analyze the growth rate of various data
structures as crawl size scales up and introduce techniques
for assessing web coverage using commercial search engines,
neither of which has been attempted before.

II. UNDERSTANDING WEB CRAWLS

This section examines the various challenges in web crawl-
ing, identifies metrics of interest, and reviews prior work.

A. Crawler Operation

As shown in Fig. 1, crawler operation can be reduced to
a cycle with eight major components. Besides maintaining
many concurrent HTTP sessions and parsing HTML, crawlers
must eliminate duplicate URLs before attempting to crawl
them, rank the frontier (i.e., decide importance of all seen,
but not-yet-crawled pages), perform admission control on
pending URLs using ranks computed in real-time, execute
DNS lookups, enforce robots.txt directives of crawled

HTTPHTTP ParserParser

Duplicate

elimination

Duplicate

elimination
Frontier

ranking

Frontier

ranking

Admission controlAdmission control

DNS cacheDNS cache

Robots cacheRobots cache

Rate limitingRate limiting

unique URLs

ranks

parsed links

admitted URLs

crawled URLs

allowed URLs

Fig. 1. Components of modern crawlers.

websites, and finally adhere to politeness rate limits (both per-
IP and per-host) that prevent crashing of individual servers.

The ability of each component to keep up with the crawl
is determined by two factors – size of the underlying data
structures and speed at which they must operate. Suppose D
is the number of downloaded pages, q is the fraction of them
with error-free (i.e., 200 OK) HTML content, and h is the
number of crawling servers. Further assume that the parser
produces on average l links per page that are locally unique
(i.e., within that page). After verification against all previously
seen URLs, suppose fraction p of them are globally unique.

Armed with these definitions, we can now ballpark the stor-
age and processing demand of each crawling server. Duplicate
elimination uses a data structure with Dqlp/h hashes of seen
pages, admission control keeps track of all unique pages minus
those already crawled, which amounts to Dq(lp − 1)/h full
URL strings, and frontier ranking operates on webgraphs with
Dql/h edges. The overhead of the other three components is
dependent on the number of hosts visited by the crawler, cache
expiration delays (DNS and robots), and the desired website
concurrency in the politeness scheduler.1

Components closer to the parser in the clockwise direction
need to support higher throughput rates. For a target speed of S
crawled pages/s (pps), both duplicate elimination and frontier
ranking must operate at Sql/h links/s (lps), while admission
control must cope with an injection rate Sqlp/h URLs/s and
extraction rate S/h, the latter of which is also the speed of the
remaining components in the figure. Given l ≈ 50, h = 1, and
peak rate S = 3K pps from IRLbot experiments, verification
of uniqueness and injection of edges into the webgraph must
proceed at rates well in excess of 100K/s.

As larger data structures require more processing, crawler
design boils down to a tradeoff between four parameters {D/h,
S/h, q, l}, where increase in one parameter typically requires
reduction in other parameters. However, this also leads to
crawls with incompatible results and difficulties in gauging
performance of their underlying algorithms. We discuss several
examples next.

B. Duplicate Elimination

Due to the tiny size of the early web, first-generation
crawlers [9], [23], [30], [36] either kept all data in RAM or

1For example, IRLbot began stalling if the number of websites with
backlogged (i.e., allowed, but not yet crawled) URLs dropped below 200K.

used random disk access to verify URL uniqueness. With 8-
ms seek delays and worst-case access locality, these methods
in today’s Internet would bottleneck around S = 125/l ≈ 2.5
pps. Second-generation crawlers [32], [37] replaced disk seek-
ing with batch-mode sorting that periodically scanned the file
of previously seen URLs and merged the new ones in. While
this approach works well for a few hundred million pages,
scaling it further requires a proportionate reduction in S, in
some cases pushing the crawler to a virtual standstill [28].

Subsequent literature, which we call third-generation, uni-
versally dismissed single-server designs and assumed that
scalability was only achievable horizontally, i.e., by increasing
h. This work [16], [29], [31], [39], [40], [41] focused on paral-
lelizing the URL workload across server clusters and P2P net-
works. However, even with distributed operation, experiments
with these designs lasted only minutes and produces crawls
limited to 400K-25M pages, with no measurable improvement
in the last decade.

Besides trading S for D and scaling h, other methods
include reduction in q (i.e., download of non-HTML objects)
[23], [33], elimination of dynamic links (e.g., forums, blogs,
social networks, shopping sites) to reduce l [20], and avoid-
ance of disk-based uniqueness verification altogether by either
keeping all data structures in RAM [5], [8], [17] or revisiting
the same pages on a regular basis [12], [24], [25], [26].

C. Ranking and Admission Control

Several papers [3], [15], [6], [14], [18], [19], [22], [27]
have proposed that crawlers compute a certain graph-theoretic
metric for each page (e.g., PageRank [9], OPIC [1]) and that
pending URLs be served in the order of their rank. However,
due to the high CPU and I/O cost, most of these efforts
remain limited to offline simulations. Among the crawls in the
literature with at least 50M pages [8], [17], [23], [32], [37],
none have used real-time spam avoidance or global frontier
prioritization, most often relying on variations of polite BFS
to automatically find good pages [33].

While open-source implementations exist with non-BFS
capability [35], they do not publish performance results or dis-
close operational details, which makes their analysis difficult.
They also often require substantial resources (e.g., clusters
with large h, terabytes of RAM) and lower l to sustain
non-trivial crawls. One notable example is ClueWeb09 [20],
which parallelized Apache Nutch [35] using the NSF-Google-
IBM cluster with 1,600 processors [34]. After discarding
all dynamic links (i.e., dropping l by 84%), the experiment
finished 1B pages in 52 days at an average rate of 222 pps;
however, little additional detail is available about this dataset,
its crawl dynamics, web coverage, or the employed algorithms.

