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ABSTRACT
Internet streaming applications usually have strict require-
ments on bandwidth, delay, and packet loss, while the cur-
rent best-effort Internet does not provide any Quality-of-
Service (QoS) guarantees to end flows. To achieve a higher
level of QoS for the end user, Fine-granular Scalability (FGS),
which has both strong error-resilience and flexibility during
streaming over variable-bandwidth channels, has been ac-
cepted as a standard coding scheme for the video streaming
profile in MPEG-4 [19]. Note that FGS and its extensions
(e.g., progressive FGS) can also be used in the emerging
video coding standards such as H.26L. This paper investi-
gates rate-distortion (R-D) models of FGS coders and shows
how such models can be used in a simple rate control frame-
work for FGS streaming over the Internet. In terms of con-
gestion control, we examine advantages and drawbacks of
Kelly’s proportional-fairness framework [12] and investigate
its practical use both in the best-effort and AQM-enabled
Internet. Our simulation results show that the developed
R-D models provide fundamental insight into the structure
of FGS coders and that constant-quality streaming is pos-
sible as long as the number of end flows competing at each
bottleneck resource remains fairly stationary.

Categories and Subject Descriptors
I.4 [Image Processing and Computer Vision]: Com-
pression (Coding); C.2.1 [Network Protocols]: Network
Communications

General Terms
Algorithms, Performance, Experimentation

Keywords
MPEG-4 FGS, Scalable Coding, Video Streaming, Conges-
tion Control, R-D Modeling
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1. INTRODUCTION
Video streaming is becoming an increasingly important

Internet application. In order to be successful in the best-
effort environment, video streaming must possess both con-
gestion control and adaptive video scaling mechanisms. This
paper investigates several fundamental properties of scalable
video (MPEG-4 FGS) and examines the suitability of re-
cently proposed congestion controls [10], [12], [13] for achiev-
ing constant-quality streaming.

Congestion control has been actively studied in the area
of networking and video-coding, and two general approaches
emerged [26]: the network-centric approach and the end-
system approach. The network-centric approach requires
routers/switches to guarantee end-to-end bandwidth and to
prevent large delays and packet loss in the network. The
end-system approach employs control techniques in the video
coding scheme to maximize the video quality without QoS
support from the network [3], [8], [15]. Since it is expected
that no QoS support will be available in the Internet in
the near future, this paper studies video streaming using
the end-system approach and relies on support from smooth
end-to-end congestion control to adjust the sending rate of
the server.

Recall that FGS [14], [20] has been chosen as the stream-
ing profile of the ISO/IEC MPEG-4 standard [19], because
it provides a flexible and low-overhead foundation for scal-
ing the enhancement layer to match variable network ca-
pacity. FGS consists of two layers: the base layer and a
single enhancement layer. The base layer is usually coded
at significantly lower bitrates than the enhancement layer.
Hence, it is often assumed that the end-to-end path has
enough capacity to deliver the base layer to the user, which
under certain generic assumptions (such as base-layer FEC
and priority retransmission of the base layer) guarantees its
error-free delivery to the receiver. As a result, the server
only needs to control the amount of transmitted bits in the
enhancement layer to fill the remaining capacity of the net-
work channel.

Also recall that due to the inherent nature of rate control
in the current video standards (e.g. MPEG-4), the encoder
often produces video sequences with highly fluctuating vi-
sual quality [27], [28], [29]. Therefore, it is only natural to
scale the FGS layer during transmission so as to “flatten
out” the fluctuating quality of the base layer.

Many current approaches (e.g., [3], [24]) develop rate con-
trol algorithms that assume a constant-rate channel and do
not couple FGS scaling with congestion control. Further-
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more, the existing approaches to constant-quality streaming
often rely on empirical R-D models to decide how to scale
the FGS layer [27], [28], which provide very little new infor-
mation about the structure of scalable coders or their R-D
tradeoffs. What is missing from this picture are deeper un-
derstanding of R-D functions of scalable (enhancement) lay-
ers and realistic congestion control assumptions about the
network channel. If the existing methods were to use the
classical AIMD (or various other TCP-friendly schemes), the
fluctuating rate of these controllers would void any attempts
of the server to produce a flat PSNR curve. The goal of our
work is to bridge this gap by studying R-D characteristics of
FGS and investigating asymptotically stable (smooth) con-
trollers for video streaming.

The paper is organized as follows. Section 2 provides the
necessary background and motivation. Section 3 develops a
novel closed-form R-D model of FGS video that generalizes
the R-D models in classical information theory [4], [24] to
second-order polynomials. Section 4 shows how this model
can be applied in video streaming when the server knows
its available bandwidth. Section 5 discusses the benefits
and limitations of proportional-fairness congestion control.
Section 6 couples our analytical R-D model with feedback
congestion control and shows simulation results. Section 7
concludes the paper.

2. MOTIVATION AND RELATED WORK
Recall that a fundamental problem both in video coding

and real-time scaling of the enhancement layer is the knowl-
edge of the correct R-D information of the video sequence.
There are two means of obtaining R-D curves: analytical
and empirical. The analytical approach builds a closed-form
R-D model of the source and/or encoder based on the statis-
tical properties of the source data and/or coding scheme [3],
[8]. The empirical approach constructs R-D curves by inter-
polating between several sampled values of rate and distor-
tion [15], [28]. Unfortunately, the empirical approach does
not give us much insight into the video coding process and
its high computation requirements typically place an unnec-
essary burden on streaming servers.

