
IMR-Pathload: Robust Available Bandwidth
Estimation under End-Host Interrupt Delay

Seong-Ryong Kang and Dmitri Loguinov

Texas A&M University, College Station, TX 77843, USA
{skang,dmitri}@cs.tamu.edu

Abstract. Many paths in PlanetLab cannot be measured by Pathload.
One of the main reasons for this is timing irregularities caused by inter-
rupt moderation of network hardware, which delays generation of inter-
rupts for a certain period of time to reduce per-packet CPU overhead.
Motivated by this problem, we study Pathload in detail under various
end-host interrupt delays and find that its trend detection mechanism be-
comes susceptible to non-negligible interrupt delays, making it unable to
measure network paths under such conditions. To overcome this, we pro-
pose a new method called IMR-Pathload (Interrupt Moderation Resilient
Pathload), which incorporates robust trend detection algorithms based
on signal de-noising techniques and reliably estimates available band-
width of network paths under a wide range of interrupt delays. Through
experiments in Emulab and Internet, we find that IMR-Pathload sub-
stantially improves Pathload’s measurement reliability and produces ac-
curate bandwidth estimates under a variety of real-life conditions.

Key words: Bandwidth estimation, network measurement, interrupt
moderation, and interrupt delays

1 Introduction

Bandwidth of Internet paths is an important metric for applications. Extensive
research has been conducted over the years and the vast majority of work in this
area focuses on end-to-end measurement. Although several techniques [4], [13],
[11], [12], [14] attempt to measure capacity of the narrow link (i.e., the slowest
link in a path) or both capacity and available bandwidth of the tight link (i.e.,
link with the smallest available bandwidth over a path), many measurement
techniques and public tools (such as [6], [9], [16]) have been developed to esti-
mate available bandwidth of the tight link. These methods mainly focus on fast
estimation with high accuracy under a various traffic conditions. However, since
the ultimate goal of bandwidth estimators is to measure diverse Internet paths,
before being a full-blown measurement tool, it is highly desirable that tools are
resilient to timing irregularities caused by various OS scheduling delay jitter or
hardware interrupt moderation in real networks.

Note that to accurately measure bandwidth, all existing methods heavily rely
on high-precision delay measurement of probe packets at end-hosts. However, ir-
regular timing due to interrupt moderation at network interface cards (NICs)

has been identified as the major problem of existing bandwidth estimation tools
in practice [15]. To reduce the effect of interrupt moderation, recent tools such as
Pathchirp [16] and Pathload described in [15] incorporate mechanisms that aim
to “weed out” packets affected by interrupt delays. However, Pathchirp requires
manual modification to force it to send (often substantially) more probing pack-
ets to obtain an accurate estimate, prolonging measurement undesirably. On the
other hand, Pathload attempts to filter out affected packets without increasing
the number of probing packets, which unfortunately has a limited effect when in-
terrupt delays become non-trivial. This makes Pathload’s estimation much more
susceptible to error, which happens fairly often in practice.

To address the above filtering problem without increasing measurement du-
ration, we investigate Pathload’s internal algorithm and find that its estimation
instability with non-negligible interrupt delays stems from its delay-trend de-
tection mechanism that is not robust under bursty packet arrival introduced
by network hardware. To overcome this, we introduce two trend-detection algo-
rithms based on signal de-noising techniques such as wavelet decomposition and
window-based averaging and call the new method IMR-Pathload (Interrupt Mod-
eration Resilient Pathload). Through experiments in Emulab [5] under various
network settings, we find that IMR-Pathload significantly improves Pathload’s
performance in a wide range (0−500 µs) of interrupt delays δ. Especially, under
non-trivial interrupt delays (e.g., δ > 125 µs), while Pathload fails to produce
estimates for any of the paths studied in this paper, IMR-Pathload measures
their available bandwidth with over 88% accuracy. Internet experiments also
confirm that IMR-Pathload reliably produces bandwidth estimates even for the
paths that are not measurable by Pathload.

2 Related Work

A number of techniques have been proposed to measure available bandwidth of
network paths [6], [9], [16], which sends N back-to-back packets and discover a
relationship between sending rates at the sender and the corresponding receiving
rates at the receiver to produce bandwidth estimates of the paths. Among them,
we discuss two promising tools that use mechanisms to mitigate the effect of
interrupt moderation.