D. Discussion

For future web-crawling research to provide credible re-
sults, we believe that one should engage in experimentation
that aims to simultaneously surpass prior crawls in all four
metrics introduced earlier in this section – S/h, D/h, q,
l. Besides scalability, it is also important to consider the

2

Admitted URLs

8,267,316,148

Non-text/html

86,476,067

Connect

7,606,109,371

Valid replies

7,437,281,300

Full download

7,350,805,233

HTML 200 OK

6,380,051,942

HTTP errors

970,753,291

Found URLs

7,013,367,237

Found URLs

387,605,655,905

Total found URLs

394,619,023,142

Fail checks

13,291,356,96

5

Crawlable URLs

377,995,369,202

HTTP errors

6,770,784

Network errors

162,057,287

Unique edges

310,361,986,596

Unique URLs

41,502,195,631

Blacklisted

3,281,661

No DNS

208,681,137

Robot errors

449,243,979

b.2

b.3

b.1

Pass checks

381,327,666,17

7

Missing ext

78,938,236,200

Dynamic/HTML

296,495,542,495

Unknown ext

2,561,590,507

Bad ext

3,332,296,975

URLs with valid host

8,058,635,011

13.2% 1.1%

0.1%

3.3%

0.9%

2.5% 5.6% 0.04%

2.1%

97.8% 98.9% 86.8%

94.4%

96.7%

0.6% 20.7% 77.8%

(a) URL cycle

Category Error type URLs affected

(b.1) Robots Robots.txt disallow 296,966,591

 Network error on robots.txt 106,638,856

 HTTP error on robots.txt 24,221,293

 Robots.txt forbidden 20,621,185

 Robots.txt loop 612,160

 Robots.txt over 64KB 183,894

 Total 449,243,979

(b.2) Network Connect fail 124,752,717

 Receive fail 36,534,906

 Slow download 421,427

 Page over 4MB 338,872

 Send fail 9,365

 Total 162,057,287

(b.3) HTTP Bad HTTP response 4,139,148

 Decompression fail 1,110,272

 Bad HTTP status 682,613

 Invalid base URL 593,941

 Bad chunking 242,858

 Header over 64 KB 1,952

 Total 6,770,784

(b) discarded URLs

Fig. 2. IRLbot crawl analysis.

average crawl depth loglp(D/m), which determines how far
the crawler ventures from the m seed pages and how likely
it is to encounter spam, and several auxiliary parameters –
the number of crawled hosts, domains, and IPs – since they
control the size of the various caches, DNS and robots.txt
workload, complexity of politeness rate-limiting, and Internet
coverage. Another relevant metric is the average page size,
which together with S determines the download bandwidth
and performance of the network stack.

As we show in the remainder of the paper, IRLbot is an
implementation of this vision using m = h = 1, maximum q,
and unrestricted l, with S and D determined by forces outside
our control (i.e., university bandwidth).

III. PAGE-LEVEL ANALYSIS

We next explain our proposed methodology for document-
ing large-scale crawls. This section underscores the importance
of collecting extensive statistics and meticulously logging the
various failure conditions, many of which are routinely omitted
from prior studies.

A. Admitted URLs

To address the vagueness of prior URL statistics, we pro-
pose that they be presented under a unified umbrella, which
we call the URL cycle. Fig. 2 shows its basic structure. Over
a period of six weeks, IRLbot pulled A = 8.2B URLs from
admission control (the shaded box in part (a) of the figure)
and attempted to crawl them. Approximately 2.5% of these
pointed to hosts without DNS entries and were immediately
discarded. Out of the remaining 8B links, 0.04% were thrown
out due to manual blacklisting in response to complaints and
an additional 5.6% were dropped during the robots.txt
phase. Part (b.1) of the figure shows a detailed breakdown of
these errors.

While IRLbot attempted redirects on robots.txt back-
to-back, normal URLs were handled differently. To avoid
wasting bandwidth on spam that frequently employed lengthy

sequences of redirects, IRLbot treated each 301/302 as a
new link (i.e., sent it for regular uniqueness verification and
then admission control). This ensured that redirects had to
pass spam-related budget enforcement before being attempted
again, which made the retry latency dependent on the current
rank of the corresponding domain and its URL backlog.

B. Crawled URLs
After passing the robot phase, C = 7.6B URLs continued

through the cycle and were issued non-robot connection re-
quests. This resulted in 162M network errors and 6.7M HTTP
failure conditions. The breakdown of the former is shown
in part (b.2) of the figure, where the most common reasons
were connect (124M) and receive (36M) failures. One peculiar
category of (b.2) consists of 421K URLs that were aborted
when the host either did not provide any data for over 60
seconds or dragged out the download beyond 180 seconds,
which were common spammer tactics aimed at stalling IRLbot.
The opposite technique was to serve “infinite” streams of data,
which we terminated at 4 MB, resulting in 338K additional
pages being discarded. Despite this limit, the largest document
the parser dealt with (after decompression) was 884 MB.

The most common HTTP failure in (b.3) was the missing
status line in the response, which affected 4.1M URLs. Some-
times attributed to ancient HTTP/0.9 servers, this condition
might also be indicative of other services running on the
contacted port and various firewall/IDS misconfigurations.
The second most common error type in (b.3) was failed
decompression (1.1M), with gzip corruption responsible for
1M URLs and unknown/bogus encoding type for the other
0.1M cases. Finally, 682K URLs in (b.3) had an invalid HTTP
status code (i.e., above 505 or below 100), 593K contained an
unparsable base URL, 242K violated the chunking syntax or
exceeded 4 MB after unchunking, and 1.9K contained HTTP
headers over 64 KB.