On the other hand, present analytical R-D approaches
are mostly developed for non-scalable video (base layer) and
thus lack accuracy in FGS streaming applications [3], [24]. It
should be further noted that classical rate distortion theory
and information theory develop simple closed-form R-D for-
mulas for statistical properties (e.g., memoryless Gaussian
sources) not typically found in real sequences.

Recall that in information theory, DCT coefficients of each
frame i are modeled as a zero-mean random variable Xi.
One popular statistical model for DCT data is that of a
Gaussian source with mean µ = 0 and variance σ2

x, which
leads to tractable results (that are upper bounds on achiev-
able quality) in information theory [4]:

D(R) = σ2
x2−2R. (1)

In terms of quantization step ∆, the classical model (1)
can be summarized as [6], [7]:

D(∆) =
∆2

β
(2)

and

R(∆) =
1

2
log2

(
ε2βσ2

x

∆2

)
, (3)

where β is 12 for uniformly distributed sources (often used
for Gaussian and Laplacian sources [1]) and ε2 is introduced
to model the reduction in efficiency due to quantization (ε2

= 1.4 for Gaussian, 1.2 for Laplacian, and 1.0 for uniform
source data). Several variations of the classical R-D model
have been proposed in the past. For example, Hang et al.
[7] extend the model in (2) by introducing three content-
dependent parameters and adjusting the value of β depend-
ing on the quantization step and the value of these param-
eters empirically estimated for each frame.

There is a significant research activity in the area of rate
control for FGS streaming [22], [27], [28]. All these ap-
proaches are developed under a buffer constraint that the
number of bits consumed in a group of pictures (GOP) or
a certain (fixed) window should be equal to the size of de-
coder’s buffer. Under this constraint, Zhao et al. [28] apply
a Newton search method to find the optimal distortion based
on the empirical R-D curve; however, the method does not
consider variation of the available bandwidth during trans-
mission, which makes it more suitable for offline download-
ing rather than real-time streaming.

In another work based on empirical R-D modeling, Zhao
et al. [27] adopt a sliding window approach to perform rate
adaptation for each frame in both the enhancement and base
layers. This approach not only alters the quantization pa-
rameters in the encoder for the base layer, but also adap-
tively allocates bits for the enhancement layer. However, the
high computation complexity of this approach makes it less
appealing during real-time streaming where the server must
adapt to bandwidth variations very quickly. Finally, Wang
et al. [24] use the classical R-D model (1)-(3) and Lagrange
optimization to allocate bits for the FGS enhancement layer.

3. MODELING FGS VIDEO

3.1 Introduction
To show that R-D curves for scalable coders are not mod-

eled by traditional results in information theory, we coded
the Foreman sequence (128 kb/s base layer @ 10 fps) and
extracted the actual R-D functions of the FGS layer from
frames 117 and 219 (shown in Figure 1). Notice that (1) is
a straight line in the PSNR-R domain and that it does not
match well the actual shape of the curves in Figure 1. Fur-
thermore, as seen in the figure, even a quadratic function is
not capable of modeling both low and high bitrates at the
same time.

Recall that video coding coupled with congestion control
requires accurate R-D information to decide how to control
the encoding and transmission bitrate under strict band-
width constraints. Devising a good R-D model involves two
important components: a) precisely modeling source data;
and b) selecting a sound operational model. Therefore, we
first investigate statistical properties of source data in FGS
enhancement layers and then build a closed-form R-D model
of scalable FGS coders.

3.2 R-D Modeling Framework
The enhancement layer input to the FGS encoder is the

discrete cosine transform (DCT) residue between the origi-
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Figure 1: Frame 117 (left) and 219 (right) of Fore-
man CIF.
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Figure 2: Different levels of distortion and a basic
model of FGS.

nal image and the reconstructed image in the base layer [19].
There are three stages during FGS coding, which causes
three levels of distortion. Figure 2 provides a conceptual
view of the FGS coding process and illustrates how these
levels of distortion are generated. Recall that the distortion
observed by the end user is the difference between the source
and its reconstructed version in the pixel (i.e., spatial) do-
main (shown as D1 in the figure). Let us further analyze
how this distortion is formed.

Initially, the source signal in the spatial domain is trans-
formed into the DCT domain with random DCT round-off
errors (which are labeled as noise ω1 in the figure). In the
DCT domain, the coefficients are separated into the base
layer and the enhancement layer. After the base layer is
combined with the quantized FGS signal at the receiver, it
incurs the second level of distortion D2, which is the classi-
cal frequency-domain distortion often modeled in previous
work. Note, however, that we have a third level of distor-
tion D3 that comes from quantization errors in the FGS
enhancement layer.

It is easy to notice that distortion D1 and D2 are equal
in an ideal codec (without round-off errors) since DCT is
an orthogonal transform. In real coding schemes, round-off
errors ω1 and ω2 are very small in comparison with values
of typical distortion, which for all practical purposes allows
us to write D1 ≈ D2 not only in theory, but also practice.