Pathchirp [16] uses packet-trains (called chirps) with exponentially decreas-
ing inter-packet spacings in each chirp and infers available bandwidth using the
queuing delay signature of arriving chirps. The basic idea behind this method
is that when a transmission rate rk of a packet k in a chirp reaches available
bandwidth of a path under consideration, then subsequent packets j > k in
the chirp will exhibit increasing queueing delay. Hence, available bandwidth of
the path is the rate rk of the packet k whose queueing delay starts increasing.
To overcome the packet-timing problem introduced by end-host interrupt mod-
eration, Pathchirp increases the number of probing packets in each chirp by a
manually selected amount and uses only those packets that (ideally) have not
been affected by interrupt delays.

2

Different from Pathchirp, Pathload [9] sends a fleet of packet-trains with
a fixed rate and adjusts the sending rate for the next fleet based on delay-
trend information provided by the receiver. Pathload searches for an available
bandwidth range by increasing or decreasing the sending rate of probe-trains in
a binary search fashion according to trend information. Although Pathload can
reduce the effect of interrupt delays without increasing the number of packets in
each probe-train, its algorithm is effective only under small interrupt delays.

3 Issues of Interrupt Delay in Bandwidth Measurement

As use of interrupt moderation has become a common practice in modern net-
work settings, host machines in real networks may employ interrupt delays that
vary widely in order to reduce CPU utilization and to increase network through-
put. It is reported in [7] that the range of interrupt delays recommended for
Intel Gigabit NIC (GbE) is 83 − 250 µs for Microsoft Windows-based systems
and 125 − 1000 µs for Linux-based systems. Jin et al. [10] also report that a
variety of systems equipped with Gigabit NICs require to delay generation of
interrupts over 470 µs to achieve good throughput in receiving high-speed TCP
streams and to substantially reduce CPU utilization. The question we have now
is how this wide range of interrupt delays affects Pathload’s bandwidth estima-
tion. We discuss this issue next.

3.1 Impact of Interrupt Delay

To investigate the potential impact of interrupt moderation on Pathload, we
conduct experiments in Emulab [5] for different interrupt delays at the receiver1.
We start by describing the experimental setup.

Experimental Setup For this investigation, we use a topology shown in Fig. 1,
in which source PS sends probe data to the destination PR through five routers
R1 −R5. Nodes Si (i = 1, 2, 3, 4) send cross-traffic packets to destination nodes
Di at an average rate λi. The speed of all access links is 100 Mb/s (delay 10
ms) and the remaining links Li (i = 1, 2, 3, 4) between routers Ri and Ri+1 have
capacities Ci and propagation delay 40 ms.

To examine Pathload’s estimation reliability, we use six different network
settings shown in Table 1, which lists the capacity Ci and available bandwidth
Ai of each link Li for different experimental scenarios. The shaded values in
each row represent the tight-link capacity and available bandwidth of the path
for each case. The values in square brackets represent the capacity of the narrow
link (i.e., bottleneck bandwidth) for each case.

In all experiments, we use TCP cross-traffic generated by Iperf traffic gen-
erators [8] to load network paths. For this purpose, we run 100 threads in each
cross-traffic source Si to generate TCP flows that are injected into routers R1,
1 In Emulab, users can change configuration of network cards.

3

R1 R2 R3
C1 C2

R4 R5
C3 C4

PRPS

S2 D2 S3 D3

S4 D4 D

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

S1

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

Fig. 1. Evaluation topology in Emulab.

Table 1. Evaluation Setup

Experimentation Different link bandwidths (Mb/s)

scenarios C1 A1 C2 A2 C3 A3 C4 A4

Case-I 75 31.84 90 51.69 90 42.05 [60] 40.77

Case-II 75 41.32 90 70.76 90 46.77 [60] 26.39

Case-III [60] 35.88 90 70.76 [90] 23.39 75 18.10

Case-IV [60] 21.60 90 65.99 90 42.07 75 36.72

Case-V [60] 50.25 90 61.17 90 41.99 75 50.86

Case-VI 75 28.97 90 37.8 90 13.86 [60] 31.22

R2, and R3 and keep the utilization of each router Ri according to the values
shown in Table 1. To maintain a fixed average utilization at each link in ex-
periments, we place an additional (auxiliary) router (not shown in the figure)
between node S1 and router R1, S2 and R1, S3 and R3, and S4 and R2 to limit
the aggregate sending rate of the TCP flows to the capacity of the additional
router. The utilization of Ri is controlled by properly setting the capacity of the
auxiliary router.