Going back to Fig. 2(a), R = 7.4B valid replies produced
O = 86.5M objects with status 200 OK and content-type other

3

TABLE I
HTTP STATUS CODES OF DOWNLOADED URLS

IRLbot [28] Mercator [23], [32] Polybot [37]
D 7.3B 76M 819M 139M
H 6.3B 45M 473M unknown

HTTP 200 86.79% 87.03% 88.50% 87.42%
302 7.49% 3.33% 3.31% 4.37%
404 3.56% 7.43% 6.46% 5.32%
301 1.12% 1.12% – 2.08%
500 0.35% 0.11% – 0.07%
403 0.28% 0.43% – 0.35%
400 0.10% 0.09% – –
401 0.09% 0.30% – 0.30%
406 0.08% 0.11% – –

Other 0.12% 0.06% 1.73% 0.09%

than text/html. To build as massive a webgraph as possible and
push IRLbot to its scalability limits, we were only interested
in downloading HTML pages. Considering that certain non-
HTML files were extremely large (e.g., DVDs, ISOs), IRLbot
aborted their connections as soon as the HTTP header was
received. This curtailed the download to an average of 8.3
KB per object and limited the total wasted bandwidth to just
718 GB. Without header peeking, the crawler would have had
to fall back on the 4-MB maximum page size, which could
have allowed these 86.5M objects to consume 346 TB in the
worst case.

C. Downloaded URLs

For the remaining D = 7.3B URLs, 60% of which were
dynamic (i.e., contained a ?), the HTTP response was fully
downloaded by IRLbot. The breakdown of HTTP status codes
among this group is shown in Table I, including similar
statistics from three other Internet-wide crawls that supply
this information. Successful pages (200 OK) accounted for
H = 6.3B responses, or approximately q = 87% of D, and
errors for E = 970M pages. Interestingly, half of IRLbot’s 200
OK pages (i.e., 3.2B) and 47% of errors (i.e., 456M) were
chunked by the server, indicating some type of dynamically
assembled content.

To avoid pulling non-html pages, IRLbot transmitted the
“Accept: text/html” header with all non-robot.txt requests,
which the server should reject with 406 Not Acceptable if the
MIME type does not match the one requested by the client.
Combining Table I and Fig. 2 we obtain that IRLbot attempted
to download 92.6M non-HTML pages, out of which 6.1M
returned with status code 406 and the remaining O = 86.5M
with 200 OK. This shows that Internet servers universally
ignore the Accept field and that its usage amounts to a
disappointing 6.6% reduction in aborted pages.

D. Links

Parsing a-href, frame-src, and meta-refresh tags, as well as
HTTP “Location:” fields, in the 7.3B downloaded responses,
IRLbot produced a total of K1 = 394B links shown in Fig.
2(a), with 1.7% coming from non-200 pages. The most prolific
HTML page contained 4.6M links and the most verbose error
page 110K. Note that unlike some of the prior work [32], we

completely ignored img tags and did not consider them part
of the URL cycle.

To avoid hitting obviously bogus pages, IRLbot tested
links for correctness of syntax and discarded 3.3% of them
due to invalid syntax or excessive length, where anything
longer than 1.2 KB was considered unreasonable. Out of
K2 = 381B remaining links, 3.3B pointed to a static page
with one of 694 prohibited non-HTML extensions (e.g., office
files, music/video). Interestingly, usage of a pretty extensive
blacklist reduced the URL workload by only ϵ = 0.9% and the
number of aborted pages by an estimated ϵR = 64M. Given
8.3 KB per aborted page, this translates into 534 GB of saved
bandwidth, or a mere 0.37% of the total. This number seems
small enough that in future crawls it might be simpler to drop
extension filtering and handle all non-HTML objects in the
download phase.

Returning to Fig. 2(a), the remaining URLs were considered
suitable for crawling, which included 2.5B static links with an
unknown extension, 78B static links without an extension, and
296B links that were either dynamic or indicative of HTML.
Condensing 377B crawlable links by removing same-page
duplicates and replacing URLs with 64-bit hashes, IRLbot
constructed a 3-TB webgraph with K = 310B edges and
U = 41B unique nodes, the latter of which was fed into
admission control, completing the cycle in Fig. 2(a).

Treating links found in error pages as integral byproduct
of crawling, it can be estimated that each good HTML page
injected K1/H = 61.7 URLs into the system, with K2/H =
59.7 of them valid. However, only l = K/H = 48.6 were
locally unique. We can now determine the probability that
a locally unique link is globally unique, i.e., p = U/K =
0.13, and the number of URLs injected into admission control
per crawled page, i.e., lp = U/H = 6.58. This allows us to
estimate IRLbot’s average crawl depth as loglp(D/m) = 12,
where m = 1 is the number of seed nodes. For comparison,
the same metric in ClueWeb09 [13], [20], with its m = 33M
and D = 1B, is only 1.8.

IV. SERVER-LEVEL ANALYSIS

We now deal with network statistics. While prior crawls
provide some limited host-related information, there is almost
no discussion of the various IP-level interaction, experienced
errors, robot downloads, or consumed bandwidth. We use
IRLbot data to present our approach for streamlining this type
of exposition.

A. DNS and Robots

Our first topic is crawler interaction with remote hosts
and their authoritative DNS servers. We present the proposed
model of this breakdown in Fig. 3. IRLbot’s 41B discovered
URLs belonged to 89M pay-level domains (PLDs), such as
google.com or amazon.co.uk, and 641M sites. To avoid
unnecessary overhead, IRLbot issued DNS queries only for
URLs that passed the budget enforcer. This resulted in 297M
DNS queries for 260M unique hosts, where repetition was
caused by expiration of previously pulled records.

4

Bad HTTP

2,976,378

401/403

3,371,889

Receive fail

3,641,064

Other MIME

120,478

Send fail

229

Other

1,868

Invalid pkt

513,556

Size > 64KB

1,895

Robot loop

87,318

Robots 404

73,776,294

Reserved IP

128,029

Unique hosts

260,113,628

Server fail

22,885,240

DNS found

171,101,737

Name error

65,241,643

Live hosts

156,236,808

Robots 2xx

72,381,741

66% 96%

4%

91%

DNS lookups

297,184,517

9% 34%

Dead hosts

14,864,929

DNS error

89,011,891

Refused

241,555

Robots problem

10,078,773

Crawlable hosts

146,158,035

No MIME

17,513,363

51% 49%

text/plain

54,747,900

Queued URLs

41,502,195,631

Hosts

641,982,061

PLDs

89,652,630

Fig. 3. DNS and robots.txt requests.

