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Abstract— This paper presents a frame-level hybrid framework
for modeling H.264 and MPEG-4 multi-layer variable bit rate
(VBR) video traffic. In this work, the base layer is modeled
using a combination of wavelet and time-domain methods and
the enhancement layer is linearly predicted from the base layer
using the cross-layer correlation. Unlike previous studies, we
analyze and successfully model both inter-GOPand intra-GOP
correlation in VBR sequences. To accurately capture long-range
dependent (LRD) and short-range dependent (SRD) properties
of VBR traffic, we use wavelets to model the distribution of
I-frame sizes and a simple time-domain model for P/B frame
sizes. Simulation results demonstrate that our model effectively
preserves the temporal burstiness and captures important statisti-
cal features (e.g., the autocorrelation function and the frame-size
distribution) of original traffic. We also show that our model has
better performance than the previous methods in both single and
multi-layer sequences.

Index Terms— Wavelet transform, Multi-layer, Video traffic,
Enhancement layer

I. I NTRODUCTION

Video traffic modeling plays an important role in the char-
acterization and analysis of network traffic. Besides providing
an insight into the coding process and structure of video
sequences, traffic models can be used for many practical
purposes including allocation of network resources, design
of efficient networks for streaming services, and delivery of
certain Quality of Service (QoS) guarantees to end users.

Although many studies have been conducted in this area,
most existing traffic models only apply to single-layer VBR
video and often overlook the multi-layer aspects of streaming
video traffic in the current Internet [1], [28]. In addition, traffic
modeling research is falling behind the rapid advances in video
techniques, which include standards MPEG-4 [21] and H.264
[14]. Therefore, the goal of this work is to better understand
the statistical properties of various video sequences and to
develop a model that can generate synthetic traffic with the
properties close to those of original single/multi-layer MPEG-
4 and H.264 video sequences.

A good traffic model should capture the characteristics of
video sequences and accurately predict network performance
(e.g., buffer overflow probabilities and packet loss). Among
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the various characteristics of video traffic, there are two major
interests: (1) the distribution of frame sizes; and (2) the
autocorrelation function (ACF) that captures the dependencies
between frame sizes in VBR traffic. In regard to the first
issue, several models have been proposed for the frame-
size distribution, including the lognormal [8], Gamma [26],
and various hybrid distributions (e.g., Gamma/Pareto [17] or
Gamma/lognormal [24]).

Compared to the task of fitting a model to the frame-size
distribution, capturing the ACF structure of VBR video traffic
is more challenging due to the fact that VBR video exhibits
both long-range dependent (LRD) and short-range dependent
(SRD) properties [10], [18]. The co-existence of SRD and
LRD indicates that the ACF structure of video traffic is similar
to that of SRD processes at small time lags and to that of
LRD processes at large time lags [10]. Thus, using either
a long-range dependent or a short-range dependent model
alonedoes not provide satisfactory results. Many studies have
been conducted to address this problem, but only a few of
them have managed to model the complicated LRD/SRD ACF
structure of real video traffic (e.g., [17], [18]). Furthermore, the
correlation that most models try to capture is theinter-GOP
(Group of Pictures) correlation, which is well characterized
by the ACF of the I-frames. However, another dimension of
video traffic, theintra-GOP correlation1, is rarely addressed
in related work, even though it is an important characteristic
useful in computing precise bounds on network packet loss
[16].

In this paper, we develop a modeling framework that is
able to capture the complex LRD/SRD structure of single-
layer and multi-layer video traffic, while addressing the issues
of both intra-GOP and multi-layer correlation. We model I-
frame sizes in the wavelet domain using estimated wavelet
coefficients, which are more mathematically tractable than
actual coefficients. After a thorough analysis of intra-GOP
correlation, we generate synthetic P-frame traffic using a time-
domain linear model of the preceding I-frame to preserve the
intra-GOP correlation. We use a similar model to preserve
the cross-layer correlation in multi-layer video sequences and
show that the performance of the resulting model is better than

1The correlation between P/B-frames and the I-frame in the same GOP.



that of prior methods.
The specifics of four one-hour video sequences dis-

cussed in this paper are as following: a single layer
MPEG-4 Star Wars IV [6] (25 frames/s), a single layer
H.264 Starship Troopers [22] (25 frames/s), a two-
layer MPEG-4 spatially-scalableThe Silence of the
Lambs [22] (30 frames/s), and a two-layer MPEG-4 FGS-
codedStar Wars IV [22] (30 frames/s). All four sequences
have GOP structureIBBPBBPBBPBB.