Estimation Reliability Using the above setup, we run Pathload with 4 differ-
ent values of interrupt delays δ. To demonstrate estimation accuracy, we define
the following relative error metric: eA = |A − Ã|/A, where A is the true avail-
able bandwidth of a path and Ã is its estimate. We report estimation results for
each case in Table 2, which show relative estimation errors eA of available band-
width. As the table shows, with relatively small interrupt delays (e.g., δ ≤ 100
µs), Pathload estimates available bandwidth of the tight link with over 80% ac-
curacy for all cases studied in this paper. Note, however, from the table that
when δ becomes larger than 125 µs, it is unable to produce estimates for any of
the cases as shown in the table as empty cells, which suggests that its algorithm
is susceptible to non-trivial interrupt delays. We also conduct experiments with
δ = 250 and 500 µs and confirm its inability, but omit these results for brevity.

4

Table 2. Pathload’s Measurement in Emulab

Interrupt Evaluation scenario

delay δ Case-I Case-II Case-III Case-IV Case-V Case-VI

0 µs 9.45% 8.00% 7.57% 6.48% 16.58% 15.01%

100 µs 1.44% 8.52% 14.9% 5.74% 3.6% 20.74%

125 µs −− −− 15.01% −− −− 34.65%

> 125 µs −− −− −− −− −− −−

Next, we investigate Pathload’s internal algorithm in detail and identify what
causes its measurement to be unstable under non-negligible values of δ.

3.2 Analysis

Recall that Pathload [9] sends back-to-back packets in a train of size N = 100
with a fixed rate R and examines one-way delay2 (OWD) of each packet in the
probe-train in order to identify a trend exists in the time-series delay data. Based
on OWD delay trend, Pathload determines whether the current rate R is faster
than the available bandwidth of the path under investigation. Hence, proper
detection of OWD trend in a probe-train is crucial for it to produce an accurate
and reliable bandwidth estimate of the path.

Note that Pathload first perform ADR (Asymptotic Dispersion Rate) prob-
ing by sending a single packet-train and checks interrupt moderation, which
it detects when more than 60% of packets in a probe-train have been received
back-to-back (with zero or negligible inter-packet delay). If interrupt moderation
is detected, Pathload first eliminates such coalesced packets from the received
train. Then, it directly performs PCT (Pairwise Comparison Test) and PDT
(Pairwise Difference Test) on the remaining data if the number of remaining
packets is no less than 5. Recall that the PCT metric represents the fraction
of consecutive OWD pairs that are increasing, while the PDT metric quantifies
how strong the difference between the first and last OWDs in the data set is.
Define Xj to be the one-way delay of a packet j in a set of size n. Then, the
PCT and PDT metrics3 are given by [9]:

PCT =
1

n− 1

n∑

j=2

I(Xj > Xj−1), PDT = (Xn −X1)/
n∑

j=2

|Xj −Xj−1|, (1)

where I(Y) is one if Y holds, zero otherwise.
On the other hand, when Pathload does not detect interrupt moderation

from the initial check, it first eliminates back-to-back packets from the probe-
train just like the previous case. If the number of remaining packets is no smaller
2 One-way delay of a packet is defined as the difference between its arrival time at the

receiver and the corresponding sending time at the sender.
3 Pathload [9] determines OWDs as “increasing” if PCT > 0.66, “non-increasing” if

PCT < 0.54, or “ambiguous” otherwise. Similarly, it identifies OWDs as “increasing”
if PDT > 0.55, “non-increasing” if PDT < 0.45, or “ambiguous” otherwise.

5

0 50 100
0

500

1000

1500

2000

Probe packet ID
R

el
at

iv
e

O
W

D
 (µ

se
c)

(a) OWD (original)

0 10 20 30
0

500

1000

1500

2000

Probe packet ID

R
el

at
iv

e
O

W
D

 (µ
se

c)

(b) Sampled OWD

Fig. 2. Relative OWDs obtained using the path in case I (A = 31 Mb/s).

than 36, then Pathload selects OWDs from the remaining packets using median-
based sampling (see [9] for details) and applies the PCT and PDT tests to the
sampled OWDs.