Interestingly, only 171M hosts (66%) had a valid DNS entry
and even fewer (156M) were live during the attempted down-
loaded of robots.txt. Among the sites that responded,
10M failed to provide a legitimate robots.txt, which
prevented IRLbot from knowing which parts of the website
should be excluded and resulted in the entire host being treated
as non-crawlable. Among the remaining 146M hosts in the
figure, approximately half (73M) did not use robots.txt
and one-third (54M) served it with the correct text/plain
MIME type. Additionally, 17M hosts provided robot files with
no content-type and 120K used a non-text/plain type. The
last two cases were often seen on servers that sent HTTP filler
(e.g., custom error messages, redirects to default pages, ads)
instead of proper errors, which we interpreted as equivalent to
not having any crawling restrictions.

The 54M legitimate robots.txt files originally occupied
115 GB (i.e., 2.2 KB on average); however, after retaining
only the directives that applied to either all crawlers or
IRLbot specifically, the entire dataset shrunk to 1.5 GB (i.e.,
28 bytes/host) and contained just 101M entries (i.e., 1.85
entries/host). This indicates that the entire collection can be
easily cached in RAM, rather than on disk as done by IRLbot.

In terms of Internet coverage, 171M sites with a valid DNS
entry mapped to 5,517,743 unique IPs, all of which were
probed by IRLbot during attempted downloads of robots.
txt. However, a more balanced characterization of a crawl
includes only hosts with 200-OK HTML content. In that case,
analysis shows that H = 6.3B pages resided on 117,576,295
sites, 33,755,361 PLDs, and 4,260,532 IPs.

B. Bandwidth

In the outbound direction, IRLbot transmitted approximately
23 GB of DNS traffic and 33 GB of robot requests. GET
packets consumed an additional 1.8 TB in HTTP headers and
1.1 TB in TCP/IP overhead. Inbound bandwidth was split
across 37 GB of DNS responses, 254 GB of robots.txt
files (including repeated requests), 718 GB of aborted objects,
and 143 TB of fully downloaded URLs. A breakdown of the
last category is shown in Fig. 4.

Starting with 7.3B HTML pages on top of the figure and
following the path on the right, observe that 16% of all
200-OK pages arrived compressed and accounted for 6.6

Full download pages

7,350,805,233

HTML 200 OK

6,380,051,942

HTTP errors

970,753,291

Non-compressed

5,329,096,697

Non-compressed

904,885,507

Compressed

1,050,955,245

Bytes

128,151,894,854,297

16%

Full download bytes

143,589,123,572,029

86.8%

Bytes

2,174,885,272,428

HTTP error bytes

2,258,814,609,583

HTTP header bytes

2,571,309,459,132

TCP/IP header bytes

3,985,467,341,092

13.2%

HTML 200 OK bytes

134,766,181,356,989

84% 7% 93%

Compressed

65,867,784

Bytes

83,929,337,155

Bytes

6,614,286,502,692

5% 95%

1.8% 2.7%

1.5% 93.8%

4% 96%

Fig. 4. Downloaded HTML pages.

TB (i.e., 6.3 KB/page). After decoding, they ballooned to a
hefty 33 TB (i.e., 31.5 KB/page), showing an almost exact
5 : 1 compression ratio. The other 5.3B OK pages arrived
uncompressed and consumed 128 TB, as also shown in the
figure. These pages were quite a bit smaller, averaging 24
KB. Not including HTTP headers, both types of 200 OK pages
consumed 134 TB of bandwidth, or 93.8% of the total.

HTTP errors on the left side of Fig. 4 experienced half
the likelihood of being compressed, slightly lower deflate
ratios (4.7 : 1), and significantly smaller average page size,
which ranged from 1.3 KB for compressed to 2.4 KB for
uncompressed responses. Interestingly, error pages did not
just end with the HTTP header; instead, many servers were
compelled to stuff additional data after the header, including
bizarre cases when it was impossible for the browser to
display them. Even with this extra content, 970M HTTP errors
accounted for only 1.5% of the final traffic. TCP/IP overhead
(4 TB) and HTTP headers across all responses (2.5 TB) were
actually more prominent.

During the 41 days of the experiment, IRLbot averaged
2,132 attempted connections/s, S = 2,061 full downloads/s,
Sq = 1,789 error-free HTML pages/s, and 320 Mbps of
inbound and 7 Mbps of outbound bandwidth.

V. EXTRAPOLATING CRAWLS

Given the large number of documents crawled by IRLbot,
and even more discovered, one may wonder about the growth
of the various datasets and their finiteness as the crawl
continues beyond the already-seen portions of the web. We
next examine this question in more detail.

A. Stochastic Model

Given a webgraph G = (V,E) of the entire Internet, any
crawl can be viewed as a stochastic process {(Xn, Yn)}, where
n = 1, 2, . . . is discrete time, Xn ∈ V is the crawled page
that generated link n, and Yn ∈ V is the URL it points to. We
assume this process excludes invalid URLs, ignores same-page
duplicates, and terminates after finding N ≤ |E| links. As the
crawl progresses, we are interested in the behavior of discovery
rates for new URLs, hosts, and/or PLDs. To cover all of these
under a common umbrella, define indicator variable Qn to be

5

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

number of seen edges (thousands)

pr
ob

ab
ili

ty

exponential
simulations
exact model

(a) toy graph

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

crawl fraction z

pr
ob

ab
ili

ty

data
power fit

(b) IRLbot (α = 0.12)

Fig. 5. Model verification for p(t) and URL discovery rate p̃(z) in IRLbot.

1 if link (Xn, Yn) satisfies some uniqueness condition and 0
otherwise. For example,

Qn =

{
1 Yn not seen before
0 otherwise

(1)

defines a non-stationary stochastic process of URL unique-
ness. Then, the expected number of links LN satisfying this
condition in a crawl of size N is:

E[LN] =
N∑

n=1

E[Qn] ≈
∫ N

1

p(t)dt (2)

where N is assumed to be very large and p(t) = P (Qt =
1) = dLt/dt is the growth rate of unique nodes at time t.

