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A Unified Traffic Model for
MPEG-4 and H.264 Video Traces

Min Dai, Yueping Zhang, and Dmitri Loguinov

Abstract—This paper presents a frame-level hybrid framework
for modeling MPEG-4 and H.264 multi-layer variable bit rate
(VBR) video traffic. To accurately capture long-range dependent
and short-range dependent properties of VBR sequences, we use
wavelets to model the distribution of I-frame sizes and a simple
time-domain model for P/B frame sizes. However, unlike previous
studies, we analyze and successfully model both inter-GOP
(Group of Pictures) and intra-GOP correlation in VBR video and
build an enhancement-layer model using cross-layer correlation.
Simulation results demonstrate that our model effectively pre-
serves the temporal burstiness and captures important statistical
features (e.g., the autocorrelation function and the frame-size
distribution) of original traffic. We also show that our model
possesses lower complexity and has better performance than the
previous methods in both single- and multi-layer sequences.

I. INTRODUCTION

Video traffic modeling plays an important role in the char-
acterization and analysis of network traffic. Besides providing
an insight into the coding process and structure of video
sequences, traffic models can be used for many practical
purposes including allocation of network resources, design
of efficient networks for streaming services, and delivery of
certain Quality of Service (QoS) guarantees to end users [24].

Although many studies have been conducted in this area,
most existing traffic models only apply to single-layer VBR
video and often overlook the multi-layer aspects of streaming
traffic in the current Internet [2], [35]. In addition, traffic
modeling research is falling behind the rapid advances in video
techniques since very limited research has been done to model
H.264 video sequences [5]. Therefore, the goal of this work is
to better understand the statistical properties of various video
sequences and to develop a unified model for single and multi-
layer MPEG-4 and H.264 video traffic.

A good traffic model should capture the characteristics of
video sequences and accurately predict network performance
(e.g., buffer overflow probabilities and packet loss). Among
the various characteristics of video traffic, there are two
major interests: (1) the distribution of frame sizes; and (2)
the autocorrelation function (ACF) that captures common
dependencies between frame sizes in VBR video. In regard
to the first issue, several models have been proposed for the
frame-size distribution, including the lognormal [10], Gamma
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[31], and various hybrid distributions (e.g., Gamma/Pareto [20]
or Gamma/lognormal [29]).

Furthermore, compared to the task of fitting a model to
the frame-size distribution, capturing the ACF structure of
VBR video traffic is more challenging due to the fact that
VBR traces exhibit both long-range dependent (LRD) and
short-range dependent (SRD) properties [12], [21]. The co-
existence of SRD and LRD indicates that the ACF structure
of video traffic is similar to that of SRD processes at small
time lags and to that of LRD processes at large time lags
[12]. Thus, using either an LRD or SRD model alone does not
provide satisfactory results. Many studies have been conducted
to address this problem, but only a few of them have managed
to model the complicated LRD/SRD ACF structure of real
video traffic (e.g., [20], [21]).

Besides the complex autocorrelation properties, video traffic
also exhibits inter- and intra-GOP1 correlation due to the
GOP-based coding structure of many popular standards. While
the former is well characterized by the ACF of the sizes of I-
frames of each GOP, the latter refers to the correlation between
the sizes of P/B-frames and the I-frame size in the same GOP.
Whereas most models try to capture the inter-GOP correlation,
the intra-GOP correlation has been rarely addressed in related
work even though it is an important characteristic useful in
computing precise bounds on network packet loss [19].

In this paper, we develop a modeling framework that is able
to capture the complex LRD/SRD structure of single/multi-
layer video traffic, while addressing the issues of both
inter/intra-GOP and cross-layer correlation. We model I-frame
sizes in the wavelet domain using estimated wavelet coef-
ficients, which are more mathematically tractable than the
actual coefficients. After a thorough analysis of intra-GOP
correlation, we generate synthetic P-frame traffic using a time-
domain linear model of the preceding I-frame to preserve the
intra-GOP correlation. We use a similar model to preserve
the cross-layer correlation in multi-layer video sequences and
show that the performance of the resulting model is better than
that of prior methods.

The specifics of the sample sequences used in this paper
are shown in Table I. As see in the table, single-layer traffic
includes both MPEG-4 and H.264 video sequences and multi-
layer traffic includes Fine Granular Scalability (FGS) [25],
temporal and spatial scalability [32], and Multiple Description
Coded (MDC) [33] sequences. Most non-MDC sequences are
one-hour long with GOP structure (12, 2), except that Star
Wars IV [27] is half an hour long with GOP structure

1A GOP includes one I-frame and several P- and B-frames.
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TABLE I
CHARACTERISTICS OF SAMPLE SEQUENCES

Sequence name Scalability Rate (fps) Standard
Starship Troopers [27] None 25 H.264
Star Wars IV [27] None 30 H.264
Star Wars IV-A [8] None 25 MPEG-4
Jurassic Park I [8] None 25 MPEG-4
Starship Troopers [8] None 25 MPEG-4
Star Trek - First Contact [8] None 25 MPEG-4
The Silence of the Lambs-A [8] None 25 MPEG-4
Bridge [27] MDC 25 MPEG-4
Star Wars IV-B [27] FGS 30 MPEG-4
Clip CIF [27] FGS 30 MPEG-4
Citizen Kane [27] Temporal 30 MPEG-4
The Silence of the Lambs-B [27] Spatial 30 MPEG-4

(16, 1) and Clip CIF is 30 seconds long with GOP structure
(12, 0). Note that GOP structure (N,M) means that there
are N frames in a GOP and M B-frames between every two
non-B frames, e.g., GOP (12, 2) stands for IBBPBBPBBPBB
and GOP (12, 0) refers to IPPPPPPPPPPP. The length of
the sample MDC-coded sequence is varying since temporal
subsampling is applied. More details about MDC coding is
given in Section VI. Further note that sequences coded from
the same video but with different quantization steps are not
repetitively listed. For example, we only show Jurassic
Park I once in Table I, while this paper uses several single-
layer Jurassic Park I sequences that are coded with
different quantization steps.

The outline of this paper is as follows. Section II overviews
the related work on traffic modeling. In Section III, we provide
the technical background on wavelet analysis and statistical
properties of wavelet coefficients. In Section IV, we show how
to model single-layer and base-layer video traffic by generating
synthetic I-traces in the wavelet domain and P/B traces with a
linear I-trace model. Sections V and VI analyze and model the
cross-layer correlation in layer-coded and MDC-coded video
traces, respectively. In Section VII, we evaluate the accuracy
of our model using both single-layer and multi-layer video
traffic. Section VIII concludes the paper.

II. RELATED WORK

The topic of VBR traffic modeling has been extensively
studied and a variety of models have been proposed in the
literature. In this section, we briefly overview related work on
single-layer and multi-layer traffic models.

A. Single-Layer Models

According to the dominant stochastic method applied in
each model, we group existing single-layer models into several
categories and present the main results of each group below.

We first discuss auto-regressive (AR) models, since they
are classical approaches in the area of traffic modeling. After
the first AR model was applied to video traffic in 1988 [22],
AR processes and their variations remain highly popular in
this area of research [20]. For example, Corte et al. [4] use a
linear combination of two AR(1) processes to model the ACF

of the original video traffic, in which one AR(1) process is
used for modeling small lags and the other one for large lags.
Since using a single AR process is generally preferred, Krunz
et al. [10] model the deviation of I-frame sizes from their mean
in each scene using an AR(2) process. Building upon Krunz’
work [10], Liu et al. [20] propose a nested AR(2) model,
which uses a second AR(2) process to model the mean frame-
size of each scene. In both cases, scene changes are detected
and scene length is modeled as a geometrically distributed
random variable. In [14], Heyman et al. propose a discrete
autoregressive (DAR) model to model videoconferencing data.
Since the DAR model is not effective for single-source video
traffic, Heyman [15] later develops a GBAR model, which has
Gamma-distributed marginal statistics and a geometric auto-
correlation function. By considering the GOP cyclic structure
of video traffic, Frey et al. [9] extend the GBAR model in
[15] to the GOP-GBAR model.