To assess Pathload’s trend detection mechanism, we conduct experiments for
Case I with interrupt delay δ = 250 µs. In this example, we collect one-way delay
data by running Pathload with a fixed rate R = 38 Mb/s and examine how its
internal algorithm specifies a delay-trend existing in OWDs. Fig. 2(a) illustrates
relative OWDs (one-way delays subtracted by their minimum value) obtained
by sending packet trains at 38 Mb/s over the path in case I (available bandwidth
A = 31 Mb/s). Note in the figure that OWDs exhibit an increasing trend over
all even though they decrease in a small-scale burst (successive OWDs in the
same burst decrease if the latency for transferring a packet from NIC to the user
space at the receiver is smaller than the inter-packet dispersions exiting NIC
at the sender [15]). Since the PCT and PDT tests cannot accurately detect a
trend present in this kind of coalesced data, Pathload first removes coalesced
packets before applying the PCT and PDT tests. Fig. 2(b) shows remaining
OWDs after eliminating the coalesced packets. However, even with the data
shown in Fig. 2(b), Pathload is unable to detect the increasing trend present
in the data since its trend-test produces PCT = 0.5 and PDT = 0.11. This
indicates that Pathload’s trend-detection mechanism is not robust under the
presence of coalesced packets due to interrupt delays.

Note that Pathload often discards entire packet-trains even with strong pres-
ence of a trend in the data due to its inability to detect the trend accurately.
Although more extensive evaluations are required to confirm our findings, we
believe that Pathload’s inaccuracy in trend detection is the major problem that
makes it unlikely to be successful in real networks.

4 IMR-Pathload

Motivated by the difficulty of characterizing delay variations in measured noisy
OWD data, we study noise-filtering techniques such as wavelet-based signal pro-
cessing and window-based averaging and explore their applicability in reliably
identifying a trend from the data. In what follows below, we first investigate

6

0 5 10 15
0

2

4

6

8

S
ca

le
 c

oe
ffi

ci
en

ts

Coefficient ID

(a) Wavelet

0 5 10
500

1000

1500

2000

Averaging window ID

A
ve

ra
ge

 o
f r

el
at

iv
e

O
W

D
s

(b) Average

Fig. 3. Wavelet coefficients and 10-packet window averages of relative OWDs shown
in Fig. 2(a).

wavelet-based signal processing techniques that are widely used in removing
noise from various data sets obtained empirically [2]. To overcome the effect of
interrupt delays on trend detection, we apply a simple multi-level discrete wavelet
transform [1] to OWDs before performing PCT- and PDT-based trend-test.

Note that in the multi-level wavelet decomposition, each stage consists of
scale and wavelet filters followed by down-sampling by a factor of 2 and separates
an input signal into two sets of coefficients: scale and wavelet coefficients. The
wavelet coefficients represent a noise component in the input signal and thus are
not processed further. On the other hand, the scale coefficients are applied to the
two filters in the next level as an input to further reduce noise that might still
exist in the scale coefficients from the previous stage. As a decomposition level
increases, the frequency of wavelets used in filters decreases, capturing lower
frequency components present in the original signal.

For experiments in this section, we use the family of Daubechies wavelets [3],
which are well known standard wavelets (other wavelets can be used, but perfor-
mance comparison among different wavelets is beyond the scope of this paper).
Specifically, we use Daubechies’ length-4 wavelets, whose scale filter coefficients
are given by h0 = 1+

√
3

4
√

2
, h1 = 3+

√
3

4
√

2
, h2 = 3−√3

4
√

2
, and h3 = 1−√3

4
√

2
, while its

wavelet filter coefficients are g0 = h3, g1 = −h2, g2 = h1, and g3 = −h0.
Assume that a sequence s0, s1, . . . , sn−1 is an input to the j-th stage filters.

Define cAj,k and cDj,k (where k = 0, 1, . . . , n/2) to be the scale and wavelet
coefficients produced at level j, respectively. Then, cAj,k and cDj,k are given by:

cAj,k = h0s2k + h1s2k+1 + h2s2k+2 + h3s2k+3 (2)
cDj,k = g0s2k + g1s2k+1 + g2s2k+2 + g3s2k+3. (3)

Note that when k ≥ n/2−1, there are not enough data in the input sequence to
compute the coefficients using (2) and (3). This is known as a boundary condition
[17], which requires a special treatment that adds more data points to the input
sequence (in this paper, we add the last value if necessary).