It is normally expected that p(t) starts off high for small t;
however, as the crawler starts exhausting the web, Lt should
begin experiencing saturation and thus p(t) should eventually
decay to zero. In this regard, two questions are in order.
First, what general model does p(t) follow? Second, can one
estimate the number of crawled pages CN that produce a given
value LN? For example, Google reported in 2008 reaching 1T
unique nodes in the webgraph [4]. How many more pages does
IRLbot have to crawl to hit the same target?

To build intuition, we answer the first question using a toy
model of the web and predicate function (1). Assume the web
is a finite digraph with a constant in/out-degree d and suppose
the crawl implements a uniformly random shuffle on E. Then,
(Xt, Yt) points to a unique page if and only if none of Yt’s
other d− 1 in-links has been discovered in [1, t− 1], i.e.,

p(t) =
(
1− t− 1

|E|

)d−1

. (3)

For t ≪ |E|, which is a common operating range of interest,
Taylor expansion reduces (3) to e−λt, where λ = (d−1)/|E|.
Fig. 5(a) shows simulations in comparison to (3) in a random
graph with |E| = 100K edges and d = 5 (i.e., |V | = 20K
nodes). It thus can be expected that in some cases p(t) may
exhibit an exponential tail, although real graphs are typically
more complicated and require modeling work beyond the
scope of this paper. See [2] for more detail.

We next provide a methodology to first build and then
extrapolate curves p(t) using real crawls. This will answer
both questions posed earlier in a more realistic setting.

B. Data Extraction

We start by introducing a MapReduce algorithm for estimat-
ing p(t) in a discrete set of points t1, t2, . . . , tk using a given
crawl dataset. Our discussion centers on URL uniqueness, but
almost identical procedures apply in other cases (e.g., hosts,
PLDs). Note that points {ti} may be spaced non-uniformly
(e.g., at exponentially increasing distances), depending on the
desired parameters of the plot. Define bin bi = [ti−∆, ti+∆]
to be some ∆-neighborhood of ti that contains enough discov-
ered links for the law of large numbers to hold.

Assume that page-download timestamps τ1, τ2, . . . are em-
bedded in the trace file with each crawled node. For every
link (j, k), found in page j, we first determine bin i into
which timestamp τj falls and increment the corresponding
number of seen out-links si for that bin. Since the number
of bins is usually small (e.g., 50 − 100), these counters can
be kept in RAM. We then map (j, k) to a tuple consisting
of k’s hash hk and the crawl timestamp of the source page
j, i.e., (hk, τj). After all tuples are sorted by hk, the reduce
step retains the smallest timestamp for each seen URL, i.e.,
(hk, τ

1
j , τ

2
j , . . .) → (hk,min(τ1j , τ

2
j , . . .)). Scanning the final

result, we obtain the number of globally unique links ui

discovered in each bin i, which produces p(ti) ≈ ui/si.
This computation on the IRLbot dataset requires sorting

310B tuples (i.e., 3.7 TB assuming 4-byte timestamps) and
produces 41B tuples (i.e., 492 GB) as output. While none of
this fits in RAM, IRLbot uses disk-based algorithms that tackle
this problem using a single host in a few hours.

C. URLs

Assume K is the number of links in the already-crawled
portion of the web. Then, let z = t/K be time normalized to
this crawl and p̃(z) = p(zK) be the corresponding uniqueness
function. Using equally spaced bins and K = 310B, Fig. 5(b)
shows that IRLbot’s p̃(z) is a close fit to a power-law function
βz−α, where α = 0.12 and β = 0.11. Interestingly, this decay
rate is significantly slower than predicted by (3), indicating that
the degree distribution of G and crawl order (e.g., bias towards
popular nodes) have a noticeable impact on the resulting curve.

We can now offer a crude model for estimating the number
of crawled pages CN at which IRLbot would hit Google’s
LN = 1T unique URLs. To do this, we must first determine
the number of links N needed to generate LN globally unique
nodes. Defining r = N/K and re-writing (2) in terms of
normalized time, we get:

E[LN] ≈ K
∫ r

0

p̃(z)dz, (4)

where the lower limit of the integral 1/K is approximated
with a zero. As we specifically aim for cases with r > 1, we
can split the integral into two segments, i.e., with z ∈ [0, 1]
representing the already-crawled pages and z ∈ [1, r] being
the extrapolated portion:

E[LN] ≈ U +K
∫ r

1

p̃(z)dz, (5)

6

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

crawl fraction z

pr
ob

ab
ili

ty

data
power fit

(a) host (α = 0.79)

0 0.2 0.4 0.6 0.8 1
10

−5

10
−4

10
−3

10
−2

crawl fraction z

pr
ob

ab
ili

ty

data
exponential fit

(b) PLD (λ = 4)

Fig. 6. Host/PLD discovery rate p̃(z) in IRLbot.

where U = 41B is the number of unique nodes in the crawled
dataset. For the Pareto tail p̃(z) = βz−α:

E[LN] ≈ U +
Kβ(r1−α − 1)

1− α
, (6)

which in turn leads to:

r ≈
(
1 +

(1− α)(E[LN]− U)
Kβ

) 1
1−α

. (7)

For p̃(z) in Fig. 5(b) and E[LN] = 1T, this model suggests
r = 40 times more discovered edges, which produces N =
rK = 12T links in the webgraph and CN = N/l = 256B
crawled pages. For 30T unique nodes seen by Google in 2012
[38], we obtain r = 1,918, N = 592T links, and CN = 12T
crawled pages. Using Google’s 20B pages/day crawl rate [38],
this amounts to 50 months of crawling @ 41 Gbps.

The tail of p̃(z) in Fig. 5(b) is heavy enough, i.e., α < 1, that
its integral becomes unbounded as the number of seen links
N → ∞. While this result was anticipated knowing that scripts
could generate arbitrary amounts of unique URLs, the model
confirms that IRLbot was on track to experience this problem
firsthand and estimates the expected growth rate of E[LN]
in (6) as Θ(N0.88). This again cautions against attempting
to download every possible unique URL and underscores the
importance of prioritizing the frontier.