The second category consists of Markov-modulated models,
which employ Markov chains to create other processes (e.g.,
the Bernoulli process [18], AR process [3]). Rose [30] uses
nested Markov chains to model GOP sizes. Since synthetic
data are generated at the GOP level, this model actually
coarsens the time scale and thus is not suitable for high-
speed networks. Ramamurthy and Sengupta [26] propose a
hierarchical video traffic model, which uses a Markov chain
to capture scene change and two AR processes to match the
autocorrelation function in short and long range, respectively.
Extending the above work, Chen et al. [3] use a doubly
Markov modulated punctured AR model, in which a nested
Markov process describes the transition between the different
states and an AR process describes the frame size at each state.
The computation complexity of this method is quite high due
to the combination of a doubly Markov model and an AR
process. Sarkar et al. [31] propose two Markov-modulated
Gamma-based algorithms. At each state of the Markov chain,
the sizes of I, P, and B-frames are generated as Gamma-
distributed random variables with different sets of parameters.
Although Markov-modulated models can capture the LRD of
video traffic, it is usually difficult to accurately define and
segment video sources into the different states in the time
domain due to the dynamic nature of video traffic [21].

We classify self-similar processes and fractal models as
the third category. Garrett et al. [12] propose a fractional
ARIMA (Autoregressive Integrated Moving Average) model
to replicate the LRD properties of compressed sequences, but
do not provide an explicit model for the SRD structure of video
traffic. Using the results of [12], Huang et al. [16] present a
self-similar fractal traffic model; however, this model does not
capture the multi-timescale variations in video traffic [10].

Other approaches include the M/G/∞ process [11] and
Transform-Expand-Sample (TES) based models [23]. The
former creates SRD traffic [20] and the latter has high compu-
tational complexity and often requires special software (e.g.,
TEStool) to generate synthetic sequences. Different from the
above time-domain methods, several wavelet models [21], [28]
recently emerged due to their ability to accurately capture both
LRD and SRD properties of video traffic [21].
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B. Multi-Layer Models

Most traffic modeling studies focus on single-layer video
traffic and much less work has been done to model multi-
layer sequences. Ismail et al. [17] use a TES-based method
to model VBR MPEG video that has two levels of priority,
which might be considered the first multi-layer traffic model.
Later, Chandra et al. [2] use a finite-state Markov chain to
model one- and two-layer scalable video traffic. They assume
that only one I-frame exists in the whole video sequence and
the I-frame size is simply a Gaussian random variable. The
model clusters P-frame sizes into K states according to the
correlation between successive P-frame sizes and uses a first-
order AR process to model the frame size in each state. The
goal of [2] is to model one or two-layer video traffic with a
CBR base layer, while many multi-layer video sequences have
more than two layers and the base-layer is VBR.

Similarly to the work in [2], Zhao et al. [35] build a K-state
Markov chain based on frame-size clusters. The clustering
feature in [35] is the cross-layer correlation between the frame
size of the base layer and that of the enhancement layer at
the same frame index. In each state of the Markov chain,
the base and the enhancement-layer frame sizes follow a
multivariate normal distribution. However, the computational
cost of the hierarchical clustering approach in [35] is high
and only suitable for video sequences with few scene changes.
Furthermore, even though methods [1] exist for choosing the
optimal number of states in a Markov chain, [2] and [35] do
not examine their performance and instead select the necessary
parameters heuristically.

III. WAVELET ANALYSIS

The wavelet transform has become a powerful technique in
the area of traffic modeling [21]. Wavelet analysis is typically
based on a decomposition of the signal using a family of basis
functions, which includes a high-pass wavelet function and
a low-pass scaling filter. The former generates the detailed
coefficients, while the latter produces the approximation coef-
ficients of the original signal.

In order to better understand the structure of wavelet co-
efficients, we investigate statistical properties of both detailed
and approximation coefficients in this section.

A. Detailed Coefficients

For discussion convenience, we define {Aj} to be the
random process modeling approximation coefficients Ak

j and
{Dj} to be the process modeling detailed coefficients Dk

j

at the wavelet decomposition level j, where k is the spatial
location of Ak

j and Dk
j . We also assume that j = J is the

coarsest scale and j = 0 is the original signal.
As we show next, one big advantage of the wavelet trans-

form is its ability to provide short-range-dependent detailed
coefficients for long-range-dependent processes.

Theorem 1: The detailed coefficients of an LRD process
possess SRD properties.

Proof: Assume that {X(t)} is an LRD process with
spectral density function Γ(ν) ∼ c|ν|−α, where c > 0 and
0 < α < 1.

The covariance function of any two detailed coefficients Dk
j

and Dk′

j′ of {X(t)} is:

cov[Dk
j , D

k′

j′ ] = E[Dk
jD

k′

j′ ]− E[Dk
j ]E[Dk′

j′ ], (1)

where j, j′ are the decomposition levels and k, k′ show the
sample locations. Note that the high-pass nature of wavelet
function leads to E[Dk

j ] = E[Dk′

j′ ] = 0.
Furthermore, Wornell [34] shows that E[Dk

jD
k′

j′ ] decreases
hyperbolically with the distance between the two wavelet
coefficients of {X(t)} as |2jk − 2j

′
k′|2H−2N , where Hurst

parameter H ∈ (0.5, 1), N is the vanishing moment2 of mother
wavelet ψ0, and term |2jk − 2j

′
k′| is the shortest distance

between two detailed coefficients. Note that |2jk − 2j
′
k′| is

always greater than 1.
Thus, we write (1) as:

cov[Dk
j , D

k′

j′ ] = E[Dk
jD

k′

j′ ] = τ−(2N−1−α), (2)

where τ = |2jk − 2j
′
k′| and α = 2H − 1 is the parameter in

the spectral density function of {X(t)}. Since α ∈ (0, 1) and
N ≥ 1, we have (2N − 1− α) > 0.

Due to the fact that τ > 1 and (2N − 1 − α) > 0,
τ−(2N−1−α) converges to zero and

∑∞
τ=−∞ τ−(2N−1−α) con-

verges to a constant. Recall that a process is short-range
dependent if the sum of its autocorrelation3 function γ(k)
is summable, i.e.,

∑∞
k=−∞ γ(k) is finite. Thus, the detailed

coefficients are short-range dependent.

B. Approximation Coefficients

After analyzing the detailed coefficients, we next examine
the autocorrelation function and the distribution of the approx-
imation coefficients. We use the Haar wavelet transform as a
typical example since it is often chosen for its simplicity and
good performance [21], [28]. Recall that the Haar scaling and
wavelet functions are, respectively:

φ(t) =

{
1 0 ≤ t < 1

0 otherwise
, ψ(t) =


1 0 ≤ t < 1/2

−1 1/2 ≤ t < 1

0 otherwise
.

Then the Haar approximation coefficients Ak
j are obtained

via [28]:
Ak

j = 2−1/2(A2k
j−1 +A2k+1

j−1 ), (3)

where j is the decomposition level and k is the index of
a process. Since video traffic possesses strong self-similarity
[24], we have the following result.

