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Motivation
• Bandwidth estimation is an important area of 

Internet research
– To understand the characteristics of network paths

– Helps various Internet applications

• Majority of existing work is based on empirical 
studies
– Assume no cross-traffic and/or

– Based on fluid model

• Our work aims to provide stochastic insights on 
this field
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Motivation 2
• Our purpose is not to offer another measurement 

tool

• Instead, we show that
– Single-link case is completely tractable

– Some of the existing methods cannot estimate 
bandwidth under heavy cross-traffic

• We also prove the existence of convergence for 
arbitrary cross-traffic
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Bottleneck Bandwidth 

• The capacity of the slowest link of an end-to-end 
path
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Available Bandwidth

• The smallest average unused bandwidth along 
the end-to-end path

• Available bandwidth: A = 12
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Available Bandwidth 2

• Multi-link case with arbitrary cross-traffic appears 
intractable at this stage
– In this work, we restrict our analysis to a single link

• For an arbitrary cross-traffic arrival process r(t), 
define the average rate of cross-traffic at a link

• Then, available bandwidth is defined as
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Packet-Pair Sampling

• Goal: measure both C and A over a single link 
with any cross-traffic arrival process
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Packet-Pair Sampling 2

• Basic idea
– Send back-to-back probe packets faster than C

– Then, the probe packets are queued directly behind 
each other at the bottleneck link

– The packet spacing between two probe packets are 
expanded due to transmission delay of the second 
packet at the bottleneck router

– At the receiver, measure the inter-packet arrival 
spacing to estimate the capacity C
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Packet-Pair Sampling 3

• Without cross-traffic, inter-packet arrival spacing 
is the same as the transmission delay ¢ of the 
second packet over the link

¢

y     =¢x

• Estimate C as q/y , (q is probe packet size)

• However, cross-traffic can lead to y ? ∆
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Packet-Pair Sampling 4

• If cross-traffic packets arrive between two probe 
packets, inter-arrival spacing is expanded

∆ y =∆ + ωx ω

• This leads to inaccurate estimation of C

• Thus, filtering out the effects of cross-traffic noise 
is key for accurate estimation
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Packet-Pair Sampling 5

• For bottleneck bandwidth estimation
– Many existing studies apply various histogram-based 

methods

– Assume no cross-traffic along the path

• For available bandwidth estimation
– Cross-traffic is considered in the analysis

– However, predominantly assumes fluid model for all 
flows

• In this work, a stochastic queuing model is used 
to analyze the random noise without fluid 
assumption
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Stochastic Queuing Model

• Random process x(n) is the initial spacing 
between n-th and (n-1)-th probe packets

R1 R2S D
xn yn

n nn-1 n-1
• Inter-departure delay y(n)

– ωn is random delay noise
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Stochastic Queuing Model 2
• The distribution of y(n) becomes fairly 

complicate without making prior assumption 
about cross-traffic

• Derive asymptotic results about process y(n)

• Note that y(n) itself does not lead to any 
tractable results
– Observation period of the process is very small

• Thus, define a time-average process Wn to be 
the average of {yi} up to time n:
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Packet-Pair Analysis

• Assume ergodic renewal cross-traffic
– Delays between cross-traffic packets are i.i.d.

arrival rate of cross-traffic

size of cross-traffic packets

random delay noise

• Claim 1: Time-average process Wn converges to:
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Packet-Pair Analysis 2

• Histogram of measured inter-arrival times yn
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• None of CBR samples are located at ¢

• Mean of sampled signal Wn is shifted from ¢

� C = 1.5 mb/s (¢ = 8 ms),              mb/s
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Packet-Train Analysis

• What is a packet-train?
– Bursts of probe packets sent back-to-back

x
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…

n=1n=2

� n is burst number

� k is the size of packet-train, which is the number of 
packets sent at a single burst n
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Packet-Train Analysis 2
• Some studies suggested that packet-train 

measurements converge to the available 
bandwidth 
– By Carter et al. (1996) and Ahlgren et al. (1999)

– No analytical evidence to this effect has been 
presented so far

– Is this really true?