It is further easy to see that distortion D2 is equal to
D3. Consider an original DCT coefficient xi approximated
in the base layer with a value of bi. The corresponding DCT
residue in the enhancement layer is ei = xi–bi . Assume that
ei is quantized to some value qi through bitplane coding (i.e.,
the receiver decodes qi instead of ei). Thus, the distorted
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Figure 3: The PMF of DCT residue with Gaussian
and Laplacian estimation (left). Logarithmic scale
of the PMFs for the positive residue (right).

DCT coefficient is bi + qi, and distortion D2 is given by:

D2 =
∑

i

(xi − (bi + qi))
2 =

∑
i

(ei − qi)
2 = D3. (4)

Therefore, for FGS-coded sequences, the distortion in the
FGS enchantment layer alone determines the distortion of
the combined signal at the receiver. This means that R-D
modeling of the enhancement layer is sufficient to describe
the visual quality of video streaming. Thus, our modeling
below focuses entirely on the FGS layer and develops an R-D
framework that is independent of the base layer.

3.3 Source Statistical Properties
In image and video coding, Gaussian and Laplacian (dou-

ble exponential) distributions are the two most popular sta-
tistical models for DCT coefficients [1], [9], [22], [23] and
FGS DCT residue [22]. These models are popular often
more due to their mathematical tractability rather than be-
cause they accurately describe real video source data.

To examine statistical properties of real DCT residue,
we conducted an extensive analysis of the probability mass
function (PMF) of DCT residue coefficients for different
frames and different sequences. A typical example of what
we observed is shown in Figure 3. Figure 3 (left) shows
that neither Gaussian nor pure Laplacian distribution fits
the sharp peak of the real PMF. Notice that a significant
fraction of all coefficients are located near the peak, which
means that it is very important to accurately model the ac-
tual PMF near zero. It may seem at first that the Gaussian
and the Laplacian distributions can fit the tail of the real
PMF in Figure 3 (left); however, close examination of the
tails on the logarithmic scale (shown in Figure 3 (right))
reveals that the Gaussian distribution decays too quickly
and the Laplacian distribution cannot describe the bending
shape of the real PMF.

Further notice that in Figure 3 (right), the log-scaled PMF
of the DCT residue can be partitioned into two straight lines,
which indicates that the shape of the PMF can be approx-
imated by a combination of two exponential distributions.
Thus, to capture the sharp peak and heavy tails of the ac-
tual PMF, the natural choice is to use a mixture-Laplacian
model described below.

Suppose that the DCT residue is generated by a random
variable X with probability p and another random vari-
able Y with probability (1 − p). Thus, assuming the cor-
responding density (mass) functions for these two variables
are pX(k) and pY (k), the PMF of the DCT residue is given
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Figure 4: The real PMF and the mixture Laplacian
model (left). Tails on logarithmic scale of mixture
Laplacian and the real PMF (right).

by:

p(k) = p · fX(k) + (1− p) · fY (k)

= p · P (X = k) + (1− p) · P (Y = k)

= p
λX

2
e−λX |k| + (1− p)

λY

2
e−λY |k|, (5)

where λX and λY are the shape parameters of the corre-
sponding Laplacian distributions. We can further note that
one Laplacian random variable (say X) concentrates the
probability mass near 0 due to its low variance, whereas the
other random variable (say Y ) spreads out the rest of the
mass across larger values due to its high variance. In prac-
tice, we use the EM (Expectation-Maximization) algorithm
to obtain the estimates of parameters {λX , λY , p}.

As illustrated in Figure 4, the mixture Laplacian distri-
bution fits the histogram of the DCT residue much better.
The discrepancy at the end of the tail in Figure 4 (right)
does not affect the source model, since only very few of the
samples are contained there (0.04% in this example). It
should be pointed out that the mixture Laplacian distribu-
tion can also describe statistical properties of other signals
with sharp peaks and heavy tails1, such as base-layer DCT
coefficients.

We next examine the discrepancy between these three
models (Gaussian, Laplacian and mixture Laplacian) and
the real PMF for Foreman CIF and Coastguard CIF in Fig-
ure 5. Note that the error is weighed by the amount of DCT
coefficients it affects (i.e., discrepancies toward the tail of
the distribution weigh less since they affect only a handful
of samples).

In summary, experimental results show that one cannot
directly apply classical (e.g., Gaussian or Laplacian) statis-
tical models to DCT residue in MPEG-4 FGS. However, we
observed that the mixture-Laplacian distribution follows the
majority of the real data with exceptional accuracy.

3.4 Previous Closed-Form R-D Models
In traditional rate-distortion theory [9], distortion D is

derived to be an exponential function of rate R: D = EeαR,
where α is a constant and E is a function of the power
spectrum density (PSD) of the source. Under certain au-
toregressive assumptions about the source, the PSD model

1In statistical modeling of DCT data, “heavy” tails mean
distributions decaying slower than Gaussian. This is en-
tirely different from heavy tails found in network modeling
where they mean some form of the Pareto (hyperbolic) dis-
tribution.
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Figure 5: The absolute error of the three DCT
models in Foreman CIF (left) and Coastguard CIF
(right). Both sequences coded at 10 fps and 128
kb/s in the base layer.
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Figure 6: The model of Chiang et al. in (7), the real
R-D curve, the classical model in (6) and the UQ
model for frame 0 of CIF Foreman (left). The same
simulation for frame 252 of CIF Foreman (right).

can be simplified into a closed form as long as the source is
Gaussian and the quantization step ∆ is small [9], [24]:

D = γ2ε2σ2
x2−2R, (6)

where σ2
x denotes signal variance as before and γ2 is de-

rived from the autocorrelation function of the source [9].
Notice that (6) is a scaled version of (1), which still pro-
duces straight R-D curves in the PSNR domain.