This paper is organized as follows. In Section II, we
overview the related work on traffic modeling. In Section III,
we provide the background on wavelet analysis and show how
to generate synthetic I-frame sizes in the wavelet domain. In
Section IV, we discuss the intra-GOP correlation in various
sequences and present a linear model for P and B-frame sizes.
Section V analyzes the cross-correlation between the base
layer and the enhancement layer, and explains how to generate
a synthetic enhancement layer based on this information. In
Section VI, we evaluate the accuracy of our model using
both single-layer and multi-layer video traffic. Section VII
concludes the paper.

II. RELATED WORK

Numerous studies have been conducted in modeling VBR
video traffic and a variety of models have been proposed in
the literature. In this section, we briefly overview related work
on single-layer and multi-layer traffic models.

A. Single-Layer Models

According to the dominant stochastic method applied in
each model, we group existing single-layer models into several
categories and present the main results of each group below.

We first discuss AR models, since they are classical ap-
proaches in the area of traffic modeling. After the first auto-
regressive (AR) model was applied to video traffic in 1988
[19], AR processes and their variations remain highly popular
in this area of research [17]. For example, Corteet al. [3] use a
linear combination of two AR(1) processes to model the ACF
of the original video traffic, in which one AR(1) process is
used for modeling small lags and the other one for large lags.
Since using a single AR process is generally preferred, Krunz
et al. [8] model the deviation of I-frame sizes from their mean
in each scene using an AR(2) process. Building upon Krunz’
work [8], Liu et al. [17] propose anestedAR(2) model, which
uses a second AR(2) process to model the mean frame-size
of each scene. In both cases, scene changes are detected and
scene length is modeled as a geometrically distributed random
variable.

To model videoconferencing data, Heymanet al. propose
a discrete autoregressive (DAR) model in [11] and a GBAR
model in [12], the latter of which has Gamma-distributed
marginal statistics and a geometric autocorrelation. By con-
sidering the group-of-picture (GOP) cyclic structure of video
traffic, Freyet al. [7] extend the GBAR model in [12] to the
GOP-GBAR model.

The second category consists of Markov-modulated models,
which employ Markov chains to create other processes (e.g.,
the Bernoulli process [15]). Rose [25] uses nested Markov
chains to model GOP sizes. Since synthetic data is generated at
the GOP level, this model actually coarsens the time scale and
thus is not suitable for high-speed networks. Chenet al. [2] use
a doubly Markov modulated punctured AR model, in which
a nested Markov process describes the transition between the
different states and an AR process describes the frame size
at each state. The computation complexity of this method
is quite high due to the combination of a doubly Markov
model and an AR process. Sarkaret al. [26] propose two
Markov-modulated Gamma-based algorithms. At each state of
the Markov chain, the sizes of I, P, and B-frames are generated
as Gamma-distributed random variables with different sets of
parameters. Although Markov-modulated models can capture
the LRD of video traffic, it is usually difficult to accurately
define and segment video sources into the different states in
the time domain due to the dynamic nature of video traffic
[18].

The third category consists of self-similar processes and
fractal models. Garrettet al. [10] propose a fractional ARIMA
(Autoregressive Integrated Moving Average) model to repli-
cate the LRD properties of compressed sequences, but do
not provide an explicit model for the SRD structure of video
traffic. Using the results of [10], Huanget al. [13] present a
self-similar fractal traffic model; however, this model does not
capture the multi-timescale variations in video traffic [8].