Theorem 2: The Haar approximation coefficients of a self-
similar process preserve the correlation structure of the origi-
nal signal.

Proof: From (3), we observe that the process of Haar
approximation coefficients {Aj} is generated by calculating
the mean values of each two neighboring samples in a process

2A wavelet has vanishing moments of order m if
∫∞
−∞ tpψ(t)dt = 0,

where p = 0, · · · ,m− 1 [13].
3In the traffic modeling literature, the normalized auto-covariance function

is often used instead of the autocorrelation function [20].
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{X(t)}. Recall that the aggregated process {X(m)} of a self-
similar process {X(t)} at aggregation level m is:

X(m)(i) =
1

m

mi∑
t=m(i−1)+1

X(t). (4)

Comparing (4) to (3), one can observe that {Aj} is a
weighted aggregated process {X(2j)} of the original signal
{X(t)}. Since that a self-similar process and its aggregated
process have the same autocorrelation structure [24], the
theorem follows.

We apply the wavelet transform to the sizes of I-frames
in sample sequences and examine the statistical properties
of the detailed and approximation coefficients. In Fig. 1 (a),
we show the ACF of processes {A3} and {D3} computed
based on the I-frame sizes in single-layer Star Wars IV-A
using Haar wavelets (labeled as “ACF detailed” and “ACF
approx”, respectively). As shown in the figure, the ACF of
{D3}, which is a typical example of detailed coefficients, is
almost zero at non-zero lags, which means that it is an i.i.d.
(uncorrelated) noise. This explains why previous literature
commonly models detailed coefficients {Dj} as zero-mean
i.i.d. Gaussian variables [21]. Fig. 1 (a) also shows that the
approximation coefficients {Aj} have a slower decaying ACF
compared to that of the detailed coefficients, which implies
that they cannot be modeled as i.i.d. random variables.

In Fig. 1 (b), we illustrate the distribution of the approxima-
tion coefficients {A3} and that of {A0} (original I-frame sizes)
of single-layer Star Wars IV-A, as a typical example.
Fig. 1 (b) shows that the symmetric Gaussian distribution does
not describe the heavy tail of the actual PDF of {A3}, even
though it is a popular distribution model for the approximation
coefficients based on the Central Limit Theorem [21]. Next,
we examine the relationship between I-frame size {A0} and
its approximation coefficients {Aj , j > 0} with the help of
the following theorem.

Theorem 3: Given that the I-frame sizes follow a Gamma
distribution, the approximation coefficients Ak

j , j ≥ 1 follow
a linear combination of Gamma distributions.

Proof: Note that {Aj} is a random process with Aj =
(A1

j , A
2
j , · · · , Ak

j , · · · ) and Ak
j is a random variable.

For brevity, we only derive the distribution of Ak
1 and note

that the derivations for Ak
j , j ≥ 2 are very similar. According

to (3), each value of Ak
1 is a linear summation of the sizes

of two neighboring I-frames, which we denote by Xk
1 and

Xk
2 , respectively. Notice that Xk

1 and Xk
2 are two correlated

Gamma-distributed random variables. Then,

Ak
1 = 2−1/2(Xk

1 +Xk
2 ), (5)

where Xk
i ∼ Gamma(αi, λi), i = 1, 2. We can rewrite Xk

i in
the form of a standard Gamma distribution:

Xk
1 = λ1Y1, Xk

2 = λ2Y2, (6)

where Yi ∼ Gamma(αi, 1) are two standard Gamma random
variables.

Next, to capture the correlation between Xk
1 and Xk

2 , we
further decompose Y1 and Y2 into a sum of two independent
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Fig. 1. (a) The ACF structure of coefficients {A3} and {D3} in single-
layer Star Wars IV-A. (b) The histogram of I-frame sizes and that of
approximation coefficients {A3}.

standard Gamma random variables using the decomposition
properties of standard Gamma distributions [9]:

Y1 = Y11 + Y12, Y2 = Y12 + Y22, (7)

where Y11, Y12, and Y22 are independent of each other and
follow standard Gamma distributions with parameters α11,
α12, and α22, respectively. Then the correlation between Xk

1

and Xk
2 becomes:

cov(Xk
1 , X

k
2 ) = λ1λ2var(Y12) = λ1λ2α22. (8)

Combining (5) and (8), we rewrite Ak
1 as:

Ak
1 = 2−1/2 (λ1Y11 + (λ1 + λ2)Y12 + λ2Y22) . (9)

As can be observed from (9), Ak
1 is a linear combination of

independent standard Gamma distributions, which leads to the
statement of the theorem.

Fig. 1 (b) shows that the distribution of {Aj} has a similar
Gamma shape as that of I-frame sizes, but with different
parameters. Extensive experimental results also demonstrate
that a single Gamma distribution is accurate enough to de-
scribe the actual histogram of {Aj}. In the next section, we
use this information to efficiently estimate the approximation
coefficients.

IV. MODELING SINGLE/BASE-LAYER

In this section, we discuss the issue of modeling the single-
layer traffic and the base-layer of layer-coded traces, since
the latter can be considered as the former from video coding
perspective. We generate synthetic I-frame sizes in the wavelet
domain and then model P/B-frame sizes in the time domain
based on the intra-GOP correlation.

A. Modeling I-Frame Sizes

Wavelet-based algorithms have an advantage over the time-
domain methods in capturing the LRD and SRD properties
of video [21], [28]. Furthermore, wavelet methods do not
need to specifically model scene-change lengths since wavelets
are good at detecting discontinuities in video traffic, which
are most often generated by scene changes. Due to these
characteristics of wavelet transform, we model the I-frame
sizes in the wavelet domain using the estimated approximation
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Fig. 2. Histograms of (a) the actual detailed coefficients; (b) the Gaussian model; (c) the GGD model; and (d) the mixture-Laplacian model.

and detailed coefficients, which are represented by {Dj} and
{Aj}, respectively.

Previous wavelet-based traffic modeling methods often
model {Dj} as zero-mean i.i.d. Gaussian variables [21],
without thorough investigation to {Dj}ś actual distribution.
To provide some insight into the structure of detailed coef-
ficients, we compare the histogram of the actual coefficients
{D1} in Star Wars IV-A with those generated by several
alternative models in Fig. 2 (note that the y-axis is scaled
logarithmically). Fig. 2 (a) displays the histogram of the actual
{D1}, part (b) shows that the Gaussian fit matches neither
the shape, nor the range of the actual distribution, and part
(c) demonstrates that the Generalized Gaussian Distribution
(GGD) produces an over-sharp peak at zero (the number of
zeros in GGD is almost three times larger than that in the
actual {D1}) and also does not model the range of the real
{D1}.

Additional simulations (not shown for brevity) demonstrate
that a single Laplacian distribution is not able to describe
the fast decay and large data range of the actual histogram;
however, a mixture-Laplacian distribution follows the real data
very well:

f(x) = p
λ0
2
e−λ0|x| + (1− p)

λ1
2
e−λ1|x|, (10)

where f(x) is the PDF of the mixture-Laplacian model, p is
the probability to obtain a sample from a low-variance Lapla-
cian component, and λ0 and λ1 are the shape parameters of the
corresponding low- and high-variance Laplacian distributions.
Fig. 2 (d) shows that the histogram of the mixture-Laplacian
synthetic coefficients {D1} is much closer to the actual one
than the other discussed distributions.