Chiang et al. [3] use a “quadratic” R-D model based on a
Taylor expansion of the classical result in (1). Their model
assumes the following shape:

R = aD−1 + bD−2, (7)

where parameters a, b are obtained from multiple empirical
samples of the R-D curve. Finally, one additional popular
closed-form R-D model is the widely-used uniform quantizer
(UQ) shown in (2).

To illustrate the accuracy of these models, we plot the ac-
tual R-D curve and the model estimation for frames 0 and
252 of Foreman CIF in Figure 6. Observe that a large mis-
match exists between these models and the real R-D curve,
not only in the actual points, but also in the underlying
shape of the curve.

3.5 Square Root R-D Model

3.5.1 Distortion Model
Assume that the quantization step applied to a given

frame is ∆, which depends on the bitplane number where
the server stopped transmission of the FGS layer. If the
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Figure 7: The average absolute error in Foreman
CIF (left) and Coastguard CIF (right).

maximum number of bitplanes in a given frame is n and the
last transmitted bitplane is z (in the order from the most-
significant to the least-significant), then ∆ = 2n−z. Then
the distortion produced by quantizer ∆ is given by [7], [21]:

D(∆) = 2

N/∆∑

k=0

(k+1)∆−1∑

m=k∆

(m− k∆)2p(m), (8)

where p(m) is a (symmetric) PMF of the source DCT residue.
Substituting a single exponential distribution p(m) = aebm

into (8) and evaluating the discrete sum, we have:

D(∆) = 2a
(1−eb∆)b

×(
eb(∆−1)

[
∆2 − 2∆

(
1 + 1

b

)
+ 2

b2

]− 2
b2

) , (9)

where a and b are the parameters of the generalized Lapla-
cian distribution ae−b|m|. To demonstrate the accuracy of
(9) over two sample FGS sequences, Figure 7 plots the aver-
age absolute error of the classical model, UQ, and model (9)
for Foreman CIF and Coastguard CIF. As the figure shows,
(9) is a very accurate estimator of distortion D(∆). How-
ever, the complex form of the model serves very little useful
purpose. Thus, we next focus on simplifying it.

Recall that PSNR=10log10(2552/D) and take the loga-
rithmic transform of distortion model (9). After omitting
less-significant terms and grouping constants, we have:

log D(∆) ≈ a1 + a2∆ + log
(
b1∆

2 + b2∆ + b3

)
, (10)

which can be further simplified to the following assuming a
limited range of ∆ found in standard coding schemes:

log D(∆) ≈ c1 log2 ∆ + c2 log ∆ + c3. (11)

Note that (11) is a quadratic (rather than linear) func-
tion of bitplane number z and smoothly generalizes classical
information-theoretic results. Thus, we can re-write (11) in
terms of bitplane number z and quality PSNR:

PSNR(z) ≈ d1z
2 + d2z + d3. (12)

3.5.2 Rate Model
We conducted numerous experiments to better understand

the properties of bitrate R(z) as a function of bitplane z and
compared them to the traditional model. Recall the tradi-
tion R-D model in (3) and notice that its rate R is a linear
function of log(∆) (or bitplane z). This is an important
observation since we earlier found out that classical distor-
tion PSNR(z) in (2) was also a linear function of bitplane z.
Hence, the traditional R-D theory is a combination of two
linear functions of bitplane z.
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Figure 8: Quadratic model for R(z). Frame 0 (left)
and frame 252 (right).

Carefully examining Figure 8 and many others like it, one
notices that the shape of the R(z) curve is not linear and is
likely to be a polynomial function. Through simulations, we
found that second-order polynomials (quadratic functions)
were sufficient to model R(z) as schematically illustrated in
Figure 8. Skipping a large set of simulation results that show
quadratic modeling of R(z), we next combine our findings
into a single R-D model and check its accuracy in the entire
sequence.

3.5.3 Square-Root Model
What we have learned so far allows us to construct a close-

from R-D curve D(R) and generalize results of the linear
traditional model to second-order polynomial functions in
the bitplane domain (or the z-domain, following the notation
in [8]). Consider a polynomial function for R(z) in the z-
domain for some constants e1 − e3:

R(z) ≈ e1z
2 + e2z + e3. (13)

Inverting the polynomial in (13), keeping in mind that
PSNR(z) is also a quadratic function of z, dropping insignif-
icant terms, and combining constants:

PSNR(R) ≈ AR + B
√

R + C. (14)

Notice that this result is a direct generalization of the
classical formula (1), which models the PSNR as a linear
function of rate R. Our work found substantial evidence that
suggests that linear approximations in the z-domain do not
produce accurate models (as evidenced by many figures in
this paper) and that exploring more complicated models can
bring additional insight into understanding R-D properties
of complex sources and encoders. Re-writing (14) in the
distortion domain, the final closed-form R-D function is a
smooth generalization of the classical result in (1):

D(R) = 2aR+b
√

R+c. (15)

In Figure 9, we examine the maximum (over all bitplanes)
absolute error of our model (14), a simple quadratic model
shown in Figure 1, and the usual linear model from infor-
mation theory. Since models (6) and (7) are both expanded
from the classical linear result, they can be combined un-
der the linear “umbrella” of the classical model. Figure 10
shows the average absolute error of the same models in the
same two sequences. Other extensive experimental results
show that (14) significantly outperforms the classical linear
model, Chiang’s result [3], as well as the quadratic model.
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Figure 9: The maximum absolute error in Foreman
CIF (left) and Coastguard CIF (right).
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Figure 10: The average absolute error in Foreman
CIF (left) and Coastguard CIF (right).