To demonstrate the effect of wavelet decomposition on trend detection, we
decompose OWDs shown in Fig. 2(a) up to level 3 and plot in Fig. 3(a) the scale
coefficients that represent the trend component of OWD data. Applying the

7

Table 3. Emulab Experiment

Estimation Interrupt Evaluation scenario

method delay δ Case-I Case-II Case-III Case-IV Case-V Case-VI

IMR-Pathload (wavelet) 0 µs 2.46% 1.23% 3.47% 2.69% 3.71% 6.52%

100 µs 6.47% 4.5% 3.02% 4.42% 5.98% 12.17%

125 µs 7.21% 2.64% 3.88% 1.32% 6.1% 10.77%

500 µs 5.12% 2.17% 6.78% 3.24% 7.23% 5.56%

IMR-Pathload (average) 0 µs 2.07% 2.24% 2.1% 2.18% 9.67% 5.05%

100 µs 0.19% 0.71% 11.69% 1.32% 4.19% 6.82%

125 µs 1.44% 1.82% 12.58% 1.59% 2.64% 7.89%

500 µs 4.43% 4.59% 9.27% 2.55% 8.95% 6.48%

same PCT and PDT tests to the scale coefficient data, we get PCT = 0.75 and
PDT = 0.78, which means that OWDs exhibit an increasing trend according to
the criteria used in Pathload (recall that Pathload fails to detect this increasing
trend as discussed in §3.2).

Next, we explore how window-based averaging improves trend detection in
noisy data. In this approach, we take the average of OWDs in a window of
size k (k-packet sliding window). Using a smaller window makes trend-detection
susceptible to a larger interrupt delay since it may not sufficiently remove noise
from OWDs (we leave optimal selection of window size as future work). For this
example, we employ k = 10 and plot in Fig. 3(b) 10-packet window averages
of relative OWDs shown in Fig. 2(a), which clearly shows an increasing trend.
With these averaged OWDs, we get PCT = 0.8 and PDT = 0.74, which leads
us to conclude that an increasing trend exists in the measured data.

We incorporate the above trend-detection mechanisms into Pathload and call
it IMR-Pathload (Interrupt Moderation Resilient Pathload). We then evaluate
it in Emulab and PlanetLab in the following section.

5 Performance Evaluation

5.1 Emulab Experiments

We investigate estimation accuracy of IMR-Pathload for different interrupt de-
lays and report its relative estimation errors eA in Table 3. As the table shows,
IMR-Pathload produces available bandwidth estimates for all cases with 88−99%
accuracy, which is significantly better than that of Pathload (see Table 2). Notice
in the table that even with a large interrupt delay δ = 500 µs, IMR-Pathload
measures the paths within eA = 10% error in all studied cases (recall that
Pathload can measure none of the paths if δ > 125 µs as discussed in §3.1).

5.2 Internet Experiments

In this section, we report experimental results obtained by measuring several
Internet paths between Universities and a HP Lab in U.S. Measurement hosts

8

Table 4. Internet Experiment

Internet Method Available bandwidth estimates (Mb/s)

paths 9− 10 am 12− 1 pm 3− 4 pm 7− 8 pm 11− 12 pm

HP → Wustl IMR-Pathload 12.2 11.9 13 12.8 13.1

Pathload −− −− −− −− −−
UMD → HP IMR-Pathload 93 92.8 92.3 93.2 94.7

Pathload 95.1 91.7 91.2 93.2 92.6

UMD → TAMU IMR-Pathload 100 98.1 98.3 99.4 98.4

Pathload −− −− −− −− −−
HP → UMD IMR-Pathload 12.9 11.8 13.3 12.3 12.6

Pathload 20 −− 16.9 −− −−

used in this study are located at HP (HP Labs), TAMU (Texas A&M University),
UMD (University of Maryland), and Wustl (Washington University in St Louis).
Note that we choose these paths simply for the convenience of accessibility.
Also note that the purpose of these experiments is not to compare estimation
accuracy of bandwidth estimators since we do not know exact characteristics of
these paths. Instead, we use this example to assess how reliably IMR-Pathload
measures Internet paths compared to Pathload.

For this purpose, we select 5 different periods of time in a day and run IMR-
Pathload and Pathload three times for each time period to measure a particular
path. When a tool produces bandwidth estimates reliably in all three times for
each period, we report their average as its available bandwidth estimate. If the
tool cannot estimate bandwidth at least once in three trials, we consider that
the tool is not able to measure that particular path reliably in that period. For
IMR-Pathload, we test both wavelet- and averaging-based algorithms, but report
only wavelet-based estimates since the other produces similar results.