Other approaches include theM/G/∞ process [9] and
Transform-Expand-Sample (TES) based models [20]. The
former creates SRD traffic [17] and the latter has high compu-
tational complexity and often requires special software (e.g.,
TEStool) to generate synthetic sequences. Different from the
above time-domain methods, several wavelet models [18], [23]
recently emerged due to their ability to accurately capture
both LRD and SRD properties of video traffic [18]. We
provide more background on wavelets and an initial analysis
of approximation coefficients in section III-A.

B. Multi-Layer Models

Most traffic modeling studies focus on single-layer video
traffic and rarely model multi-layer sequences. Among several
multi-layer studies, Chandraet al. [1] use a finite-state Markov
chain to model one- and two-layer video traffic of all activity
levels. They assume that only one I-frame exists in the whole
video sequence and the I-frame size is simply a Gaussian
random variable. The model clusters P-frame sizes intoK
states according to the correlation between successive P-frame
sizes and uses a first-order AR process to model the frame size
in each state. The goal of [1] is to model one or two-layer
video traffic with a CBR base layer, while many multi-layer
video sequences havemorethan two layers and the base-layer
is VBR.

Similarly to the work in [1], Zhaoet al. [28] build aK-state
Markov chain based on frame-size clusters. The clustering
feature in [28] is the cross-correlation between the frame size



of the base layer and that of the enhancement layer at the
same frame index. In each state of the Markov chain, the base
and the enhancement-layer frame sizes follow a multivariate
normal distribution. However, the computational cost of the
hierarchical clustering approach applied in [28] limits its
application only to short video sequences. Furthermore, in
both [1] and [28], there is no general method for choosing
the optimal number of states and the necessary parameters are
often selected empirically.

III. M ODELING I-FRAME SIZES

In this section, we address the problem of modeling I-
frame sizes and show a novel method for estimating the
coefficients of the wavelet transform. Using the estimated
wavelet coefficients, we later generate synthetic I-frame sizes,
which preserve the LRD and SRD properties of the original
traffic.

A. Wavelet Models and Preliminaries

Wavelet analysis is typically based on the decomposition
of a signal using an orthonormal family of basis functions,
which includes a high-passwavelet function and a low-pass
scaling filter. The former generates thedetailed coefficients,
while the latter produces theapproximationcoefficients of the
original signal. The wavelet transform strongly reduces the
temporal correlation in the input signal, which means that
signals with LRD properties produce short-range dependent
wavelet coefficients [18].

In order to understand the structure of the wavelet transform,
we next examine the relationship between the original signal
and the detailed and approximation coefficients. Assume that
j = J is the coarsest scale andj = 0 is the original
signal. For discussion convenience, we define{Aj} to be the
random process modeling approximation coefficientsAk

j and
{Dj} to be the process modeling detailed coefficientsDk

j

at the wavelet decomposition levelj, wherek is the spatial
location ofAk

j andDk
j . Notice that{Aj} is a random process

Aj = (A1
j , A

2
j , · · · , Ak

j , · · · ) andAk
j is a random variable.

In the following discussion, we use the Haar wavelet
transform as a typical example since it is often chosen for
its simplicity and good performance [18], [23]. Recall that the
Haar approximation coefficientsAk

j are obtained via [23]:

Ak
j = 2−1/2(A2k

j−1 + A2k+1
j−1 ). (1)

In Fig. 1 (a), we show the autocorrelation of processes{A3}
and {D3} computed based on the I-frame sizes in single-
layerStar Wars IV using Haar wavelets (labeled as “ACF
detailed” and “ACF approx”, respectively). As shown in the
figure, the ACF of{D3}, which is a typical example of
detailed coefficients, is almost zero at non-zero lags, which
means that it isi.i.d. (uncorrelated) noise. This explains why
previous literature commonly models detailed coefficients as
zero-meani.i.d. Gaussian variables [18]. Fig. 1 (a) also shows
that the approximation coefficients have a slower decaying
ACF compared to that of the detailed coefficients, which
implies that theycannotbe modeled asi.i.d. random variables.
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Fig. 1. (a) The ACF structure of coefficients{A3} and {D3} in single-
layer Star Wars IV . (b) The histogram of I-frame sizes and that of
approximation coefficients{A3}.