4. APPLICATION OF THE MODEL
As we mentioned in Section 2, rate control is one popular

application of R-D models. The main question here is how to
scale the FGS layer to both match the available bandwidth
RT (total bits allowed for the entire sequence) and achieve
certain constant quality D after decoding. We illustrate the
solution to this problem using Figure 11 (left) and a simple
sequence consisting of two frames. First, the server inverts
the result in (14) or (15) and obtains two R(D) curves (one
for each frame). Second, it generates the combined rate
curve R1(D)+R2(D), which shows the amount of total bits
required to achieve constant D in both frames. Knowing
RT , the combined curve needs to be inverted one more time
to obtain the value of DT that provides the required total
bitrate RT . The size of individual frames is given by R1(DT )
and R2(DT ) as the final step.

In general, adding the R-D curves of each frame, we get
a combined function F (D), which is constrained by RT :

F (D) =

N∑
i=1

Ri(D) = RT , (16)

where Ri(D) is the R-D function of frame i and N is the
number of frames in the remainder of the sequence. Partial
summation in (16) is important since congestion control of-
ten changes its rate in the middle of actual streaming and
(16) needs to be recomputed every time such change is en-
countered. Finding the root of (16) involves inverting F (D)
and evaluating

DT = F−1(RT ). (17)

Even though the new R-D framework does not lead to a
closed-form solution for F−1, each of the individual curves
can be generated with high accuracy using only a 3-point
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Figure 11: Given a target rate RT , the location
of constant quality DT (left). Comparison between
our model, the result of [24], and rate control in
JPEG2000 (right).

interpolation and the resulting function F (D) can be com-
puted (and then inverted) very efficiently.

In Figure 11 (right), we illustrate this simple rate con-
trol algorithm (labeled as “SQRT”) assuming that the chan-
nel capacity is fixed (variable channel rates are studied in
the next section). The figure shows simulation results us-
ing Foreman CIF with 128 kb/s for the base layer and 768
kb/s for the enhancement layer in comparison with two other
rate-control methods – those proposed in the JPEG2000 im-
age coding standard and in Wang et al. [24]. Experimental
results show that the new R-D framework can be success-
fully used to both dramatically reduce undesirable quality
fluctuation during streaming and to relieve the server from
expensive interpolation. The variance in PSNR between ad-
jacent frames in the SQRT curve shown in Figure 11 (right)
is only 0.04 dB.

This is the point where most FGS streaming papers stop.
We find that the neither the exact method of scaling the
enhancement layer (this section), nor the underlying R-D
model (the previous section) are very important if the ap-
plication relies on any of the wide variety of AIMD-style
congestion control methods. Hence, we feel that with goals
of constant-quality streaming, it becomes much more im-
portant to continue the research into the area of smooth
congestion control, which is a pre-requisite to actual imple-
mentation of any of these methods. Unfortunately, the cur-
rent Internet does not provide an environment where smooth
(asymptotically stable) sending rates can be easily achieved;
nevertheless, there are promising classes of congestion con-
trollers for the future Internet than may fulfill these require-
ments. One such class is studied next.

5. CONGESTION CONTROL

5.1 Overview
There are many challenges facing Internet streaming ap-

plications, all of which stem from the lack of quality-of-
service (QoS) guarantees in the transport layer. One of the
primary impediments to high-quality delivery of real-time
video to the end user is the variable channel bandwidth.
Notice that even though end-to-end paths often experience
relatively stationary conditions (in terms of the number of
competing flows, average long-term packet loss, etc.), cur-
rent congestion control methods built on top of a variety of
TCP-friendly schemes cannot asymptotically converge (from
a control theory point of view) to a single stationary rate or
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provide a smooth “virtual” channel to the video application.
After AIMD (Additive Increase, Multiplicative Decrease)

was found unsuitable for video applications due to large
rate fluctuations, a major effort has been dedicated to de-
veloping smoother congestion control methods for multi-
media streaming (e.g., TFRC [5] and binomial algorithms
[1]). Nevertheless, these newly-developed methods are not
asymptotically stable, nor do they have any stationary points
in the feasible operating range of a typical application. Note
that unless a video application can employ a stable con-
gestion controller, any attempts to provide constant-quality
streaming will be moot.

In this section, we study continuous-feedback congestion
controllers proposed by Kelly et al. [12] and investigate
whether their performance provides the necessary founda-
tion for achieving the goals of this paper.