Table 4 shows bandwidth estimates produced by IMR-Pathload and Pathload.
As the table shows, IMR-Pathload reliably produces available bandwidth esti-
mates for all studied paths in all measurement time periods. Note that for a
path (UMD → HP), Pathload also produces estimates that are similar to those
of IMR-Pathload4. However, Pathload is unable to reliably measure the other
three paths (HP → Wustl, UMD → TAMU, and HP → UMD).

6 Conclusion

This paper studied Pathload under a wide range of end-host interrupt delays
and identified its estimation instability under non-negligible interrupt delays.
We found that Pathload’s instability stems from that its delay-trend detec-
tion mechanism is unreliable when probing packets are coalesced at the re-
ceiver. We overcame this problem using robust trend detection algorithms (called

4 This agrees with the Emulab results, where Pathload shows accuracy that is similar
to IMR-Pathload only if it is able to reliably measure the path (see Tables 2 and 3).

9

IMR-Pathload) and showed using Emulab and Internet experiments that IMR-
Pathload greatly improves measurement stability of Pathload under various net-
work settings.

References

1. C. Burrus, R. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Trans-
forms: A Primer. Prentice-Hall, 1998.

2. P. Craigmile, P. Guttorp, and D. Percival, “Trend Assessment in a Long Mem-
ory Dependence Model Using the Discrete Wavelet Transform,” Environmetrics,
vol. 15, no. 4, pp. 313–335, May 2004.

3. I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets,” Commu-
nications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909–996, Oct. 1988.

4. C. Dovrolis, P. Ramanathan, and D. Moore, “Packet-Dispersion Techniques and a
Capacity-Estimation Methodology,” IEEE/ACM Trans. Netw., vol. 12, no. 6, pp.
963–977, Dec. 2004.

5. Emulab. [Online]. Available: http://www.emulab.net/.
6. N. Hu and P. Steenkiste, “Evaluation and Characterization of Available Bandwidth

Probing Techniques,” IEEE J. Sel. Areas Commun., vol. 21, no. 6, pp. 879–974,
Aug. 2003.

7. Interrupt Moderation Using Intel GbE Controllers. [Online]. Available: http://
download.intel.com/design/network/applnots/ap450.pdf.

8. Iperf – The TCP/UDP Bandwidth Measurement Tool. [Online]. Available: http:
//dast.nlanr.net/Projects/Iperf/.

9. M. Jain and C. Dovrolis, “Pathload: A Measurement Tool for End-to-End Available
Bandwidth,” in Proc. Passive and Active Measurement Workshop, Mar. 2002.

10. G. Jin and B. L. Tierney, “System Capability Effects on Algorithms for Network
Bandwidth Measurement,” in Proc. ACM IMC, Oct. 2003, pp. 27–38.

11. S. Kang, X. Liu, A. Bhati, and D. Loguinov, “On Estimating Tight-Link Band-
width Characteristics over Multi-Hop Paths,” in Proc. IEEE ICDCS, Jul. 2006.

12. S. Kang, X. Liu, M. Dai, and D. Loguinov, “Packet-Pair Bandwidth Estimation:
Stochastic Analysis of a Single Congested Node,” in Proc. IEEE ICNP, Oct. 2004,
pp. 316–325.

13. R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi, “CapProbe: A Simple
and Accurate Capacity Estimation Technique,” in Proc. ACM SIGCOMM, Aug.
2004, pp. 67–78.

14. B. Melander, M. Björkman, and P. Gunningberg, “A New End-to-End Probing and
Analysis Method for Estimating Bandwidth Bottlenecks,” in Proc. IEEE GLOBE-
COM, Nov. 2000, pp. 415–420.

15. R. Prasad, M. Jain, and C. Dovrolis, “Effects of Interrupt Coalescence on Network
Measurements,” in Proc. Passive and Active Measurement Workshop, Apr. 2004.

16. V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell, “pathChirp: Effi-
cient Available Bandwidth Estimation for Network Paths,” in Proc. Passive and
Active Measurement Workshop, Apr. 2003.

17. G. Strang and T. Nguyen, Wavelets and Filter Banks. Wellesley-Cambridge Press,
1996.

10