We next discuss approximation coefficients {Aj}. Current
methods generate the coarsest approximation coefficients (i.e.,
{AJ}) either as independent Gaussian [21] or Beta random
variables [28]. However, as mentioned in Section III-B, the
approximation coefficients are non-negligibly correlated and
are not i.i.d. To preserve the correlation of approximation co-
efficients and achieve the expected distribution in the synthetic
coefficients, we model the coarsest approximation coefficients
{AJ} as dependent random variables with marginal Gamma
distributions4 according to Theorem 3. The procedure is as
follows:

4More details about how to construct dependent random variables are
available in [6], [7].

• Generate N dependent Gaussian variables xi using a k×k
correlation matrix, where N is the length of {AJ} and
the number of preserved correlation lags k is chosen to be
a reasonable value (e.g., the average scene length5). The
correlation matrix is obtained from the actual coefficients
{AJ}.

• Apply the Gaussian CDF FG(x) directly to xi to convert
them into a uniformly distributed set of variables FG(xi).

• Pass the result from the last step through the inverse
Gamma CDF to generate (still dependent) Gamma ran-
dom variables [6], [7].

Using the estimated approximation and detailed coefficients,
we perform the inverse wavelet transform to generate synthetic
I-frame sizes. Fig. 3(a) shows the ACF of the actual I-frame
sizes and that of the synthetic traffic in long range. Fig. 3(b)
shows the correlation of the synthetic traffic from the GOP-
GBAR model [9] and Gamma A model [31] in short range. As
observed in both figures, our synthetic I-frame sizes capture
both the LRD and SRD properties of the original traffic better
than the previous models.

B. Intra-GOP Correlation Analysis

We next provide a detailed analysis of intra-GOP correlation
for various video sequences and model P/B-frame sizes in the
time domain based on intra-GOP correlation. Before further
discussion, we define I and P/B-traces as follows. Assuming
that n ≥ 1 represents the GOP number,

• ϕI(n) is the I-frame size of the n-th GOP;
• ϕPi (n) is the size of the i-th P-frame in GOP n;
• ϕBi (n) is the size of the i-th B-frame in GOP n.

For example, ϕP3 (10) represents the size of the third P-frame
in the 10-th GOP.

Although previous work model the P/B-frame sizes as i.i.d.
random variables [10], [20], [31], Lombardo et al. [18] noticed
that there is a strong correlation between the P/B-frame sizes
and the I-frame size belonging to the same GOP, which is
also called intra-GOP correlation. Motivated by their results,
we conduct the analysis of the intra-GOP correlation between
{ϕI(n)} and {ϕPi (n)} or {ϕBi (n)} in two situations: (a)
the intra-GOP correlation for different i in a specific video

5This is a reasonable choice because there is much less correlation among
I-frames of different scenes than among I-frames of the same scene.
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Fig. 3. The ACF of the actual I-frame sizes and that of the synthetic traffic in (a) long range and (b) short range; The correlation between {ϕPi (n)} and
{ϕI(n)} in (c) Star Wars IV-A and (d) Jurassic Park I, for i = 1, 2, 3.
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Fig. 4. (a) The correlation between {ϕI(n)} and {ϕP1 (n)} in MPEG-4 sequences coded at Q = 4, 10, 14; (b) The correlation between {ϕI(n)} and
{ϕB1 (n)} in MPEG-4 sequences coded at Q = 4, 10, 18; The correlation between {ϕI(n)} and {ϕP1 (n)} and that between {ϕI(n)} and {ϕB1 (n)} in (c)
H.264 Starship Troopers and (d) the base layer of the spatially scalable The Silence of the Lambs-B coded at different Q.

sequence with fixed quantization step Q; and (b) the intra-
GOP correlation for the same i in various sequences coded at
different steps Q.

For the first part of our analysis, we investigate the correla-
tion between {ϕI(n)} and {ϕPi (n)} and that between {ϕI(n)}
and {ϕBi (n)} for different i in various sequences. Fig. 3(c)
shows the intra-GOP correlation in single-layer Star Wars
IV-A, which is coded with quantization step Q = 10, 14, 18
for I/P/B frames, respectively. Fig. 3(d) shows the same
correlation in Jurassic Park I that is coded at Q = 4 for
all frames6. As shown in the figure, the correlation is almost
identical for different i, which is rather convenient for our
modeling purposes.

For the second part of our analysis, we examine various
video sequences coded at different quantization steps to un-
derstand the relationship between intra-GOP correlation and
quantization steps. We show the correlation between {ϕI(n)}
and {ϕP1 (n)} and that between {ϕI(n)} and {ϕB1 (n)} in five
MPEG-4 coded video sequences in Fig. 4(a)-(b). We also show
the same correlation in H.264 coded Starship Troopers
[27] in Fig. 4(c) and in the base layer of the spatially scalable
The Silence of the Lambs-B in Fig. 4(d).

As observed from Fig. 4, the intra-GOP correlation de-
creases as the quantization step increases. This is due to the
fact that sequences coded with smaller Q share more source
information among the different frames in one GOP and thus

6If a sequence is coded with the same quantization step c for all frames, we
say this sequence is coded at Q = c. Otherwise, we describe the quantization
step for each type of frames in this sequence.

have stronger intra-GOP correlation than sequences coded with
larger Q. This observation is very useful for users to decide
whether to preserve intra-GOP correlation at the expense of
an increase in model complexity.

C. Modeling P and B-Frame Sizes

The above discussion shows that there is a similar correla-
tion between {ϕPi (n)} and {ϕI(n)} with respect to different
i. Motivated by this observation, we propose a linear model
to estimate the size of the i-th P-frame in the n-th GOP:

ϕPi (n) = aϕ̃I(n) + ṽ(n), (11)

where ϕ̃I(n) = ϕI(n) − E[ϕI(n)] and ṽ(n) is a synthetic
process (whose properties we study below) that is independent
of ϕ̃I(n).

Theorem 4: To capture the intra-GOP correlation, the value
of coefficient a in (11) must be equal to:

a =
r(0)σP
σI

, (12)

where σP is the standard deviation of {ϕPi (n)}, σI is the
standard deviation of {ϕI(n)}, and r(0) is their normalized
correlation coefficient at lag zero.

Proof: Without loss of generality, we assume that both
ϕ̃I(n) and ϕPi (n) are wide-sense stationary processes. Thus,
E[ϕPi (n)] is constant and:

E[ϕ̃I(n− k)] = E[ϕ̃I(n)] = 0. (13)
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Denote by C(k) the covariance between ϕPi (n) and ϕ̃I(n) at
lag k:

C(k) = E[(ϕPi (n)− E[ϕPi ])(ϕ̃
I(n− k)− E[ϕ̃I ])]. (14)

Recall that v(n) and ϕ̃I(n) are independent of each other and
thus E[v(n) · ϕ̃I(n)] = E[v(n)] · E[ϕ̃I(n)] = 0. Then C(k)
becomes:

C(k) = E[(aϕ̃I(n) + v(n)− E[ϕPi ])ϕ̃
I(n− k)]

= aE[ϕ̃I(n)ϕ̃I(n− k)] (15)

Next, observe that the normalized correlation coefficient r at
lag zero is:

r(0) =
C(0)

σPσĨ
=
aE[ϕ̃I(n)2]

σPσĨ
, (16)

where σĨ is the standard deviation of ϕ̃I(n). Recalling that
E[ϕ̃I(n)] = 0, we have E[ϕ̃I(n)2] = σ2

Ĩ
= σ2

I and:

a · σI
σP

= r(0), (17)

which leads to (12).
To understand how to generate {ṽ(n)}, we next examine the

actual residual process v(n) = ϕPi (n)−aϕ̃I(n) for each i and
for video sequences coded at various Q. Fig. 5(a) shows the
histograms of {v(n)} for P-traces with different i in single-
layer Star Wars IV-A and Fig. 5(b) shows the histograms
of {v(n)} for sequences coded at different Q. The figures show
that the residual process {v(n)} does not change much as a
function of i but its histogram becomes more bell-shaped when
Q increases. Due to the diversity of the histogram of {v(n)},
we use a generalized Gamma distribution Gamma(γ, α, β) to
estimate {v(n)}.

