
On the Performance of MapReduce:

A Stochastic Approach

Sarker Tanzir Ahmed and Dmitri Loguinov∗

Texas A&M University, College Station, TX 77843, USA

Email: {tanzir, dmitri}@cse.tamu.edu

Abstract—MapReduce is a highly acclaimed programming
paradigm for large-scale information processing. However, there
is no accurate model in the literature that can precisely forecast
its run-time and resource usage for a given workload. In this
paper, we derive analytic models for shared-memory MapReduce
computations, in which the run-time and disk I/O are expressed
as functions of the workload properties, hardware configuration,
and algorithms used. We then compare these models against
trace-driven simulations using our high-performance MapReduce
implementation.

Keywords – MapReduce; Big Data; Disk I/O; External Sort

I. INTRODUCTION

MapReduce is a widely accepted programming model for

large-scale data analytics. It has received much attention and

adoption since its introduction by Google [2]. The motivation

behind MapReduce is to provide a simple abstraction for large-

scale information processing, which is a common problem in

many enterprizes. To handle massive data sets, MapReduce

programs first split them into smaller manageable fractions,

compute partial solutions over them, and then write the results

to secondary storage as disk spills. Since the total computation

time depends on the amount of disk spill, its accurate anal-

ysis is required for obtaining usable performance models of

MapReduce.

There has been some limited work towards characterizing

MapReduce performance [1], [5], [7], [15]. Their main lim-

itation is that they assume a constant multiplicative factor

that converts the size of input (intermediate data) to that of

disk spill. In practice, however, the volume of disk I/O in

a MapReduce computation depends non-linearly on the task,

workload characteristics, used algorithms, and data structures.

To the best of our knowledge, none of the existing work can

fully quantify disk spill in terms of the above factors. The

primary motivation of this work is to address this problem.

A MapReduce workload can be viewed as a multi-set of

key-value pairs. Often, the MapReduce task is to combine the

values with the same keys. Define p(t) to be the probability

that the t-th key is not seen before time t. In this paper, we

first derive p(t) as a function of the frequency distribution of

the keys and use this result to obtain an accurate disk-spill

model of MapReduce. Equipped with these results, we then

obtain a model for the total runtime of MapReduce programs,

focusing primarily on the merge-sort design of shared-memory

MapReduce, where a single host performs all MapReduce

∗Supported by NSF grants CNS-1017766 and CNS-1319984.

jobs. We finish by comparing the obtained models against

simulation under different workloads and various resource

constraints.

II. RELATED WORK

Performance of MapReduce and its Hadoop implementation

have been explored to some extent in previous work. The

authors in [7] formulate a model for the disk I/O between

the map and reduce phases, and also for the merge in the

reduce phase. They consider both single-phase and multi-phase

merge, which is required when the number of sorted files is too

large. After that, the authors derive an analytic model for the

job completion time as a function of configuration parameters

of MapReduce (e.g., number of mappers, reducers), CPU and

disk speed, and then use this model for optimizing various

Hadoop parameters. They also present a number of hash-based

techniques to improve the basic Hadoop implementation to

achieve faster completion time. However, the authors assume

a known constant multiplying factor between input and output

size of various stages, which is not known beforehand and

requires a separate training run for each value of RAM size.

In [1], the authors derive an optimal scheduling strategy of

map and reduce jobs using Divisible Load Theory (DLT) with

the goal of obtaining the shortest completion time. Similar

to [7], they also assume a constant factor between input and

output size. In [14], the authors focus on job deadlines and

derive upper/lower bounds on computation time under the

Earliest Deadline First (EDF) scheduling policy. But these

theoretical bounds are loose in practice and hold only under

EDF scheduling. The optimization methods proposed in [3],

[12], [15] all require collection of previous job execution traces

and then machine-learning approaches for determining optimal

MapReduce/Hadoop parameters.

Phoenix [10] is the first MapReduce framework for shared

memory rather than a distributed setting. The focus of this

paper is to examine the effectiveness of the MapReduce

framework in multi-core systems. The authors propose a grid-

style data distribution strategy between the map and reduce

workers. In [13], the authors examine the performance of

Phoenix and Metis [8], another shared-memory MapReduce

framework, and derive analytic models for both systems.