D. Hosts and PLDs

Applying the same methodology to the host graph, we ob-
tain curve p̃(z) in Fig. 6(a). While it drops more dramatically
over the same range (i.e., by a factor of 15 instead of just 2),
it still follows a power-law function, where now α = 0.79 and
β = 0.0008. Invoking (6) with r = 40 and U = 641M unique
nodes in the crawled portion leads to 2B extrapolated hosts,
which is only 3 times larger than seen by IRLbot so far. For
r = 1,918, this number scales up to 5.2B, but still remains
quite reasonable. As before, α < 1 predicts an infinite number
of hosts, but their growth rate Θ(N0.21) is significantly slower
than for unique URLs. Understanding this scaling behavior is
quite useful in future designs of site-related data structures,
their processing algorithms (e.g., ranking, DNS caching), and
storage provisioning.

In contrast to the previous two curves, the PLD-uniqueness
probability in Fig. 6(b) exhibits a different shape with a much
more aggressive decay, dropping by a factor of 122 over the

course of the crawl. A curve-fit suggests an exponential tail
µe−λz with λ = 4 and µ = 0.0011, which reminds of the
approximate toy model considered earlier in this section, but
with an extra parameter µ. Solving the integral in (5) leads to:

E[LN] ≈ U +
Kµ

λ
(e−λ − e−λr), (8)

which produces E[L∞] − U = 1.6M PLDs in addition to
the 89M already discovered, regardless of future crawl size.
IRLbot’s spam avoidance has relied precisely on this fact, i.e.,
that spammers could not obtain control over an infinite number
of PLDs.

VI. INTERNET-WIDE COVERAGE

We next examine how to quantify crawl coverage of the
available web space.

A. Basic Properties

Crawl coverage may be measured by 1) the collection of
URLs from which 200-OK HTML content was obtained; or
2) the constructed graph of the visible web. Note that the
latter consists of the former combined with the nodes in the
frontier, HTTP errors, and the links connecting them together.
We include errors in the webgraph as they provide valuable
information about redirects (301/302), dead nodes (404/50x),
forbidden URLs (401/403), and parents of crawled pages.
These might be useful for merging duplicate pages, spam
detection, general page ranking, and back-tracing the crawl
tree, which may pass through errors, in case of complaints.

Table II shows a snapshot of available information about
the major crawls in the literature. Interestingly, some papers
discuss only the crawled pages (e.g., [37]), others only the
web graph (e.g., [7], [10]), while some do both (e.g., [11],
[21]), but often using a small subset of the possible metrics
of interest. Comparison is further complicated by the various
missing information and unspoken assumptions. For example,
Mercator includes img tags in the webgraph, while other
crawlers typically do not. WebBase considers HTTP errors
and robot files as crawled pages, while others usually omit
robots.txt from the totals and include errors only in the
webgraph. UbiCrawler removes the frontier and all dangling
nodes (i.e., with zero out-degree) from the webgraph, while
other datasets normally retain them.

The bottom line is that accurate comparison of previous
crawls is difficult; however, given the exhaustive level of
detail provided earlier in this paper, IRLbot results should be
straightforward to interpret.

B. TLD Coverage

Besides the raw totals in Table II, another important aspect
of Internet-scale crawling is allocation of budgets to individual
domains. Since no prior methods have been developed for
measuring this and given that comparison of different crawls
has been largely limited to graph-theoretic metrics of the
webgraph (e.g., size of various bow-tie components [10], [42]),
our aim in this section is to develop a novel approach for

7

TABLE II
INTERNET COVERAGE OF EXISTING CRAWLS

Dataset Date Crawled (HTML 200 OK) Web graph Host graph PLD graph TLD graph
pages hosts PLDs TLDs nodes edges nodes edges nodes edges nodes edges

AltaVista [10] 10/99 – – – – 271M 2.1B – – – – – –
Polybot [37] 5/01 121M 5M – – – – – – – – – –
Google [7] 6/01 – – – – 1.3B 19.5B 12.8M 395M – – – –
Mercator [11] 7/02 429M ∼ 10M – – – 18.3B – – – – – –
WebFountain [21] 2004 1B – – – 4.75B 37B 19.7M 1.1B – – – –
WebBase [17] 6/07 98M 51K – – – 4.2B – – – – – –
ClueWeb09 [20] 1/09 1B – – – 4.8B 7.9B – – – – – –
IRLbot 6/07 6.3B 117M 33M 256 41B 310B 641M 6.8B 89M 1.8B 256 46K
UbiCrawler .uk [8] 5/07 105M 114K – 1 105M 3.7B 114K – – – 1 1
IRLbot .uk 6/07 197M 2.8M 1.2M 1 1.3B 9.5B 5M 54M 1.5M 18M 1 1
TeaPot .cn [42] 1/06 837M 16.9M 790K 1 837M 43B 16.9M – 790K – 1 1
IRLbot .cn 6/07 209M 3.3M 539K 1 1.1B 11.9B 8.4M 103M 711K 19.7M 1 1

TABLE III
COMMERCIAL DATASETS

Dataset Date Pages
Google 1/2008 30, 756, 383, 801
Yahoo 1/2008 37, 864, 090, 287

TABLE IV
GOOGLE-ORDERED TOP-10 TLD LIST

TLD Google Yahoo IRLbot WebBase ClueWeb
.com 46.7% 38.3% 43.3% 31.2% 54.8%
.net 6.9% 7.7% 6.9% 2.2% 6.7%
.de 6.6% 6.8% 7.4% 3.8% 3.8%
.org 5.5% 6.3% 6.6% 17.8% 6.6%
.cn 3.7% 4.6% 3.3% 0.2% 5.6%
.jp 3.4% 5.2% 1.2% 1.7% 3.2%
.ru 2.3% 4.6% 3.3% 0.6% 0.1%
.uk 2.2% 3.0% 3.1% 4.9% 1.7%
.pl 1.6% 1.9% 1.3% 0.2% 0.3%
.nl 1.4% 1.4% 2.0% 0.5% 0.1%
TLDs 255 256 256 174 254

understanding how much of crawler bandwidth is spent in what
parts of the Internet.