• Other studies used packet-train estimates to 
increase the measurement accuracy
– Dovrolis et al. (INFOCOM 2001)

– Not clear how these samples benefit estimation 
process
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Packet-Train Analysis 3

• Next, we examine packet-train methods 

– Provide statistical insights on this technique 

• Define packet-train samples as the average of 
inter-packet arrival delays within each burst n
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Packet-Train Analysis 4

• Claim 2: For sufficiently large k, constant xn=x, 
and regenerative arrival process of cross-traffic, 
packet-train samples converge to Gaussian 
distribution for large n:

• Next assume renewal cross-traffic

mean
= E[yn]

à tends to zero for large k
as long as Var[Xi] is finite

variance Inter-arrival time 
of cross-traffic
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Packet-Train Analysis 5

• Histograms of measured inter-arrival times 
based on packet-trains with burst lengths k

k = 5 k = 10
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Packet-Train Analysis 6
• Our results in Claim 2 offer statistical explanation 

for prior findings (e.g., Dovrolis et al. INFOCOM 
2001) :
– The histogram of packet-train samples becomes 

unimodal with increased k

– The distribution of packet-train samples exhibits lower 
variance as packet-train size k increase

– Packet-train histograms for large k tend to a single 
mode whose location is “independent of burst size k

• However, there is no evidence that packet-train 
samples measure the available bandwidth

• Deeper analysis is in our IMC 2004 paper
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Arbitrary Cross-Traffic

• Observe that neither the i.i.d. assumption nor 
stationarity holds for regular Internet traffic

• Thus, we build another model using PASTA 
principles
– Restricts sampling process, but works with arbitrary 

cross-traffic

• Only assumption we impose on cross-traffic is 
the existence of its finite time-average



24

Arbitrary Cross-Traffic 2

• PASTA is based on Poisson sampling

– Sample with i.i.d. exponential random delays

time

r(t)

t1 t2 t3 tn

• The average of r(ti) converges to 
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Arbitrary Cross-Traffic 3

• In actual probing, Poisson sampling is achieved 
by sending packet-pairs with exponential 
intervals

…

V1V2

– Metric Vi is an exponential random variable
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Arbitrary Cross-Traffic 4

• It can be shown that time-average process Wn
converges to:

• Notice that the above equation is a linear 
function of x
– ¢ is the intercept and is the slope
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Arbitrary Cross-Traffic 4

• Claim 4: For a single congested bottleneck with 
finite time-average rate, the estimate of ¢ at time 
n converges to ¢:

from ¢• We next separate

two different spacings xa and xb

– Use two sets of measurements and with

time-average of

time-average of
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Arbitrary Cross-Traffic 5

• Also, the following estimates of available 
bandwidth converge to A:

• From claim 4, estimated capacity converges 
to C:
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Arbitrary Cross-Traffic 6

• Evolution of estimation errors with C=1.5 mb/s 
and 85% link utilization
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Arbitrary Cross-Traffic 7

• Compare available bandwidth estimation errors
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Arbitrary Cross-Traffic 8

• Relative estimation errors produced by Spruce 
and IGI with C=1.5 mb/s and 85% link utilization

Spruce IGI
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More on Spruce and IGI

• Notice that Spruce/IGI require prior knowledge 
about bottleneck capacity C

Pathrate IGI/Spruce
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Conclusion

• Single-node case is tractable with stationary 
renewal cross-traffic and arbitrary sampling
– It is also tractable under arbitrary cross-traffic and 

Poisson sampling

– Both C and A can be estimated simultaneously

• Multi-link appears difficult

• Low-rate sampling and deeper stochastic 
analysis of existing methods are in our IMC 
2004 paper