Recalling that I-frame sizes{A0} follow a Gamma distri-
bution [24], we next examine the relationship between{A0}
and the approximation coefficients{Aj , j > 0} in various
sequences with the help of the following lemma.

Lemma 1:Given that the I-frame sizes follow a Gamma
distribution, the approximation coefficientsAk

j , j ≥ 1 is a
linear combination of several Gamma distributions.

Proof: See [4].
Extensive experimental results show that a single Gamma

distribution is accurate enough to describe the actual histogram
of {Aj}. As a typical example, we illustrate the distribution
of the approximation coefficients{A3} and that of {A0}
(original I-frame sizes) of single-layerStar Wars IV in
Fig. 1 (b). The figure shows that the two distributions have
a similar Gamma shape, but with different parameters. In the
next section, we use this information to efficiently estimate
the approximation coefficients.

B. Generating Synthetic I-Frame Sizes

Since the wavelet transform has a great advantage over
the time-domain methods in capturing the LRD and SRD
properties of video [18], [23], we model the I-frame sizes in
the wavelet domain and thus need to estimate both detailed
and approximation coefficients, which we already defined as
{Dj} and{Aj}, respectively.

Even though previous wavelet-based traffic modeling meth-
ods often model{Dj} as zero-meani.i.d. Gaussian variables
[18], there is insufficient evidence as to the distribution of the
actual {Dj} found in GOP-based video traffic. To provide
some insight into the structure of detailed coefficients, we
compare the histogram of theactual coefficients{D1} in
Star Wars IV with those generated by several alternative
models in Fig. 2 (note that they-axis is scaled logarithmically).
Fig. 2 (a) displays the histogram of the actual{D1}, part (b)
shows that the Gaussian fit matches neither the shape, nor
the range of the actual distribution, and part (c) demonstrates
that the Generalized Gaussian Distribution (GGD) produces
an overly sharp peak at zero (the number of zeros in GGD
is almost three times larger than that in the actual{D1}) and
also does not model the range of the real{D1}.
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Fig. 2. Histograms of (a) the actual detailed coefficients; (b) the Gaussian
model; (c) the GGD model; and (d) the mixture-Laplacian model.

Additional simulations (not shown for brevity) demonstrate
that a single Laplacian distribution is not able to describe
the fast decay and large data range of the actual histogram;
however, amixture-Laplacian distribution follows the real data
very well:

f(x) = p
λ0

2
e−λ0|x| + (1− p)

λ1

2
e−λ1|x|, (2)

wheref(x) is the PDF of the mixture-Laplacian model,p is
the probability to obtain a sample from a low-variance Lapla-
cian component, andλ0 andλ1 are the shape parameters of the
corresponding low- and high-variance Laplacian distributions.
Fig. 2 (d) shows that the histogram of the mixture-Laplacian
synthetic coefficients{D1} is much closer to the actual one
than the other discussed distributions.

We next discuss approximation coefficients{Aj}. Recall
that current methods generate the coarsest approximation
coefficients (i.e.,{AJ}) either as independent Gaussian [18] or
Beta random variables [23]. However, as mentioned in Sec-
tion III-A, the approximation coefficients are non-negligibly
correlated and are noti.i.d. To preserve the correlation of
approximation coefficients and achieve the expected distribu-
tion in the synthetic coefficients, we assume that the coarsest
approximation coefficients{AJ} are dependentrandom vari-
ables with marginal Gamma distributions. We first generate
N dependent Gaussian variablesxi using ak × k correlation
matrix, whereN is the length of{AJ} and the correlation
matrix is obtained from the actual coefficients{AJ}. The
number of preserved correlation lagsk is chosen to be a

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300

lag

au
to

co
rr

el
at

io
n

actual

our model

nested AR

(a) LRD

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

lag

au
to

co
rr

el
at

io
n

actual

our model

GBAR

Gamma_A

(b) SRD

Fig. 3. The ACF of the actual I-frame sizes and that of the synthetic traffic
in (a) long range and (b) short range.

reasonable value (e.g., the average scene length2). By applying
the Gaussian CDFFG(x) directly toxi, we convert them into a
uniformly distributed set of variablesFG(xi). It is well known
that if F is a continuous distribution with inverseF−1 andu
is a uniform random number, thenF−1(u) has the distribution
F . Based on this insight, we pass the result from the last step
through the inverse Gamma CDF to generate (still dependent)
Gamma random variables [5].