From Fig. 4(b), we observe that the correlation between
{ϕBi (n)} and {ϕI(n)} could be as small as 0.1 (e.g., in Star
Wars IV-A coded at Q = 18) or as large as 0.9 (e.g.,
in The Silence of the Lambs-A coded at Q = 4).
Thus, we can generate the synthetic B-frame traffic simply
by an i.i.d. lognormal random number generator when the
correlation between {ϕBi (n)} and {ϕI(n)} is small, or by a
linear model similar to (11) when the correlation is large. The
linear model has the following form:

ϕBi (n) = aϕ̃I(n) + ṽB(n), (18)

where a = r(0)σB/σI , r(0) is the lag-0 correlation between
{ϕI(n)} and {ϕBi (n)}, σB and σI are the standard deviation
of {ϕBi (n)} and {ϕI(n)}, respectively. Process ṽB(n) is
independent of ϕ̃I(n).

We illustrate the difference between our model and a typical
i.i.d. method of prior work (e.g., [20], [31]) in Fig. 6(a)-
(b). The figure shows that our model indeed preserves the
intra-GOP correlation of the original traffic, while the pre-
vious methods produce white (uncorrelated) noise. Statistical
parameters (r(0), σP , σI , γ, α, β) needed for this model are
easily estimated from the original sequences.
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Fig. 5. (a) Histograms of {v(n)} for {ϕPi (n)} with i = 1, 2, 3 in Star
Wars IV-A coded at Q = 14; (b) Histograms of {v(n)} for {ϕP1 (n)} in
Jurassic Park I coded at Q = 4, 10, 14.

D. Further Discussion and Algorithm Summary

As shown in Fig. 4, the intra-GOP correlation is small
in video sequences coded with a large quantization step.
Furthermore, the intra-GOP correlation decreases as the GOP
size increases, since the P/B-frames are far away from the I-
frame in the same GOP due to the large GOP size. Under these
circumstances, we can model {ϕPi (n)} or {ϕBi (n)} using the
correlation between them and their reference frame due to the
fact that P/B-frames are predictively coded.

This discussion benefits the modeling of temporally scal-
able traffic. Note that in temporally scalable video, the base
layer and the enhancement layer are approximately equivalent
to extracting I/P-frames and B-frames out of a single-layer
sequence, respectively [27]. In other words, we model the
enhancement layer of a temporally scalable-coded sequence
as modeling the B-frames of a single-layer video traffic.

To better understand the correlation between the neighbor-
ing frames, we examine the correlation between the I-trace
and P/B-traces and that between two neighboring P/B-traces
in various sequences. In Fig. 6(c)-(d), we show the correlation
between {ϕI(n)} and {ϕBi (n)} and that between {ϕP1 (n)}
and {ϕBi (n)}, for i = 1, 2, in temporally scalable Citizen
Kane coded with quantization step Q = 30.

As Fig. 6(c) shows, the correlation between the base layer I-
frames and the enhancement layer is not large enough to apply
the linear model (18) in this sequence. However, Fig. 6(d)
shows that the enhancement layer and its neighboring base
layer P-frames are highly correlated. Therefore, we rewrite
linear model (18) to:

ϕBi (n) = aϕ̃P (n) + ṽB(n), (19)

where parameter a = r(0)σB/σP , r(0) is the lag-0 correlation
between the neighboring P and B-frame sizes, and σB , σP are
the standard deviations of these two P/B-traces.

Before we finish this section, we summarize the procedures
of our algorithm in Fig. 7 and discuss its complexity. Assume
there is a video trace of length N , which includes M I-frames
and N −M P/B-frames. The required operations for I-frame
size modeling is O(M) since the computational complexity
of DWT is in the order of signal length [21]. Note that P/B-
traces are generated in a batch, which has computational cost
of O(N−M). Therefore, the computational complexity of our
algorithm to generate a video trace of length N is O(N).
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Fig. 6. (a) The correlation between {ϕP1 (n)} and {ϕI(n)} in Star Wars IV-A; (b) The correlation between {ϕB1 (n)} and {ϕI(n)} in Jurassic
Park I; (c) The correlation between {ϕBi (n)} and {ϕI(n)} and (d) that between {ϕBi (n)} and {ϕP1 (n)} in temporally scalable-coded Citizen Kane,
for i = 1, 2.

1) Generate the I-trace:
• Perform J levels of wavelet decomposition on the original I-trace
• For i = 1 to J do:

– Estimate mixture-laplacian distribution parameters from
original detailed coefficients;

– Generate synthetic detailed coefficients using the estimated
parameters.

• At level J :
– Estimate Gamma distribution parameters from the original

approximation coefficients;
– Use copula to generate correlated synthetic approximation

coefficients.

2) Generate P -traces:
• Estimate parameters of the generalized Gamma distribution from

the original residual process;
• Generate synthetic P -traces using (11) based on synthetic I-trace.

3) Generate B-traces: repeat step 2) using B frames.

Fig. 7. Summary of the proposed algorithm.

V. MODELING LAYER-CODED (SCALABLE) TRAFFIC

In this section, we provide brief background knowledge of
multi-layer video, investigate methods to capture cross-layer
dependency, and model the enhancement-layer traffic.

Due to its flexibility and high bandwidth utilization, scal-
ability [25], [32] is common in video applications. Layered
coding can be further classified as coarse-granular (e.g., spa-
tial scalability) or fine-granular (e.g., FGS) [32]. The major
difference between coarse granularity and fine granularity is
that the former provides quality improvements only when a
complete enhancement layer has been received, while the latter
continuously improves video quality with every additionally
received codeword of the enhancement layer bitstream.

In both coarse granular and fine granular coding methods,
an enhancement layer is coded with the residual between
the original image and the reconstructed image from the
base layer. Therefore, the enhancement layer has a strong
dependency on the base layer. Zhao et al. [35] also indicate
that there exists a cross-layer correlation between the base
layer and the enhancement layer; however, this correlation has
not been fully addressed in previous studies.

In the next subsection, we investigate the cross-layer corre-
lation between the enhancement layer and the base layer us-
ing spatially scalable The Silence of the Lambs-B,
FGS-coded Star Wars IV-B, and three-layer FGS-coded

Clip CIF as examples. We only show the analysis of these
sequences for brevity and note that similar results hold for
video streams with more layers.

A. Analysis of the Enhancement Layer

For discussion convenience, we define the enhancement
layer frame sizes as follows. Similar to the definition in the
base layer, we define εI(n) to be the I-frame size of the n-th
GOP, εPi (n) to be the size of the i-th P-frame in GOP n, and
εBi (n) to be the size of the i-th B-frame in GOP n.

Since each frame in the enhancement layer is predicted from
the corresponding frame in the base layer, we examine the
cross-layer correlation between the enhancement layer frame
sizes and corresponding base layer frame sizes in various
sequences.