The authors in this paper show that MapReduce performance

depend on the ordering and frequency distribution of the keys,

used data structures, and algorithms. However, they assume

INPUT

MAPPER

MERGE

SORT

(key, value) pairs

R
E

D
U

C
E

(a) MapReduce

�.

Merge

Key	value pairs

Sorted run 1

Final Solution

Sorted run 2

Sort

Sorted run 2

(b) reduce phase

Fig. 1: MapReduce with external sort.

the same frequency for all keys, which is unrealistic in many

cases.

III. APPROACH

We start this section by stating the main goal of the paper.

This is done by first discussing the general architecture of a

MapReduce program. Then we move to the formulations and

derivations of the basic metrics that are required for obtaining

the actual performance models.

A. Objective

The MapReduce programming model consists of two phases

– map and reduce. As shown in Fig. 1(a), the former processes

the input data using a user-provided parsing function and

produces a stream of key-value records called intermediate

data. After the map phase finishes, these intermediate data

are sorted by the key and then combined using a user-provided

reduce function. Due to memory limitations, the reduce phase

often has to process only a portion of the intermediate data and

generate partial solutions, which we call sorted runs. These

are then merged in the merge sub-phase to compute the final

solution. Fig. 1(b) shows the reduce phase in detail.

Note that the sorted runs are written to disk during the

sort phase and read back to RAM at least once during the

merge phase. Thus, their combined volume, which we call

disk spill I , plays an important role in determining the total

runtime. In this work, the primary objective is to present

an analytical model for the disk spill in shared-memory

MapReduce computations.

B. Terminology

We consider both the input to a MapReduce program and its

output as data streams consisting of key-value records. Assume

a set V of unique keys, whose size is n. Define I(v) to be

the frequency of v in the stream, and T =
∑

v∈V I(v) as

the stream’s length. Then, a realization of the stream can be

viewed as some stochastic process {Xt}
T
t=1, where Xt is the

random key, possibly accompanied by some value, in position

1 ≤ t ≤ T . For simplicity of presentation, let random variable

I have the same distribution as the frequency of the system:

P (I < x) =
1

n

∑

v∈V

1I(v)<x, (1)

where we assume that the distribution of I is known a-priori.

This is realistic when the same stream is queried multiple times

for different purposes, or its properties can be predicted from

other analysis. Note that RAM size R and sorting algorithm

can be arbitrary. In prior work that uses empirical trace data,

experiments must be repeated for each new configuration. Our

results do not suffer from this drawback.

The output of the MapReduce program is a list of size n of

key-value pairs, one for each v ∈ V . The above definition is

general enough to describe many real-world data streams (e.g.,

user clicks, DNS queries, web page requests, random graphs)

and a range of MapReduce tasks. The input data can directly

follow the stream definition or result from some previous stage

in a multi-stage MapReduce.

As the input stream is being processed, let St =
⋃t

i=1 Xi

be the set of keys seen by time t. Furthermore, assume that set

Ut = V \St contains the unseen keys at the same time. Now,

the probability p(t) that key Xt has not been seen before time

t is defined as:

p(t) = P (Xt ∈ Ut−1), (2)

which is the most important metric as it helps derive other

quantities of interest. We next state the assumptions required

to make this model tractable.

C. Assumptions

We assume that the I(v) copies of v are spread uniformly

across the length of the stream, making the probability to

encounter v at time t:

P (Xt = v) =
I(v)

T
, (3)

which is sometimes called the Independent Reference Model

[9]. Thus, keys with high frequency/degree are more likely to

be seen, irrespective of which portion of the stream is being

examined.

An interesting conclusion entails from the assumption under

the condition that v has not been seen before t. Given that v is

unseen, there are still I(v) copies of v in the stream, where a

total of T − t+1 keys are yet to be processed. Therefore, the

probability of seeing v at time t is the same as that of choosing

any of I(v) items from T − t+ 1 possibilities. Therefore,

P (Xt = v|v ∈ Ut−1) =
I(v)

T − t+ 1
. (4)

D. Formulation

We start with the likelihood for a given key v to remain

unseen throughout the interval [1, t]. We use ǫt = t/T for

notational convenience.