We leverage site queries (i.e., strings in the form of
“site:domain”) that can be submitted to popular search engines
to restrict the outcome to a particular domain. In the result
page, both Google and Yahoo (now part of Bing) offer an
estimated count of how many pages from that domain are
contained in their index. We have verified that these counts
are exact for small domains and have no reason to doubt their
ballpark accuracy for larger domains. Running site queries
for all gTLDs and cc-TLDs allows one to obtain not just
the index size of a search engine, but also its distribution
of pages between the various top-level domains. The results
are summarized in Table III, which shows that Google’s self-
reported index at that time contained 30.7B pages, while
Yahoo’s 37.8B.

In order to compare the coverage within each TLD, we
designate one of the sets as the base and sort all domains
in the descending order of the number of pages in the base
dataset. Furthermore, instead of using raw page counts, which
are functions of crawl size, we are more interested in fractions
of each crawl allocated to each TLD. To highlight this better,

0 50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

TLD sequence number
fr

ac
tio

n
of

 p
ag

es

Yahoo
Google

(a) Yahoo (all)

0 50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

TLD sequence number

fr
ac

tio
n

of
 p

ag
es

IRLbot
Google

(b) IRLbot (all)

0 10 20 30 40

10
−4

10
−3

10
−2

10
−1

10
0

TLD sequence number

fr
ac

tio
n

of
 p

ag
es

Yahoo
Google

(c) Yahoo (top 40)

0 10 20 30 40

10
−4

10
−3

10
−2

10
−1

10
0

TLD sequence number

fr
ac

tio
n

of
 p

ag
es

IRLbot
Google

(d) IRLbot (top 40)

Fig. 7. TLD coverage (Google order).

Table IV shows the top-10 list using Google as the base (for
the three academic crawls, we use only 200-OK HTML pages).

We include a WebBase crawl that took place concurrently
with IRLbot’s and ClueWeb09 (both already detailed in Table
II) to highlight the fact that individual crawl policy may
purposely favor skewed allocation of resources across do-
mains, leading to a drastically different Internet coverage from
that of other crawlers. In this case, the difference occurs
because WebBase was interested only in specific sites, while
ClueWeb09 targeted static pages in 10 pre-selected languages.

Fig. 7 plots the entire TLD curve using Google as the
base. Yahoo’s deviation at the beginning of the plot in part
(a) is noticeably smaller than that of IRLbot in part (b);
however, eventually the two curves exhibit random oscillations
of similar magnitude. A closer look at the 40 most-popular
domains in subfigures (c)-(d) reveals that IRLbot’s biggest
discrepancy appears in three points – .edu (#12), .gov
(#24), and .info (#15) – where the first two are under-
crawled and the third one is over-crawled.

8

The former case can be explained by IRLbot’s budget func-
tion that favored TLDs with many individual domains. Both
.edu and .gov contained a small number of unique PLDs,
which despite their high ranking were given a relatively low
aggregate budget in comparison to all other domains. The issue
with .info can be traced to the large number of $0.99/year
spam PLDs hosted there at the time, which conceivably were
either removed from Google’s index or significantly throttled
down during crawling using techniques that were not available
to IRLbot (e.g., content analysis, ranking from prior crawls,
user click behavior).

In general, performing analysis of TLD coverage helps one
detect over/under-represented parts of the web in crawl data,
identify spam regions, and tune budget-allocation policies, all
of which are beneficial tools for future crawler development.

VII. CONCLUSION

This paper presented new IRLbot implementation details,
proposed a novel methodology for documenting large-scale
crawls, and used it to deliver a massive amount of previously
undocumented information about the IRLbot experiment. We
also derived a model for extrapolating the growth rate of
unique nodes (e.g., pages, hosts, and PLDs) as a function of
crawl size, confirming the colloquial notion that the space of
URLs and hostnames is infinite, and estimated the number of
remaining PLDs in larger IRLbot crawls. We finally proposed
several methods for assessing Internet-wide crawl coverage,
examined the budget function of IRLbot, and suggested av-
enues for improvement.

REFERENCES

[1] S. Abiteboul, M. Preda, and G. Cobena, “Adaptive on-line page impor-
tance computation,” in Proc. WWW, May 2003, pp. 280–290.

[2] S. T. Ahmed and D. Loguinov, “Modeling Randomized Data Streams
in Caching, Data Processing and Crawling Applications,” in Proc. IEEE
INFOCOM, Apr. 2015.

[3] M. H. Alam, J. Ha, and S. Lee, “Novel Approaches to Crawling
Important Pages Early,” Springer Knowledge and Information Systems,
Sep. 2012.

[4] J. Alpert and N. Hajaj, “We Knew the Web Was Big...” Jul.
2008. [Online]. Available: http://googleblog.blogspot.com/2008/07/
we-knew-web-was-big.html.

[5] R. Baeza-yates and C. Castillo, “Crawling the infinite Web: five levels
are enough,” in Proc. WAW, 2004, pp. 156–167.

[6] R. Baeza-Yates, C. Castillo, M. Marin, and A. Rodriguez, “Crawling a
Country: Better Strategies than Breadth-First for Web Page Ordering,”
in Proc. WWW, May 2005.

[7] K. Bharat, B.-W. Chang, M. Henzinger, and M. Ruhl, “Who Links to
Whom: Mining Linkage between Web Sites,” in Proc. IEEE ICDM, Nov.
2001.

[8] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “UbiCrawler: A Scal-
able Fully Distributed Web Crawler,” Software: Practice & Experience,
vol. 34, no. 8, pp. 711–726, Jul. 2004.

[9] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web
Search Engine,” in Proc. WWW, Apr. 1998, pp. 107–117.

[10] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, “Graph Structure in the Web,” Computer
Networks, vol. 33, pp. 309–320, Jun. 2000.