In Fig. 8(a), we display the correlation between the en-
hancement layer {εI(n)} and the base layer {ϕI(n)} in
The Silence of the Lambs coded at different Q. As
observed from the figure, the correlation between {εI(n)} and
{ϕI(n)} is stronger when the quantization step Q is smaller.
However, the difference among these cross-layer correlation
curves is not as obvious as that in intra-GOP correlation.
We also observe that cross-layer correlation is still strong
even at large lags, which indicates that {εI(n)} exhibits LRD
properties and we should preserve these properties in the
synthetic enhancement layer I-frame sizes.

In Fig 8(b), we show the cross-layer correlation between
processes {εPi (n)} and {ϕPi (n)} for i = 1, 2, 3. The figure
demonstrates that the correlation between the enhancement
layer and the base layer is quite strong, and the correlation
structures between each {εPi (n)} and {ϕPi (n)} are very sim-
ilar to each other. To avoid repetitive description, we do not
show the correlation between {εBi (n)} and {ϕBi (n)}, which
is similar to that between {εPi (n)} and {ϕPi (n)}.

We further evaluate the cross-layer correlation between the
base layer and different enhancement layers as well as that
between neighboring enhancement layers, using a three-layer
FGS coded sequence Clip CIF. In Fig 8(c), we demonstrate
that cross-layer correlation is strong between {ϕI(n)} and
{εIi (n)}, for i = 1, 2. Fig 8(d) shows that while P -frame
cross-correlation between {εP2 (n)} and {ϕP (n)} is strong, it
is somewhat smaller than that between {εP1 (n)} and {ϕP (n)},
which is to be expected. In both figures, the cross correlation
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Fig. 8. (a) The correlation between {εI(n)} and {ϕI(n)} in The Silence of the Lambs-B coded at Q = 4, 24, 30; (b) The correlation between
{εPi (n)} and {ϕPi (n)} in The Silence of the Lambs-B coded at Q = 30, for i = 1, 2, 3; (c) The correlation between {εIi (n)} and {ϕI(n)} in
Clip CIF, where i = 1, 2; (d) The correlation between {εPi (n)} and {ϕP (n)} in Clip CIF, where i = 1, 2.
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Fig. 9. (a) The ACF of {εI(n)} and that of {ϕI(n)} in Star Wars
IV-B; (b) The ACF of {εP1 (n)} and that of {ϕP1 (n)} in The Silence
of the Lambs-B.

between the base layer and the first enhancement layer is
similar to that between two enhancement layers.

Aside from cross-layer correlation, we also examine the
autocorrelation of each frame sequence in the enhancement
layer and that of the corresponding sequence in the base layer.
We show the ACF of {εI(n)} and that of {ϕI(n)} (labeled as
“EL I cov” and “BL I cov”, respectively) in Fig. 9(a); and
display the ACF of {εP1 (n)} and that of {ϕP1 (n)} in Fig. 9(b).
The figure shows that although the ACF structure of {εI(n)}
has some oscillation, its trend closely follows that of {ϕI(n)}.
One also observes from the figures that the ACF structures of
processes {εPi (n)} and {ϕPi (n)} are similar to each other.

B. Modeling the Enhancement Layer I-Frame Sizes

Although cross-layer correlation is obvious in multi-layer
traffic, previous work neither considered it during modeling
[2], nor explicitly addressed the issue of its modeling [35]. In
this section, we first describe how we model the enhancement
layer I-frame sizes and then evaluate the performance of our
model in capturing the cross-layer correlation.

Recalling that {εI(n)} also possesses both SRD and LRD
properties (as shown in Fig. 9(a)), we model it in the wavelet
domain as we modeled {ϕI(n)}. We define {Aj(ε)} and
{Aj(ϕ)} to be the approximation coefficients of {εI(n)} and
{ϕI(n)} at the wavelet decomposition level j, respectively.
To better understand the relationship between {Aj(ε)} and
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Fig. 11. Histograms of {w1(n)} and {w̃1(n)} for {εP1 (n)} in (a) Star
Wars IV-B and (b) The Silence of the Lambs-B coded at Q =
30.

{Aj(ϕ)}, we show the ACF of {A3(ε)} and {A3(ϕ)} using
Haar wavelets (labeled as “ca EL cov” and “ca BL cov”,
respectively) in Fig. 10(a)-(b).

As shown in Fig. 10(a)-(b), {Aj(ε)} and {Aj(ϕ)} exhibit
similar ACF structure. Thus, we generate {AJ(ε)} by borrow-
ing the ACF structure of {AJ(ϕ)}, which is known from our
base-layer model. Using the ACF of {AJ(ϕ)} in modeling
{εI(n)} not only saves computational cost, but also preserves
the cross-layer correlation.

In Fig. 10(c)-(d), we compare the actual cross-layer cor-
relation between {εI(n)} and {ϕI(n)} to that between the
synthetic {εI(n)} and {ϕI(n)} generated from our model
and Zhao’s model [35]. The figure demonstrates that our
model significantly outperforms Zhao’s model in preserving
the cross-layer correlation.

C. Modeling P and B-Frame Sizes

Recall that the cross-layer correlation between {εPi (n)} and
{ϕPi (n)} and that between {εBi (n)} and {ϕBi (n)} are also
strong, as shown in Fig. 8(a)-(b). We use the linear model
from Section IV-C to estimate the sizes of the i-th P and B-
frames in the n-th GOP:

εPi (n) = aϕPi (n) + w̃1(n), (20)
εBi (n) = aϕBi (n) + w̃2(n), (21)
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Fig. 10. The ACF of {A3(ε)} and {A3(ϕ)} in The Silence of the Lambs-B coded at (a) Q = 30 and (b) Q = 4; The cross-layer correlation
between {εI(n)} and {ϕI(n)} in The Silence of the Lambs and that in the synthetic traffic generated from (c) our model and (d) model [35].

where a = r(0)σε/σϕ, r(0) is the lag-0 cross-layer correlation
coefficient, σε is the standard deviation of the enhancement-
layer sequence, and σϕ is the standard deviation of the cor-
responding base-layer sequence. Processes {w̃1(n)}, {w̃2(n)}
are independent of {ϕPi (n)} and {ϕBi (n)}.

We examine {w1(n)} in Fig. 11 for two video sequences
and find that their histograms are asymmetric but decay fast on
both sides. To capture this asymmetry, we use two exponential
distributions to estimate the PDF of {w1(n)}:

• We left-shift {w1(n)} by an offset δ to place the peak at
x = 0;

• We then model the right side using one exponential
distribution exp(λ1);

• We then model the mirrored value of the left side using
another exponential distribution exp(λ2).

• We finally generate synthetic data {w̃1(n)} based on
these two exponential distributions and right-shift the
result by δ.

As shown in Fig. 11, the histograms of {w̃1(n)} are close
to those of the actual data in both Star Wars IV-B and
The Silence of the Lambs-B. We generate {w̃2(n)}
in the same way and find its histogram is also close to that of
{w2(n)}. We do not show the histograms here for brevity.

We finish the section by summarizing the procedures of our
algorithm to generate layered traffic:

1) Generate the base-layer traffic;
2) Produce the enhancement-layer I-trace in the wavelet

domain using the base-layer algorithm in Fig. 7;
3) Generate P/B-traces using linear model (20) and (21).

VI. ANALYSIS AND MODELING OF MDC TRAFFIC

While layered coding techniques use a hierarchical struc-
ture, multiple description coding (MDC) is a non-hierarchical
coding scheme that generates equal-importance layers. In
MDC-coded sequences, each layer (i.e., description) alone can
provide acceptable quality and several layers together lead to
higher quality. Each description can be individually coded with
other layered coding techniques [33].