Theorem 1. The probability that v is still unseen at time t:

p(v, t) = P (v ∈ Ut) ≈ (1− ǫt)
I(v). (5)

2

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

stream fraction

p
(t

)

simulation
model

(a) binomial I

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

stream fraction

p
(t

)

simulation
model

(b) Zipf I

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

stream fraction

E
[|
S

t|]
/n

simulation
model

(c) binomial I

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

stream fraction

E
[|
S

t|]
/n

simulation
model

(d) Zipf I

Fig. 2: Comparison of models (8) and (11) to simulations.

Proof: For a node to stay unseen at t, it must be unseen

at t− 1 and also not hit at t. Therefore, using (4):

p(v, t) = P (Xt 6= v, v ∈ Ut−1)

= P (Xt 6= v|v ∈ Ut−1)P (v ∈ Ut−1)

=

(

1−
I(v)

T − t+ 1

)

p(v, t− 1). (6)

After expanding the recurrence in (6) to t = 1, we get:

p(v, t) = p(v, 0)

t−1
∏

τ=0

(

1−
I(v)

T − τ

)

, (7)

which produces (5) after using p(v, 0) = 1 and Taylor

approximation.

Now, we are ready to derive the uniqueness probability

which is the main result of this section.

Theorem 2. The probability that the t-th key in the stream

Xt refers to a previously-unseen node is:

p(t) = P (Xt ∈ Ut−1) ≈
E[I · (1− ǫt)

I−1]

E[I]
. (8)

Proof: Partitioning the probability space into n mutually

exclusive events, we get:

p(t) =
∑

v∈V

P (Xt ∈ Ut−1, Xt = v)

=
∑

v∈V

P (Xt = v|v ∈ Ut−1)P (v ∈ Ut−1). (9)

Using (4) and (5) in (9), we get:

p(t) ≈
∑

v∈V

I(v)

T − t+ 1
(1− ǫt)

I(v)

≈
1

T

∑

v∈V

I(v) (1− ǫt)
I(v)−1

. (10)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

graph fraction

p
(t

)

simulation
model

(a) IRLbot host graph

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

graph fraction

p
(t

)

simulation
model

(b) WebBase web graph

Fig. 3: Comparison of p(t)-model and simulation on graphs.

Since
∑

v∈V f(I(v)) = nE[f(I)] by our definition of I,

T = nE[I], and as before (t− 1)/T ≈ ǫt, (10) produces (8).

The results below follow immediately from Theorem 2.

Lemma 1. The expected sizes of the seen and unseen sets at

time t are respectively:

E[|St|] = n− nE
[

(1 − ǫt)
I
]

, (11)

E[|Ut|] = nE
[

(1− ǫt)
I
]

. (12)

Proof: The size of the unseen set at time t is:

|Ut| =
∑

v∈V

1v∈Ut
, (13)

which, after taking expectation on both sides becomes:

E[|Ut|] =
∑

v∈V

P (v ∈ Ut) =
∑

v∈V

(1 − ǫt)
I(v) = nE

[

(1− ǫt)
I
]

.

Then, E[|St|] is given by E[|St|] = n−E[|Ut|] which leads

to (11).

In Fig. 2(a) and 2(b), the p(t) model in (8) is compared

against simulation on binomial and Zipf (α = 1.5) frequency

distributions of the keys. It is apparent the model accurately

captures the uniqueness probability in both cases. Note that the

p(t) behavior in the two cases is quite different. In the binomial

case, p(t) decreases exponentially. On the other hand, it drops

more rapidly for the Zipf distribution in the beginning and

then settles to a much slower (power-law) decay. In addition,

Fig. 2(c) and 2(d) examine (11) in the same two scenarios and

show this model to be accurate as well.

Next, we evaluate the p(t) model on two real-world data sets

– a host-level out-graph produced by IRLbot [6] and a URL

out-graph of WebBase [11], both dating back to June 2007.