[11] A. Z. Broder, M. Najork, and J. L. Wiener, “Efficient URL Caching for
World Wide Web Crawling,” in Proc. WWW, May 2003, pp. 679–689.

[12] M. Burner, “Crawling Towards Eternity: Building an Archive of the
World Wide Web,” Web Techniques Magazine, vol. 2, no. 5, May 1997.

[13] J. Callan, M. Hoy, C. Yoo, and L. Zhao, “The ClueWeb09 Dataset,”
Nov. 2009. [Online]. Available: http://boston.lti.cs.cmu.edu/classes/
11-742/S10-TREC/TREC-Nov19-09.pdf.

[14] C. Castillo, M. Marin, A. Rodriguez, and R. Baeza-Yates, “Scheduling
Algorithms for Web Crawling,” in Proc. Latin American Web Confer-
ence, Oct. 2004.

[15] A. Chandramouli, S. Gauch, and J. Eno, “A Popularity-Based URL
Ordering Algorithm for Crawlers,” in Proc. IEEE HSI, May. 2010, pp.
259–263.

[16] J. Cho and H. Garcia-Molina, “Parallel Crawlers,” in Proc. WWW, May
2002, pp. 124–135.

[17] J. Cho, H. Garcia-Molina, T. Haveliwala, W. Lam, A. Paepcke, and
S. R. G. Wesley, “Stanford WebBase Components and Applications,”
ACM Trans. Internet Technology, vol. 6, no. 2, pp. 153–186, May 2006.

[18] J. Cho, H. Garcia-Molina, and L. Page, “Efficient Crawling through
URL Ordering,” in Proc. WWW, Apr. 1998, pp. 161–172.

[19] J. Cho and U. Schonfeld, “RankMass Crawler: A Crawler with High
PageRank Coverage Guarantee,” in Proc. VLDB, Sep. 2007.

[20] ClueWeb09 Dataset. [Online]. Available: http://www.lemurproject.org/
clueweb09/.

[21] N. Eiron, K. S. McCurley, and J. A. Tomlin, “Ranking the Web Frontier,”
in Proc. WWW, May 2004, pp. 309–318.

[22] M. A. Golshani, V. Derhami, and A. ZarehBidoki, “A Novel Crawling
Algorithm for Web Pages,” in Proc. AIRS, 2011, pp. 263–272.

[23] A. Heydon and M. Najork, “Mercator: A Scalable, Extensible Web
Crawler,” World Wide Web, vol. 2, no. 4, pp. 219–229, Dec. 1999.

[24] Y. Hirate, S. Kato, and H. Yamana, “Web Structure in 2005,” in Proc.
WAW, Nov. 2006, pp. 36–46.

[25] L. Huang, J. J. H. Zhu, and X. Li, “Histrace: Building a Search Engine
of Historical Events,” in Proc. WWW Poster Session, Apr. 2008, pp.
1155–1156.

[26] Internet Archive. [Online]. Available: http://archive.org/.
[27] Q. Jiang and Y. Zhang, “SiteRank-Based Crawling Ordering Strategy

for Search Engines,” in Proc. CIT, Oct. 2007, pp. 259–263.
[28] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov, “IRLbot: Scaling to

6 Billion Pages and Beyond,” in Proc. WWW, Apr. 2008, pp. 427–436.
[29] B. T. Loo, S. Krishnamurthy, and O. Cooper, “Distributed Web Crawling

over DHTs,” EECS Dept., University of California, Berkeley, Tech. Rep.
UCB/CSD-04-1305, 2004.

[30] O. A. McBryan, “GENVL and WWWW: Tools for Taming the Web,”
in Proc. WWW, May 1994.

[31] K. Moody and M. Palomino, “SharpSpider: Spidering the Web through
Web Services,” in Proc. IEEE LA-WEB, Nov. 2003, pp. 219–221.

[32] M. Najork and A. Heydon, “High-Performance Web Crawling,”
Compaq SRC, Tech. Rep. 173, Sep. 2001. [Online]. Available:
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-173.pdf.

[33] M. Najork and J. L. Wiener, “Breadth-First Search Crawling Yields
High-Quality Pages,” in Proc. WWW, May 2001, pp. 114–118.

[34] NSF, “A CluE in the Search for Data-Intensive Computing.” [Online].
Available: http://www.nsf.gov/news/news summ.jsp?cntn id=111470.

[35] Nutch. [Online]. Available: http://nutch.apache.org/.
[36] B. Pinkerton, “Finding What People Want: Experiences with the Web

Crawler,” in Proc. WWW, Oct. 1994.
[37] V. Shkapenyuk and T. Suel, “Design and Implementation of a High-

Performance Distributed Web Crawler,” in Proc. IEEE ICDE, Mar. 2002,
pp. 357–368.

[38] A. Signhal, “Breakfast with Google’s Search Team,” Aug. 2012.
[Online]. Available: https://www.youtube.com/watch?v=8a2VmxqFg8A.

[39] A. Singh, M. Srivatsa, L. Liu, and T. Miller, “Apoidea: A Decentralized
Peer-to-Peer Architecture for Crawling the World Wide Web,” in Proc.
SIGIR Workshop on Distributed Information Retrieval, Aug. 2003, pp.
126–142.

[40] T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long,
and K. Shanmugasundaram, “ODISSEA: A Peer-to-Peer Architecture
for Scalable Web Search and Information Retrieval,” in Proc. WebDB,
Jun. 2003, pp. 67–72.

[41] H. Yan, J. Wang, X. Li, and L. Guo, “Architectural Design and Eval-
uation of an Efficient Web-crawling System,” J. Systems and Software,
vol. 60, no. 3, pp. 185–193, Feb. 2002.

[42] J. J. H. Zhu, T. Meng, Z. Xie, G. Li, and X. Li, “A Teapot Graph and
Its Hierarchical Structure of the Chinese Web,” in Proc. WWW Poster
Session, Apr. 2008, pp. 1133–1134.

9