5.2 Continuous-Feedback Controllers
Recall that TCP and classical binary-feedback methods

(such as AIMD and binomial algorithms) rely on packet
loss in order to increase or decrease their rates. Since the
decision about changing the current rate is binary, we can
summarize their control functions as following:

dr

dt
= (1− sgn(p))F (r)− sgn(p)G(r), (18)

where r(t) is the rate, p(t) is packet loss, F (r) is the in-
crease function, and G(r) is the decrease function. Notice
that with a reasonable choice of functions F and G, the
right side of (18) does not have roots, which means that the
equation does not have stationary points. Since (18) can-
not be stabilized, it must oscillate or diverge. It is easy to
show that under certain mild conditions on F (r) and G(r)
[1], [16], (18) oscillates around the equilibrium (equal-share)
rate. The amount of oscillations depends on the choice of
F (r) and G(r) and typically leads to a trade-off between
the size of oscillations and the rate of response to conges-
tion signals. Thus, controls that produce small oscillations
are usually susceptible to more packet loss due to their re-
luctance to back off during congestion.

What is interesting about binary-feedback methods is that
they typically do not possess any methods that can force
the oscillations to asymptotically decay to zero, even un-
der stationary cross-traffic conditions. Therefore, we seek
alternative methods that provide this functionality and are
provably stable under both immediate and delayed feedback.
One such alternative is given by Kelly’s congestion control
framework called proportional fairness [12]:

dr

dt
= r(αU ′(r)− β

∑

l∈P

pl), (19)

where U(r) = log(r) is the utility function of the end user
and pl is the price that the flow pays for using resource
(router) l along the end-to-end path P . Kelly’s controls have
received significant attention in the theoretical networking
community [10], [12], [13], [17]; however, their application
in real networks or streaming applications has been limited.

Notice several differences (borderline simplifications) of
the original framework (19), which are necessary to make
this controller practical. First, it is common to use packet
loss as the continuous feedback (instead of the price) simply
because the current Internet is still best-effort and prices are
a meaningless metric for individual routers. Second, instead

of summing up the packet loss experienced by all routers of
an end-to-end path, it sometimes makes more sense to use
the maximum packet loss among these routers in order to
match the rate of the application to the bandwidth of the
slowest link in the path:

p(t) = max
l∈P

pl. (20)

Another option is to use the common end-to-end notion
of packet loss where the flow measures combined loss ex-
perienced by its packet over the entire path. Since packet
loss at individual routers is not additive (i.e., if loss is 70%
in router A and 50% in router B, the combined loss is not
120%), the resulting end-to-end measurement is given by:

p(t) = 1−
∏

l∈P

(1− pl). (21)

In general, the question of whether max-min fairness at
each resource offers undisputed benefits over proportional
fairness [12] or other types of fairness (such as minimum
potential delay [13], [18]) is a topic of ongoing debate, which
we do not address in this paper.

Expanding (19) using a single feedback p(t) of the most-
congested resource or the standard end-to-end feedback, we
have a more application-friendly version of the controller:

dr(t)

dt
= α− βp(t)r(t). (22)

Notice that when the application decides to rely on some
form of AQM (Active Queue Management) inside the routers
to feed back the value of p(t), this framework aligns well with
other next-generation congestion controllers such as XCP
[11]. To show that the overhead needed to generate the
feedback is very reasonable (often even less than required
by RED or ECN), consider the simplest shape of pl:

pl(t) =

(∑
i ri(t)− Cl

)+

∑
i ri(t)

, (23)

where ri is the sending rate of the i-th flow passing through
resource l, Cl is the speed of the resource (i.e., its outgo-
ing bandwidth), and (·)+ represents max(·, 0). Each router
needs to maintain one variable with the total number of
bytes placed in the outgoing buffer during the last T time
units. At the end of each interval, this counter is divided
by T to obtain an estimate of

∑
i ri(t), which is then used

to calculate pl using (23). The new value of pl is inserted
into each passing packet as long as the corresponding pl−1

contained in the packet is lower than the value computed by
this router. Notice that the router does not need to count
the number of flows or estimate the individual rates ri. This
means that the feedback is based on the aggregate flow rate
R(t) =

∑
i ri(t) rather than on individual flow rates. This

in general increases the scalability of these AQM functions
inside each router.

Kelly controls have been shown to be stable under arbi-
trary delays both in continuous and discrete cases [10], [17].
On the other hand, XCP and other recent methods (e.g.,
[25]) have only been analyzed in the Laplacian domain as-
suming continuous derivatives (i.e., arbitrarily small steps
during control actions) and zero feedback delays. Their sta-
bility in the presence of delayed feedback or discrete control
equations is unknown.

The final subtle difference between other next-generation
controllers and (23) is that Kelly controls do not necessarily

7



require AQM support. Assuming that only one resource is
heavily congested, feedback p(t) in (20) can be estimated
using end-to-end measurements. Alternatively, the appli-
cations may decide to explicitly use (21) in their control
equation. In either event, accurate end-to-end estimation
of packet loss is still a difficult problem (as for example is
demonstrated in [5]). The difficulty appears to be surmount-
able since under stationary cross-traffic conditions, recursive
Kalman filters typically can provide an asymptotically ac-
curate estimate of p(t). We leave these details for future
work and in the meantime, study how a network of AQM-
equipped resources enables video streaming applications to
deliver constant-quality presentations to the end user.