Using the estimated approximation and detailed coefficients,
we perform the inverse wavelet transform to generate synthetic
I-frame sizes. Fig. 3 (a) shows the ACF of the actual I-frame
sizes and that of the synthetic traffic in long range. Fig. 3 (b)
shows the correlation of the synthetic traffic from the GOP-
GBAR model [7] and GammaA model [26] in short range. As
observed in both figures, our synthetic I-frame sizes capture
both the LRD and SRD properties of the original traffic better
than the previous models.

IV. M ODELING P AND B-FRAME SIZES

We next model P-frame sizes in the time domain based
on intra-GOP correlation. The framework in this section has
two contributions: (1) provide a detailed analysis of intra-GOP
correlation for various video sequences, and (2) model intra-
GOP correlation and propose a simple model that accurately
generates synthetic P/B-frame sizes based on intra-GOP cor-
relation, which is in contrast to much of the previous work
that relied oni.i.d. random variables to model the P/B-frame
sizes in each GOP [8], [13], [17], [26].

Before further discussion, we define I, P and B-frame size
sequencesas follows. Assuming thatn ≥ 1 represents the
GOP number, we defineφI(n) to be the I-frame size of the
n-th GOP,φP

i (n) to be the size of thei-th P-frame in GOP
n, and φB

i (n) to be the size of thei-th B-frame in GOPn.
For example,φP

3 (10) represents the size of the third P-frame
in the 10-th GOP.
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Fig. 4. (a) The correlation between{φP
i (n)} and{φI(n)} in Star Wars

IV , for i = 1, 2, 3. (b) The correlation between{φB
i (n)} and {φI(n)} in

Star Wars IV , for i = 1, 2, 7.
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Fig. 5. (a) The correlation between{φI(n)} and {φP
1 (n)} in MPEG-4

sequences coded atQ = 4, 10, 14. (b) The correlation between{φI(n)} and
{φB

1 (n)} in MPEG-4 sequences coded atQ = 4, 10, 18.

A. Intra-GOP Correlation

Lombardo et al. [15] noticed that there is a strong cor-
relation3 between the P/B-frame sizes and the I-frame size
belonging to the same GOP, which is also called intra-GOP
correlation. Motivated by their results, we conduct the analysis
of the intra-GOP correlation between{φI(n)} and {φP

i (n)}
or {φB

i (n)} in two situations: (a) the intra-GOP correlation for
different i in a specific video sequence with fixed quantization
stepQ; and (b) the intra-GOP correlation for the samei in
various sequences coded at different stepsQ.

For the first part of our analysis, we display the correlation
between{φI(n)} and {φP

i (n)} and that between{φI(n)}
and{φB

i (n)} in single-layerStar Wars IV for i = 1, 2, 3
in Fig. 4. As shown in the figure, the correlation is almost
identical for differenti, which is rather convenient for our
modeling purposes. For the second part of our analysis, we
examine the various video sequences coded at different quanti-
zation steps to understand the relationship between intra-GOP
correlation and quantization steps. We show the correlation
between{φI(n)} and{φP

1 (n)} and that between{φI(n)} and
{φB

1 (n)} in five MPEG-4 coded video sequences in Fig. 5.

2This is a reasonable choice because there is much less correlation among
I-frames of different scenes than among I-frames of the same scene.

3In traffic modeling literature, the normalized auto-covariance function is
often used instead of the autocorrelation function [17].
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Fig. 6. The correlation between{φI(n)} and{φP
1 (n)} and that between

{φI(n)} and {φB
1 (n)} in (a) H.264Starship Troopers and (b) the

base layer of the spatially scalableThe Silence of the Lambs coded
at differentQ.
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Fig. 7. The mean sizes of P and B-frames of each GOP given the size of
the corresponding I-frame in (a) the single-layerStar Wars IV and (b)
the base layer of the spatially scalableThe Silence of the Lambs .