For instance, the sample MDC sequences used in this paper
are coded with both spatial scalability and MDC. After the
original video stream is split into L descriptions (i.e., L-D),
the l-th description (l ∈ [1, L]) contains frames m,m+L,m+
2L, . . . ,m = l, of the original video sequence. Afterwards,

description l is further encoded into one base layer and one
enhancement layer using spatially scalable coding techniques.
The GOP pattern of each description is (12, 0). Since spatial
scalability is applied to each individual description, no extra
dependency or correlation is introduced between the distinct
descriptions.

A. Analysis of MDC Traffic

Since each description is able to independently provide
acceptable quality to users, all descriptions must share funda-
mental source information and thus they are highly correlated
between each other. This cross-layer correlation enables the
receiver/decoder to estimate the missing information of one
description from another received one.

To better understand the correlation in MDC traffic, we
analyze the correlation structures of MDC-coded sequences for
further modeling purposes. We give the following definition
for demonstration purposes. Assuming that n represents the
GOP number in the i-th description of an L-D sequence, we
use {ϕIL−i(n)}, {ϕPt

L−i(n)}, and {ϕBt

L−i(n)} to represent the
I-trace, the t-th P- and B-trace, respectively.

In Fig. 12(a), we show the cross-layer correlation between
the I-traces and P-traces of two descriptions of the 2-D
Bridge sequence. As the figure shows, the cross-layer cor-
relation between I-traces is much stronger than that between
P-traces, which is because I-frames contain more fundamental
source information than P-frames. We also investigate the ACF
structure of the original sequence and that of {ϕI2−1(n)} and
{ϕI2−2(n)} in Fig. 12(b). One observes that the autocorrelation
of {ϕI2−1(n)} and that of {ϕI2−2(n)} are almost identical, both
of which are a shifted and scaled version of the ACF of the
original sequence.

B. MDC Traffic Model

Due to the strong correlation between I-traces of different
descriptions, we generate the synthetic {ϕIL−i(n)} simultane-
ously to preserve this cross-layer correlation. Modeling I-frame
sizes is also conducted in the wavelet domain to preserve their
LRD and SRD properties.

Recall that the approximation coefficients preserve the cor-
relation structure of the original signal. Also note that the ACF
of different descriptions of an L-D sequence are very similar to
each other (as shown in Fig. 12(b)). Therefore, after generating
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Fig. 12. (a) The cross-layer correlation between {ϕI2−1(n)} and {ϕI2−2(n)} and that between {ϕP1
2−1(n)} and {ϕP1

1−i(n)} 2-D Bridge traffic; (b) The
autocorrelation of the original sequence and that of {ϕI2−1(n)} and {ϕI2−2(n)} in 2-D Bridge; The actual and synthetic cross-layer correlation between
{ϕIL−1(n)} and {ϕIL−2(n)} in Bridge, with (c) L = 2 and (d) L = 3.
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Fig. 13. QQ plots for the synthetic (a) single-layer Star Wars IV-A traffic and (b) The Silence of the Lambs-B base-layer traffic; QQ plots
for the synthetic enhancement-layer traffic: (c) Star Wars IV-B and (d) The Silence of the Lambs-B.

the first description {ϕIL−1(n)}, we borrow the ACF structure
of {ϕIL−1(n)} to construct the approximation coefficients of
other descriptions. Detailed coefficients {Dj} are estimated as
i.i.d. mixture-Laplacian distributed random variables.

We evaluate the model performance in preserving cross-
layer correlation using various MDC-coded sequences and
show the actual and synthetic correlation between {ϕIL−1(n)}
and {ϕIL−2(n)} of 2-D and 3-D Bridge traffic in Fig. 12(c)-
(d). As the figure shows, our model indeed captures the cross-
layer correlation between the different descriptions in L-D
MDC traffic. To reduce model complexity, P/B-traces are
modeled in the same way as single-layer P/B-traces. More
performance evaluation is conducted in the following section.

VII. MODEL PERFORMANCE EVALUATION

As we stated earlier, a good traffic model should capture
the statistical properties of the original traffic and be able to
accurately predict network performance. In this regard, there
are three popular studies to verify the accuracy of a video
traffic model [31]: quantile-quantile (QQ) plots, the variance
of traffic during various time intervals, and buffer overflow
loss evaluation. While the first two measures visually evaluate
how well the distribution and the second-order moment of the
synthetic traffic match those of the original one, the overflow
loss simulation examines the effectiveness of a traffic model
to capture the temporal burstiness of original traffic.

In the following subsections, we evaluate the accuracy of
our model in both single-layer and multi-layer traffic using the
above three measures.

A. QQ Plots

The QQ plot is a graphical technique to verify the distri-
bution similarity between two test data sets. If the two data
sets have the same distribution, the points should fall along
the 45 degree reference line. The greater the departure from
this reference line, the greater the difference between the two
test data sets.

We show QQ plots of the synthetic single-layer Star
Wars IV-A and the synthetic base layer of The Silence
of the Lambs-B that are generated by our model in
Fig. 13(a) and (b), respectively. As shown in the figure,
the generated frame sizes and the original traffic are almost
identical.

We also evaluate the accuracy of the synthetic enhancement
layer by using QQ plots and show two examples in Fig. 13(c)-
(d), which confirms the accuracy of synthetic The Silence
of the Lambs-B and Star Wars IV-B enhancement-
layer traffic. The figure shows that the synthetic frame sizes
in both sequences have the same distribution as those in
the original traffic. More simulation results for MDC and
temporarily scalable traffic are shown in Fig. 14(a)-(b), which
includes QQ plots for the temporarily scalable Citizen
Kane and synthetic 1-st description in 3-D Bridge. As
shown in Fig. 14(a)-(b), the synthetic and the original traffic
have almost identical distributions.

B. Second-Order Descriptor

Different from QQ plots, the variance of traffic during
various time intervals is a second-order descriptor, which
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Fig. 14. QQ plots for the synthetic traffic of (a) temporarily scalable Citizen Kane and (b) the first description in 3-D Bridge; Comparison of the
variance between synthetic and original traffic in single-layer (c) Star Wars IV-A and (d) The Silence of the Lambs-B base layer.
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Fig. 15. Comparison of the variance between the synthetic and original enhancement layer traffic in (a) Star Wars IV-B and (b) The Silence of
the Lambs-B; Comparison of the variance between the original and synthetic temporarily scalable Citizen Kane coded at (c) Q = 4 and (d) Q = 30.
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Fig. 16. Overflow data loss ratio of the original and synthetic enhancement layer traffic for (a) The Silence of the Lambs-B (c = 10 ms), (b) Star
Wars IV-B (c = 10 ms), (c) The Silence of the Lambs-B (c = 30 ms), and (d) Star Wars IV-B (c = 30 ms).

shows whether the model captures the burstiness properties of
the arrival processes [2]. This metric is computed as follows.
Assume that the length of a video sequence is l and there
are m frames in a given time interval t. We segment the
one-dimensional data into n non-overlapping block of size m,
where n = l/m. After summarizing all the data in each block,
we obtain a data sequence of length n and then calculate its
variance. Given a set of time intervals (i.e., various values of
m), we can obtain a set of variances.

In Fig. 14(c)-(d), we give a comparison between the vari-
ance of the original traffic and that of the synthetic traffic
generated from different models using different time intervals.
The figure shows that the second-order moments of our syn-
thetic traffic are in good agreement with those of the original
sequences. Note that we display the y-axis on logarithmic scale
to clearly show the difference among the performance of the
various models.