5.3 Basic Properties
Given the expression of pl(t) in (23), each flow in (22) has

a single stationary point given by:

r∗ =
α

βp∗
=

Cl

n
+

α

β
, (24)

where p∗ is the packet loss in the stationary state, Cl is the
speed of the most congested resource for flow r, and n is the
number of flows sharing that resource. Notice that the sta-
tionary point does not depend of the RTT of the flow, which
means that flows with different round-trip delays share the
resource equally. Furthermore, it is easy to demonstrate that
the control equation (22) converges to the stationary point
and remains asymptotically stable under arbitrary feedback
delays [10], [17]. Thus, the main controller (22) is both fair
and stable under a wide range of realistic conditions.

Notice several limitations of this framework. First, the
stationary point has a strictly non-zero packet loss p∗:

p∗ =
nα

Clβ + nα
> 0. (25)

This is not a major problem since (23) can be adapted
to move the stationary point below Cl (see below). How-
ever, the presence of n in the numerator of (25) prevents
Kelly controls from staying below capacity Cl as the num-
ber of flows grows arbitrarily large. Another way of showing
this is to analyze the total load R(t) =

∑
i ri(t) on a given

bottleneck resource in the stationary point. From (24), we
have:

R∗ = nr∗ = Cl +
nα

β
, (26)

where R∗ is the total rate at the router in the equilibrium
point. Thus, the amount of overshoot nα

β
in the stationary

state (and hence packet loss p∗) grows linearly with n (as-
suming α is positive). Therefore, even under AQM feedback
in (23), packet loss cannot remain fixed as the number of
flows n grows. Linear increase in packet loss is not as severe
as in other methods (such as n2 in AIMD or n3 in IIAD
[16]), but it does represent undesirable performance when
the number of flows becomes very large.

5.4 Exponential Convergence to Efficiency
The next property of AQM-based feedback is the ability of

Kelly controls to converge exponentially to the equilibrium
point. Since the router explicitly computes (23), there is no
inherent limitation on keeping the feedback positive. Hence,
relaxing this requirement, (23) becomes:

pl(t) =

∑
i ri(t)− Cl∑

i ri(t)
, (27)
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Figure 12: Exponential convergence of rates for C
= 1.5 mb/s (left) and C = 10 gb/s (right).

as long as there are is some traffic passing through the router
(i.e.,

∑
i ri > 0). Note that exponential convergence to the

stationary point holds for the combined rate R(t) and not
the individual rates ri(t). Thus, this control converges to ef-
ficiency exponentially, while convergence to fairness is (po-
tentially) slower. Exponential convergence to efficiency can
be shown as follows. Summing up (22) for all n flows and
using (27):

dR(t)

dt
= nα− βR(t)p(t) = nα− β(R(t)− C). (28)

Notice that (28) admits a closed-form solution:

R(t) = (C +
nα

β
)
[
1− e−βt

]
+ R(0)e−βt, (29)

where R(0) is the initial combined rate of all flows. Param-
eter β solely determines the rate of convergence (this was
not the case with AIMD, where α was responsible for con-
vergence to efficiency). Using β = 0.5 and α = 10 kb/s, it
takes 8 steps for a single-flow to fill a 1.5 mb/s T1 bottleneck
and it takes only 16 steps for the same flow to fill a 10 gb/s
link. This is illustrated in Figure 12. Note that both flows
reach within 5% of C in just 6 steps.

Therefore, we can conclude that under AQM feedback,
Kelly controls are highly suitable for high-speed networks of
the future Internet and, along with XCP [11], may provide
a new avenue of high-speed congestion control.

5.5 Zero Packet Loss
One obvious way to control the increase in packet loss as

the number of flows becomes large is to explicitly estimate
n inside the router and adapt (27) to become:

pl(t) =

∑
i ri(t)−

(
Cl − nα

β

)
∑

i ri(t)
. (30)

Of course, feedback (30) no longer represents packet loss,
but this should not make any difference for the end flows.
Under these assumptions, re-write (26) again assuming that
link l is the most congested router:

R∗ =
nα

β (R∗−Cl+nα/β)
R∗

=
nR∗α

βR∗ − βCl + nα
. (31)

and solve for R∗:

R∗ = Cl. (32)

Therefore, the knowledge of the number of flows allows
distributed and asymptotically stable controls of the Kelly
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framework to achieve both constant and zero packet loss
as shown in (32). Furthermore, link utilization in this case
stays at 100%.

5.6 Discussion
There is a wide range of possible uses of Kelly controls

in the context of the Internet. We examined several simple
methods, which can be broadly partitioned into two cate-
gories – end-to-end and AQM. The end-to-end methods have
many limitations: a) packet loss p(t) must be estimated at
the receiver; b) the stationary point p∗ is strictly positive
(i.e., bottleneck buffers are constantly full); c) packet loss
grows linearly with the number of flows n; and d) the con-
vergence to efficiency is linear.

The AQM methods can also be divided into two categories
– those that estimate the number of flows n and those that
do not. In both cases, we gain exponential convergence to
efficiency, while in the former case, we also avoid the packet-
loss increase problem.

This analysis reflects the general philosophy of distributed
congestion control – the more flows know about the state of
the network, the better control can be accomplished. Among
a wide range of methods, controllers with distributed control
functions are generally more desirable. Thus, XCP and var-
ious ATM ABR (Available Bitrate) Explicit Rate [2] meth-
ods that monitor queue size and implement router-based
controllers cannot be fully classified as “distributed.”