The former contains 640M nodes, 6.8B edges and occupies

55GB of disk space. The latter contains 667M nodes, 4.2B

edges and takes 32GB on disk. The graphs are represented

using adjacency lists (xi, yi1, yi2, . . .), where yik is the k-

th out-neighbor of xi and all node IDs are 64-bit hashes.

In the file, neighbors {yik}k appear in numerically ascending

order and so do source nodes {xi}i. We use these workloads

throughout the rest of the paper for different experiments,

where the edges are processed by sequentially scanning the

graph.

3

Fig. 3 shows a comparison between model (11) and simu-

lations of the uniqueness probability in the observed neighbor

labels {yik}. These experiments demonstrate that (8) accu-

rately predicts the observed p(t) values. Armed with these

results, we next model MapReduce overhead.

IV. MAPREDUCE ANALYSIS

We assume that the value field in each key-value pair is

a scalar. As a result, pairs (v, a) and (v, b) are reduced using

some combiner function θ(.) to a single pair (v, θ(a, b)), where

θ(a, b) remains a scalar. Suppose each key and value take

K and D bytes, respectively. The input workload contains

T key-value pairs and thus occupies T (K +D) bytes. Let I
denote the amount of disk spill from all the cycles and R, the

size of RAM. The final output from the merge phase is a list

consisting of n records, where there is one record for each

distinct key. Since the disk spills are written in the sort phase

and then read back in the merge phase, the total amount of

I/O is:

W = (K +D)(T + n+ 2I). (14)

To verify the derived models below, we use a simple

MapReduce task – computing the earliest time t at which

each node v is first encountered among out-neighbors {yik}.

This task requires maintaining a time-stamp during the scan

of the graph for each seen node v. The combiner function

simply computes the minimum of the values, i.e., θ(t1, t2) =
min(t1, t2). As an example, suppose a URL v contains

three in-edges, which are seen by MapReduce at times t =
5, 100, 105. Then, the mapper emits pairs (v, 5), (v, 100) and

(v, 105). Now, the output of the MapReduce task is (v, 5),
which is obtained by combining values 5, 100, 105. Note that

the naive method of keeping all nodes with their minimum

time-stamp in memory will not work when the graph is large.

In each cycle of a merge-sort MapReduce, the key-value

pairs are read from the stream and copied to an array in RAM.

When the array is full, it is sorted by the key, duplicates are

removed via θ(·), and the result is written to disk as a sorted

run. This process continues for a number of cycles until the

entire input is consumed. After that, all sorted runs are merged

again using θ(·) and finally the resulting pairs are saved to

disk.

A. Disk I/O

We start by computing the total disk I/O of a merge-sort-

based MapReduce computation.

Theorem 3. The amount of read/write I/O in a sort-merge

MapReduce with a scalar combiner is:

W =
nR

m

{

E[I] + 1 +
2

ǫm

(

1− E
[

(1 − ǫm)I
])

}

, (15)

where RAM capacity m = R/(K +D).

Proof: Since each record takes K + D bytes, the array

in RAM of size R bytes can house m = R/(K +D) pairs.

25 50 75 100 125 150 175 200
0

100

200

300

RAM capacity m (million pairs)

s
o

rt
e

d
 r

u
n

s
 k

simulation
model

(a) IRLbot host graph

25 50 75 100 125 150 175 200
0

100

200

300

RAM capacity m (million pairs)

s
o

rt
e

d
 r

u
n

s
 k

simulation
model

(b) WebBase web graph

25 50 75 100 125 150 175 200
125

150

175

200

RAM capacity m (million pairs)

d
is

k
 I

/O
 W

 (
G

B
)

simulation
model

(c) IRLbot host graph

25 50 75 100 125 150 175 200
65

70

75

80

85

RAM capacity m (million pairs)

d
is

k
 I

/O
 W

 (
G

B
)

simulation
model

(d) WebBase web graph

Fig. 4: Sorted runs and disk I/O in merge sort MapReduce.