We also show the same correlation in H.264 coded
Starship Troopers [22] and in the base layer of the
spatially scalableThe Silence of the Lambs in Fig. 6
(a) and (b), respectively. As observed from Fig. 5 and Fig. 6,
the intra-GOP correlation decreases as the quantization step
increases.

To better model P and B-frame sizes, we also investigate
the relationship between P/B-frame sizes and the size of I-
frame from the same GOP. Lombardoet al. [15] modeled
the sizes of MPEG-1 coded P/B-frames as Gamma distributed
random variables, with mean and variance estimated by a
linear function of{φI(n)}. However, we find that this linear
estimation does not hold for general video traffic. As shown in
Fig. 7, the means of P and B-frames arenot linear functions
of I-frame sizes in MPEG-4 codedStar Wars IV andThe
Silence of the Lambs . Therefore, in the next section,
we propose an alternative model for generating P and B-frame
sizes, which captures the intra-GOP correlation in general
GOP-based VBR video.

B. Modeling P and B-Frame Sizes

The above discussion shows that there is a similar correla-
tion between{φP

i (n)} and{φI(n)} with respect to different
i. Motivated by this observation, we propose a linear model
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Fig. 8. Histograms of{v(n)} for {φP
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Wars IV and (b)Jurassic Park I . Both sequences are coded atQ =
14.

to estimate the size of thei-th P-frame in then-th GOP:

φP
i (n) = aφ̃I(n) + ṽ(n), (3)

where φ̃I(n) = φI(n) − E[φI(n)] and ṽ(n) is a synthetic
process (whose properties we study below) that is independent
of φ̃I(n).

Lemma 2:To capture the intra-GOP correlation, the value
of coefficienta in (3) must be equal to:

a =
r(0)σP

σI
, (4)

where σP is the standard deviation of{φP
i (n)}, σI is the

standard deviation of{φI(n)}, and r(0) is their normalized
correlation coefficient at lag zero.

Proof: Without loss of generality, we assume that both
φ̃I(n) and φP

i (n) are wide-sense stationary processes. Thus,
E[φP

i (n)] is constant and:

E[φ̃I(n− k)] = E[φ̃I(n)] = 0. (5)

Denote byC(k) the covariance betweenφP
i (n) and φ̃I(n) at

lag k:

C(k) = E[(φP
i (n)− E[φP

i ])(φ̃I(n− k)− E[φ̃I ])]. (6)

Recall thatv(n) andφ̃I(n) are independent of each other and
thus E[v(n) · φ̃I(n)] = E[v(n)] · E[φ̃I(n)] = 0. Then C(k)
becomes:

C(k) = E[(aφ̃I(n) + v(n)− E[φP
i ])φ̃I(n− k)]

= aE[φ̃I(n)φ̃I(n− k)] (7)

Next, observe that the normalized correlation coefficientr at
lag zero is:

r(0) =
C(0)
σP σĨ

=
aE[φ̃I(n)2]

σP σĨ

, (8)

where σĨ is the standard deviation of̃φI(n). Recalling that
E[φ̃I(n)] = 0, we haveE[φ̃I(n)2] = σ2

Ĩ
= σ2

I and:

a · σI

σP
= r(0), (9)

which leads to (4).
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Fig. 9. (a) Histograms of{v(n)} for {φP
1 (n)} in Jurassic Park I

coded atQ = 4, 10, 14. (b) Linear parametera for modeling{φP
i (n)} in

various sequences coded at differentQ.

To understand how to generate{ṽ(n)}, we next examine the
actual residual processv(n) = φP

i (n) − aφ̃I(n) for eachi.
We show the histograms of{v(n)} for P-frame sequencesi =
1, 2, 3 in the single-layerStar Wars IV and Jurassic
Park I in Fig. 8. The figures shows that the residual process
{v(n)} does not change much as a function ofi.