On the other hand, Kelly and pure end-to-end methods
(such as TCP) are inherently end-flow controls. The only
difference between the two is that Kelly controls gradually
become smoother and nicer as additional information be-
comes available in router feedback, but neither of them ab-
solutely requires such feedback to operate. It is to be seen
whether ATM-like congestion control inside the routers will
overpower end-flow congestion control. In the meantime, we
use Kelly controls as the model of one of the many possible
controllers in future high-speed networks since they possess
many appealing characteristics for real-time applications.

6. SIMULATIONS
In this section, we examine the PSNR quality curves when

the target rate RT is not know a-priori, but is rather supplied
by real-time congestion control. We obtained the traces of
r(t) from ns2 simulations and then applied them to the video
scaling algorithm offline. We should point out that one lim-
itation of this approach is that we did not take into account
the effect of lost packets during the simulation on the qual-
ity of the stream. This is reasonable in streaming scenarios
where the application protects its packets by FEC or some
form of retransmission. Since in Kelly controls, the amount
of packet loss p∗ in the steady state is fixed and known
to the end flow once it reaches the equilibrium, it becomes
easy to send enough FEC to cover the exact amount of lost
data. In general, we do not claim that this is an exhaustive
congestion control simulation since much more thorough ex-
amination of these controls over real networks is required
before making any far-reaching conclusions.

First examine the typical PSNR curve produced by AIMD
(1,0.5) and AQM Kelly controls in Figure 13 (left). The sim-
ulations are run over a single bottleneck resource of capacity
C = 1 mb/s, the round-trip delay is 100 ms, and there is only
one flow at the link at any given time. As the figure shows,
both controls at first follow the PSNR of the base layer since
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Figure 13: Comparison of AIMD and Kelly controls
over a 1 mb/s bottleneck link (left). Kelly controls
with two flows starting in unfair states (right).
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Figure 14: Comparison of PSNR for two flows with
different (but fixed) round-trip delays D (left). Two
flows with random round-trip delays (right).

there is not enough discovered bandwidth to send any FGS
data. Once this stage is passed, both controls achieve high
PNSR; however, the difference is that AIMD backs off by
half upon every packet loss, while Kelly controls eventually
stabilize at a fixed rate. Rate fluctuation in AIMD results
in periodic jumps (sometimes as high as 4 dB) throughout
the entire sequence.

Figure 13 (right) shows another scenario where two Kelly
flows are sharing the same bottleneck link C under identical
100-ms round-trip delays. Flow1 in the figure is started with
r1(0) = C and flow2 is started with its base-layer bandwidth.
The two flows converge to a fair allocation at approximately
t = 3 seconds and then follow the same flat quality curve.

The next issue to examine is whether different round-trip
delays D have any effect on fairness. Figure 14 (left) shows
two flows started in the same unfair states as in Figure 13
(right), but this time the delay of flow2 is four times larger
than the delay of flow1 (400 and 100 ms, respectively). Since
the second flow responds to congestion feedback slower, the
convergence to fairness is slower and the two flows are stabi-
lized at point t = 7 seconds. Notice that if flow1 had larger
RTTs, the convergence would have been quicker, because
flow2 would have been able to claim its bandwidth faster
due to smaller RTT.

The effect of random feedback delays on the PSNR quality
is shown in Figure 14 (right), where each flow experiences
a random feedback delay uniformly distributed between 100
and 400 ms (the initial rates are the same as before). The
convergence is somewhat slower than in the previous ex-
amples, but at time t = 8 seconds, both flows reach a fair
allocation of bandwidth at the bottleneck link.

Finally examine the case of n = 10 flows over a faster
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Figure 15: A single-flow PSNR when n = 10 flows
share a 10 mb/s bottleneck link (left). Random de-
lay D for the flow (right).

bottleneck C = 10 mb/s. In this case, one flow initially
occupies the whole bandwidth and then 9 other flows en-
ter the path. All delays are random between 100 and 400
ms. Figure 15 (left) shows the trajectory of one (randomly
selected) flow. As the figure shows, at first only the base
layer is transmitted, but starting at t = 2 seconds, the FGS
layer “kicks in” and the flow smoothly converges to 37 dB
without any oscillations. The time to stabilize at 37 dB is
approximately 9.5 seconds, which appears to be reasonable
under many streaming conditions. The variation in delay D
is shown on the right side of the same figure.

In summary, Kelly controls converge to equilibrium with-
out oscillation and then stay there as long as the number of
flows at the bottleneck remains fixed. When new flows join
or leave, the transition between fair (equilibrium) points is
monotonic in most situations. This provides a nice founda-
tion for video-on-demand and other entertainment-oriented
video services where each flow is long-lived and can take full
advantage of this smooth congestion control framework.

7. CONCLUSION
This paper analyzed the question of representing the em-

pirical R-D curves with the smallest number of interpola-
tion points and found that only three points were sufficient
to describe rate-quality tradeoffs of scalable FGS coders.
We successfully applied this analysis to create a simple rate
adjustment algorithm that can work well with a variety of
feedback-based congestion controllers. We further studied
one class of smooth controls based on Kelly’s proportional
fairness and found them to work very well in an AQM en-
vironment of the future Internet. Our future work involves
analysis of end-to-end Kelly controls, reduction of the effect
of packet loss on the video quality, and various decoder-
based buffer-management techniques.
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