Therefore, the number of sorted runs is:

k = ⌈
T

m
⌉ = ⌈

T (K +D)

R
⌉. (16)

Since each sorted run is effectively the seen set produced

from a stream of length m, it contains:

E[|Sm|] = n− nE
[

(1− ǫm)
I]
, (17)

pairs on the average. Hence, the total number of pairs in k
sorted runs is:

I = k ·E[|Sm|] = nk − nkE
[

(1− ǫm)
I]

=
n

ǫm

(

1− E
[

(1− ǫm)
I]
)

, (18)

where the last step follows by using k = T/m = 1/ǫm instead

of ⌈T/m⌉ for simplicity. Then, we get (15) from (14).

Note in (15) that W is far from linear in input size T or

RAM size R, which were assumed in existing literature [1],

[5], [7], [15]. Fig. 4 compares models (15) and (16) against

simulations in both graphs. It is evident that both models are

accurate.

B. Sorting Time

Using the above model for disk I/O, we now examine the

total time for the sort/de-duplication phase. Assume that the

average time for sorting m pairs is δm seconds, where δm =
Θ(m logm). Furthermore, suppose the disk speed (both read

and write) is ρ bytes/second. After sorting, only unique items

in each array are written to disk after applying θ(·). We call

the delay of this operation serialization time and denote it by

ξm. Note that this time is linear in m (i.e., ξm = O(m)). Now,

the total time for completing the sort and de-duplication is:

M1 =
1

ρ
(K +D)(T + I) + k(δm + ξm). (19)

4

50 75 100 125 150 175 200
820

830

840

850

RAM capacity m (million)

ti
m

e
 M

1
 (

s
e

c
)

simulation
model

(a) 500 MB/s disk

50 75 100 125 150 175 200
670

690

710

730

RAM capacity m (million)

ti
m

e
 M

1
 (

s
e

c
)

simulation
model

(b) 2500 MB/s disk

Fig. 5: Total time (19) for the sort phase in Merge Sort

MapReduce.

In the above, the sorting time δm and ξm are determined

for a particular m by just running one of the k cycles of the

entire operation. All other parameters (e.g., ρ, m, K , D) are

known due to the hardware configuration and the MapReduce

task at hand.

To verify (19), we again compute the earliest time when

each node in the IRLbot graph is seen. We vary the array

capacity m from 50M to 200M pairs and each time run the

entire sort/deduplication. We measure the completion time for

two different disk read/write speeds ρ: 500 MB/s and 2500
MB/s. Fig. 5 shows a comparison between the model and

measured times for the two configurations. The experiments

demonstrate that the model closely predicts the runtime in both

cases.

C. Merge Time

After the sort phase finishes, the merge phase combines

all sorted runs. Let the merge speed be γm pairs per second.

Therefore, the total time for this phase is:

M2 =
1

ρ
(K +D)(n+ I) +

I

γm
, (20)

where the first term is for disk I/O and the second for merging

the sorted runs.

Now, the merge rate γm depends on the algorithms and data

structures that are used for merging, and more importantly

on m. In our design, we use a selection tree [4], which

is known to roughly perform ⌈log2 k⌉ comparison for each

key in the input stream, where k is the number of sorted

runs. But when merging multiple sorted runs from the same

stream, many of them contain keys that are also present in

other runs. Since the merge phase de-duplicates these repeated

keys, the estimate ⌈log2 k⌉ can be much different from the

actual number of comparisons. In the following, we develop a

more accurate model for the number of comparisons by taking

de-duplications at each node of the tree into consideration.

Unlike multi-pass merging, where groups of files are merged

recursively due to memory constraints, here input is processes

in one pass.