In Fig. 9 (a), we show the histograms of{v(n)} for
sequences coded at differentQ. The figure shows that the
histogram becomes more Gaussian-like whenQ increases.
Due to the diversity of the histogram of{v(n)}, we use a
generalized Gamma distributionGamma(γ, α, β) to estimate
{v(n)}. Fig. 9 (b) shows that the smaller the quantization step
Q, the larger the value of parametera in (4), which is helpful
for modeling sequences coded from the same video content
but at different quantization steps.

From Fig. 5 (b), we observe that the correlation between
{φB

i (n)} and{φI(n)} could be as small as 0.1 (e.g., inStar
Wars IV coded atQ = 18) or as large as 0.9 (e.g., inThe
Silence of the Lambs coded atQ = 4). Thus, we
can generate the synthetic B-frame traffic simply by ani.i.d.
lognormal random number generator when the correlation
between{φB

i (n)} and{φI(n)} is small, or by a linear model
similar to (3) when the correlation is large. The linear model
has the following form:

φB
i (n) = aφ̃I(n) + ṽB(n), (10)

wherea = r(0)σB/σI , r(0) is the lag-0 correlation between
{φI(n)} and{φB

i (n)}, σB andσI are the standard deviation
of {φB

i (n)} and {φI(n)}, respectively. Process̃vB(n) is
independent of̃φI(n).

We illustrate the difference between our model and a typical
i.i.d. method of prior work (e.g., [17], [26]) in Fig. 10.
The figure shows that our model indeed preserves the intra-
GOP correlation of the original traffic, while the previous
methods produce white (uncorrelated) noise. Statistical param-
eters(r(0), σP , σI , γ, α, β) needed for this model are easily
estimated from the original sequences.

V. M ODELING THE ENHANCEMENT LAYER

In this section, we provide brief background knowledge of
multi-layer video, investigate methods to capture cross-layer
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Fig. 10. (a) The correlation between{φP
1 (n)} and{φI(n)} in Star Wars

IV . (b) The correlation between{φB
1 (n)} and {φI(n)} in Jurassic

Park I .

dependency, and model the enhancement-layer traffic.
Due to its flexibility and high bandwidth utilization, layered

video coding has become common in video applications. Lay-
ered coding is often referred to as “scalable coding,” which can
be further classified as coarse-granular (e.g., spatial scalability)
or fine-granular (e.g., fine granular scalability (FGS)) [27].
The major difference between coarse granularity and fine
granularity is that the former provides quality improvements
only when acompleteenhancement layer has been received,
while the latter continuously improves video quality with
every additionally received codeword of the enhancement layer
bitstream.

In both coarse granular and fine granular coding methods,
an enhancement layer is coded with the residual between the
original image and the reconstructed image from the base
layer. Therefore, the enhancement layer has a strong depen-
dency on the base layer. Zhaoet al. [28] also indicate that
there exists a cross-correlation between the base layer and the
enhancement layer; however, this correlation has not been fully
addressed in previous studies. In the next subsection, we in-
vestigate the cross-correlation between the enhancement layer
and the base layer using spatially scalableThe Silence
of the Lambs sequence and an FGS-codedStar Wars
IV sequence as examples. We only show the analysis of two-
layer sequences for brevity since similar results hold for video
streams with more than two layers.

A. Analysis of the Enhancement Layer4

For discussion convenience, we define the enhancement
layer frame sizes as follows. Similar to the definition in the
base layer, we defineεI(n) to be the I-frame size of then-th
GOP,εP

i (n) to be the size of thei-th P-frame in GOPn, and
εB
i (n) to be the size of thei-th B-frame in GOPn.
Since each frame in the enhancement layer is predicted

from the corresponding frame in the base layer, we examine
the cross-correlation between the enhancement layer frame
sizes and the corresponding base layer frame sizes in var-
ious sequences. In Fig. 11 (a), we display the correlation

4We do not consider temporally scalable coded sequences, in which the base
layer and the enhancement layer are approximately equivalent to extracting
I/P-frames and B-frames out of a single-layer sequence, respectively [22].
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Fig. 11. (a) The correlation between{εI(n)} and {φI(n)} in The
Silence of the Lambs coded atQ = 4, 24, 30. (b) The correlation
between{εP

i (n)} and{φP
i (n)} in The Silence of the Lambs coded

at Q = 30, for i = 1, 2, 3.
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Fig. 12. (a) The ACF of{εI(n)} and that of{φI(n)} in Star Wars
IV . (b) The ACF of{εP