We also compare the variance of the original enhancement
layer traffic and that of the synthetic traffic in Fig. 15(a)-
(b). Due to the computational complexity of Zhao’s model
[35] in calculating long sequences, we only take the first
5000 frames of Star Wars IV-B and The Silence of
the Lambs-B. As observed from the figure, our model
preserves the second-order moment of the original traffic well.
In Fig. 15(c) and (d), we display the variance of the original
and synthetic traffic in two temporally scalable Citizen
Kane sequences coded at Q = 4 and Q = 30, respectively.
The figure demonstrates that the synthetic traffic captures the
burstiness of the original traffic very well. Note that model [35]
works slightly better in short sequences (e.g., 30 seconds) with
very few scene changes; however, our model still outperforms
[35] in such scenarios (not shown for brevity).
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Fig. 17. Overflow data loss ratio of the original and synthetic temporarily scalable Citizen Kane for (a) c = 10 ms and (b) c = 40 ms; Given d = r̄,
the error e of various synthetic traffic in H.264 Starship Troopers for (c) Q = 1 and (d) Q = 31.

TABLE II
RELATIVE DATA LOSS ERROR IN Star Wars IV-A GOP (12, 2)

Buffer Traffic type Drain rate Buffer Traffic type Drain rate
capacity 2r̄ 4r̄ 5r̄ capacity 2r̄ 4r̄ 5r̄

20 ms Our model 0.93% 0.61% 1.13% 30 ms Our model 0.25% 0.33% 0.95%

GOP-GBAR [9] 3.84% 2.16% 3.77% GOP-GBAR [9] 4.94% 3.33% 5.68%

Nested AR [20] 5.81% 2.77% 8.46% Nested AR [20] 6.94% 4.14% 9.92%

Gamma A [31] 5.20% 0.61% 2.57% Gamma A [31] 4.88% 1.10% 4.48%

Gamma B [31] 4.89% 1.93% 2.05% Gamma B [31] 4.67% 2.17% 4.03%

Wavelet model [21] 12.6% 48.4% 57.7% Wavelet model [21] 21.4% 50.0% 57.1%

TABLE III
RELATIVE DATA LOSS ERROR IN Bridge

Buffer Traffic Drain rate Buffer Traffic Drain rate
capacity type 1r̄ 1.5r̄ 2r̄ 2.5r̄ capacity type 1r̄ 1.5r̄ 2r̄ 2.5r̄

10 ms Descrip. 1 1.64% 1.38% 0.49% 0% 30 ms Descrip. 1 3.03% 0.93% 0.25% 0.65%

Descrip. 2 0.32% 2.36% 0.72% 0.30% Descrip. 2 0.22% 0.18% 0.49% 0%

20 ms Descrip. 1 2.28% 0.53% 0.49% 1.22% 40 ms Descrip. 1 3.38% 0.96% 1.07% 0.73%

Descrip. 2 0.75% 0.35% 0.48% 0% Descrip. 2 1.85% 1.69% 0% 0.31%

C. Buffer Overflows

Besides the distribution and burstiness, we are also con-
cerned how well our approach preserves the temporal infor-
mation of the original traffic. A common test for this purpose
is a leaky-bucket simulation, which is to pass the original or
the synthetic traffic through a generic buffer with capacity c
and drain rate d [31]. The drain rate is the number of bytes
drained per second and is simulated as different multiples of
the average traffic rate r̄.

We first examine the model accuracy using the data loss
ratio. In Fig. 16, we show the overflow in the enhancement
layers of both The Silence of the Lambs-B (54, 000
frames) and Star Wars IV-B (108, 000 frames) with dif-
ferent drain rates d for buffer capacity c = 10 ms and c = 30
ms, respectively. The x-axis in the figure represents the ratio
of the drain rates to the average traffic rate r̄. In Fig. 17(a)-
(b), we illustrate the loss rate of the original and synthetic
temporarily scalable Citizen Kane coded with Q = 4 with
buffer capacity c = 10, 40 ms. All simulation results show that
the synthetic traffic preserves the temporal information of the
original traffic very well.

To better evaluate the model performance, we also compare
the accuracy of our model with that of several other traffic
models using the relative error as the main metric. We define

error e as the relative difference between the actual packet
loss p in a leaky-bucket simulation and the synthetic packet
loss pmodel obtained under the same simulation constraints
using synthetic traffic generated by each of the models: e =
|p− pmodel|/p.

In Table II and Table IV, we illustrate the values of e for
various buffer capacities and drain rates d, for two sequences
of different GOP structures. As shown in the tables, the
synthetic traffic generated by our model provides a very
accurate estimate of the actual data loss probability p and
significantly outperforms the other methods. Fig. 17(c)-(d)
shows the relative error e of synthetic traffic generated from
different models in H.264 Starship Troopers coded at
Q = 1 and Q = 31. Since the GOP-GBAR model [9] is
specifically developed for MPEG traffic, we do not apply it to
H.264 sequences. The figure shows that our model outperforms
the other three models in Starship Troopers coded at
small Q and performs as well as Gamma A [31] at large Q
(relative error e of both models is less than 1% in Fig. 17(d)).

We also compare the computation complexity of different
methods using Matlab under the same computing environment.
The processing time of our model is 4.8 sec, which is less
than that of the pure wavelet model [21] (11.65 sec), that
of Gamma A/B [31] (5.88 sec) and that of Nested AR [20]
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TABLE IV
RELATIVE DATA LOSS ERROR IN Star Wars IV GOP (16, 1)

Buffer Traffic type Drain rate
capacity r̄ 3r̄ 4r̄

20 ms Our model 2.20% 3.61% 3.57%

GOP-GBAR [9] 2.46% 8.21% 22.62%

Nested AR [20] 2.42% 10.47% 4.59%

Gamma A [31] 3.09% 16.37% 34.18%

Gamma B [31] 10.82% 27.89% 38.78%

Wavelet model [21] 5.58% 51.75% 44.44%

(9.90 sec), but is higher than that of GOP-GBAR [9] (1 sec).
However, given the higher accuracy, our model seems to offer
a good tradeoff between complexity and fidelity.

We are not able to show results for previous multi-layer
models given the nature of our sample sequences since the
model in [2] is only applicable to sequences with a CBR base
layer and the one in [35] is suitable only for short sequences.
Therefore, we only illustrate the relative error e of the synthetic
2-D MDC-coded Bridge generated by our model in Table
III. As shown in the table, our method accurately preserves
the temporal information of MDC traffic.

VIII. CONCLUSION

In this paper, we presented a framework for modeling
MPEG-4 and H.264 multi-layer full-length VBR video traffic.
This work precisely captured the inter- and intra-GOP correla-
tion in compressed VBR sequences by incorporating wavelet-
domain analysis into time-domain modeling. Whereas many
previous traffic models are developed at slice-level or even
block-level [31], our framework uses frame-size level, which
allows us to examine the loss ratio for each type of frames
and apply other methods to improve the video quality at the
receiver. We also proposed novel methods to model cross-layer
correlation in multi-layer sequences. The linear computation
complexity of our model is no worse than that of [9], [20],
[31] and significantly lower than the O(N2 logN) complexity
of [35].

This framework also applies to adaptive GOP structure
cases, but requires small modifications, e.g., with large GOP
size, we prefer using the neighboring correlation (19) rather
than Lag-0 Intra-GOP correlation (11) to model P/B frames.
The main limitation of our model is that it does not apply to
video traffic generated by codecs without a concept of GOP
structure (e.g., motion JPEG 2000).

Future work involves understanding traffic prediction using
the proposed framework and modeling of non-stationary VBR
sources.
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