The structure of the selection tree is shown in Fig. 6(a),

which is a strictly binary tree and there is one leaf node for

every sorted run. Therefore, the 5-th sorted run in Fig. 6 is

merged at level 2 instead of level 4. Let Zi denote the i-th

Z{1,5}

Z{1,4}

Z1 Z2 Z3 Z4

Z5

Z{1,2} Z{3,4}

1 m 2m 3m 4m T=5m

 Input Stream

(a) selection tree

5 10 15 20
0

1

2

3

4

sorted runs (50M pairs each)

m
e
rg

e
 s

iz
e
 (

G
B

)

simulation
model

(b) output pairs (23)

Fig. 6: Structure of the selection tree and merged output size.

sorted run, which is the results of processing m pairs in the

input stream. From (5), the probability for a key v to be present

in Zi is:

P (v ∈ Zi) = 1− p(v,m) = 1− (1− ǫm)
I(v)

. (21)

Let Z{1,τ} denote the set of pairs obtained after merging

sorted runs Z1, Z2, . . . , Zτ . Since each sorted run spans m
pairs in the stream, τ sorted runs span mτ pairs. Therefore,

the probability of v being present in any of the τ runs is:

P

(

v ∈

τ
⋃

i=1

Zi

)

= P (v ∈ Z{1,τ}) = 1− (1− ǫmτ)
I(v) ,

(22)

which leads to the size of Z{1,τ}:

E
[∣

∣Z{1,τ}

∣

∣

]

=
∑

v∈V

(

1− (1− ǫmτ)
I(v)

)

= n− nE
[

(1− ǫmτ)
I]
. (23)

Note that the above relation holds not just for the sets

Z1, . . . , Zτ , but also for any combination of τ sorted runs,

as long as they span mτ pairs in the original stream. Fig.

6(b) compares model (23) against simulation on the IRLbot

graph using RAM capacity m = 50M pairs, where we measure

the number of key-value pairs in merged files obtained by

combining a different number of randomly selected sorted

runs. The comparison shows that the model is accurate.

Experiments with other m values provide similarly accurate

results.

Since the model in (23) enables computing the size of

the sets Z{1,x} for any x, we can compute the number of

comparisons performed in each internal node in the selection

tree. As an example, the node labeled Z{1,2} in Fig. 6(a)

does E[|Z1|]+E[|Z2|] = 2E[|Z1|] comparisons, but produces

E[|Z{1,2}|] pairs for the parent node Z{1,4}, which ultimately

compares 2E[|Z{1,2}|] = 4E[|Z1|] pairs. Thus, for a complete

binary selection tree with depth d that merges k sorted runs

5

8 16 32 64 128
0

10

20

30

sorted runs

c
o

m
p

a
ri
s
o

n
s
 (

b
ill

io
n

)

simulation
model
naive model

(a) merge comparisons

50 75 100 125 150 175 200
10

15

20

25

30

RAM capacity m (million pairs)

m
e

rg
e

 r
a

te
 γ

m
 (

m
ill

io
n

 p
a

ir
s
/s

e
c
)

simulation
model

(b) merge speed γm

Fig. 7: Merge model and simulation.

(i.e., d = log2 k), the total number of comparisons is:

Ck =

d
∑

i=1

k

2i−1
E
[

|Z{1,i}|
]

= nk

d
∑

i=1

1

2i−1

(

1− E
[

(1− ǫim)I
])

. (24)

On the other hand, the naive method that does not consider

de-duplication of keys suggests the number of comparison to

be same in each level. Thus, the number of comparisons in

this case is:

Ĉk = d · I = dkE
[

|Z1|
]

. (25)

In Fig. 7(a), we compare model (24) and the naive model

(25) against simulation on the IRLbot graph with RAM

capacity m = 50M pairs. The experiment shows that as we

have more sorted runs, the number of comparisons estimated

by (25) increasingly deviates from the correct values. On the

other hand, our model (24) predicts the actual number of

comparisons very accurately.

In Fig. 7(b), we compare the derived merge rates γm against

simulation on the IRLbot graph under various RAM capacities.

We assume that the merge rate is inversely proportional to

the total number of comparisons done in the selection tree.

First, the entire graph is merge-sorted using m = 200M pairs,

and the measured merge rate (without considering the time

for disk I/O) is considered as the reference rate. Then, the

merge rates for the other RAM capacities are computed from

the corresponding selection tree structures and lengths of the

sorted runs (24). Fig. 7(b) shows that the model is in close

agreement with the observed results.

Fig. 8(a) shows the time for the merge phase when disk read

and write speed are both 500 MB/s, while Fig. 8(b) shows

the same with 2500 MB/s read/write speed. Both experiments

show that the computed models are accurate. Notice that in

both cases, the observed time is higher for smaller RAM

capacities. Since there are many sorted runs in these cases

(e.g., 137 runs for m = 50M), reading them from disk

concurrently causes non-trivial latencies during disk seeking,

leading to longer runtime than captured in the model.

V. CONCLUSION

In this paper, we proposed analytical models for a com-

monly used merge-sort MapReduce and established that per-

50 75 100 125 150 175 200
100

200

300

400

500

RAM capacity m (million pairs)

m
e

rg
e

 t
im

e
 M

2
 (

s
e

c
)

simulation
model

(a) 500 MB/s disk

50 75 100 125 150 175 200
100

200

300

400

RAM capacity m (million pairs)

m
e

rg
e

 t
im

e
 M

2
 (

s
)

simulation
model

(b) 2500 MB/s disk

Fig. 8: Total time (20) for the merge phase.

formance metrics (i.e., runtime and resource usage) depend

non-linearly on workload properties and hardware configu-

rations. These models are useful in forecasting performance

without the help of expert knowledge and ad-hoc parameter

choices. The models are based on the uniqueness probability

(8), which in conjunction with other formulations have signifi-

cance beyond MapReduce analysis. Our merge-rate model for

selection trees is novel as well. In future, we plan to extend

our analysis to multi-core and parallel MapReduce designs.

REFERENCES

[1] J. Berlinska and M. Drozdowski, “Scheduling Divisible MapReduce
Computations,” Journal of Parallel and Distributed Computing, vol. 71,
no. 3, pp. 450 – 459, Mar. 2011.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in Proc. USENIX OSDI, Dec. 2004, pp. 137–150.

[3] H. Herodotou, “Hadoop performance models,” arXiv preprint

arXiv:1106.0940, 2011.
[4] J. Katajainen and T. A. Pasanen, “In-place Sorting with Fewer Moves,”

Information Processing Letters, vol. 70, no. 1, pp. 31 – 37, 1999.
[5] E. Krevat, T. Shiran, E. Anderson, J. Tucek, J. J. Wylie, and G. R.

Ganger, “Applying Performance Models to Understand Data-Intensive
Computing Efficiency,” DTIC Document, Tech. Rep., 2010.

[6] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov, “IRLbot: Scaling to
6 Billion Pages and Beyond,” Texas A&M University, Tech. Rep. 2008-
2-2, Feb. 2008. [Online]. Available: http://irl.cs.tamu.edu/publications/.

[7] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy, “A Platform
for Scalable One-Pass Analytics Using Mapreduce,” in Proc. ACM

SIGMOD, Jun. 2011, pp. 985–996.
[8] Y. Mao, R. Morris, and M. F. Kaashoek, “Optimizing MapReduce for

Multicore Architectures,” Computer Science and Artificial Intelligence

Laboratory, Massachusetts Institute of Technology, Tech. Rep, 2010.
[9] J. McCabe, “On Serial Files with Relocatable Records,” Operations

Research, vol. 13, pp. 609–618, 1965.
[10] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,

“Evaluating MapReduce for Multi-core and Multiprocessor Systems,” in
Proc. IEEE HPCA, 2007, pp. 13–24.

[11] The Stanford WebBase Project. [Online]. Available: http://dbpubs.
stanford.edu:8091/∼testbed/doc2/WebBase/.

[12] F. Tian and K. Chen, “Towards Optimal Resource Provisioning for Run-
ning MapReduce Programs in Public Clouds,” in Proc. IEEE CLOUD,
2011, pp. 155–162.

[13] D. Tiwari and D. Solihin, “Modeling and Analyzing Key Performance
Factors of Shared Memory MapReduce,” in Proc. IEEE IPDPS, 2012,
pp. 1306–1317.

[14] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic
Resource Inference and Allocation for Mapreduce Environments,” in
Proc. ACM ICAC, 2011, pp. 235–244.

[15] X. Yang and J. Sun, “An Analytical Performance Model of MapReduce,”
in Proc. IEEE CCIS, Sep. 2011, pp. 306–310.

6