1 (n)} and that of{φP
1 (n)} in The Silence of

the Lambs .

between{εI(n)} and {φI(n)} in The Silence of the
Lambs coded at differentQ. As observed from the figure, the
correlation between{εI(n)} and {φI(n)} is stronger when
the quantization stepQ is smaller. However, the difference
among these cross-correlation curves is not as obvious as
that in intra-GOP correlation. We also observe that the cross-
correlation is still strong even at large lags, which indicates
that {εI(n)} exhibits LRD properties and we should preserve
these properties in the synthetic enhancement layer I-frame
sizes.

In Fig 11 (b), we show the cross-correlation between
processes{εP

i (n)} and {φP
i (n)} for i = 1, 2, 3. The figure

demonstrates that the correlation between the enhancement
layer and the base layer is quite strong, and the correlation
structures between each{εP

i (n)} and{φP
i (n)} are very sim-

ilar to each other. To avoid repetitive description, we do not
show the correlation between{εB

i (n)} and {φB
i (n)}, which

is similar to that between{εP
i (n)} and{φP

i (n)}.
Aside from cross-correlation, we also examine the auto-

correlation of each frame sequence in the enhancement layer
and that of the corresponding sequence in the base layer. We
show the ACF of{εI(n)} and that of{φI(n)} (labeled as
“EL I cov” and “BL I cov”, respectively) in Fig. 12 (a); and
display the ACF of{εP

1 (n)} and that of{φP
1 (n)} in Fig. 12

(b). The figure shows that although the ACF structure of
{εI(n)} has some oscillation, its trend closely follows that
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(b) model [28]

Fig. 14. The cross-correlation between{εI(n)} and {φI(n)} in The
Silence of the Lambs and that in the synthetic traffic generated from
(a) our model and (b) model [28].

of {φI(n)}. One also observes from the figures that the ACF
structures of processes{εP

i (n)} and {φP
i (n)} are similar to

each other.

B. Modeling the Enhancement Layer I-Frame Sizes

Although cross-layer correlation is obvious in multi-layer
traffic, previous work neither considered it during modeling
[1], nor explicitly addressed the issue of its modeling [28]. In
this section, we first describe how we model the enhancement
layer I-frame sizes and then evaluate the performance of our
model in capturing the cross-layer correlation.

Recalling that{εI(n)} also possesses both SRD and LRD
properties, we model it in the wavelet domain as we modeled
{φI(n)}. We define{Aj(ε)} and{Aj(φ)} to be the approx-
imation coefficients of{εI(n)} and {φI(n)} at the wavelet
decomposition levelj, respectively. To better understand the
relationship between{Aj(ε)} and{Aj(φ)}, we show the ACF
of {A3(ε)} and {A3(φ)} using Haar wavelets (labeled as
“ca EL cov” and “caBL cov”, respectively) in Fig. 13.

As shown in Fig. 13,{Aj(ε)} and{Aj(φ)} exhibit similar
ACF structure. Thus, we generate{AJ(ε)} by borrowing the
ACF structure of{AJ(φ)}, which is known from our base-
layer model. Using the ACF of{AJ (φ)} in modeling{εI(n)}
not only saves computational cost, but also preserves the cross-
layer correlation. In Fig. 14, we compare the actual cross-
correlation between{εI(n)} and{φI(n)} to that between the
synthetic{εI(n)} and{φI(n)} generated from our model and
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Fig. 15. Histograms of{w1(n)} in (a) Star Wars IV and (b) The
Silence of the Lambs (Q = 24), with i = 1, 2, 3.
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Fig. 16. Histograms of{w1(n)} and{w̃1(n)} for {εP
1 (n)} in (a) Star

Wars IV and (b)The Silence of the Lambs (Q = 30).

Zhao’s model [28]. The figure shows that our model signifi-
cantly outperforms Zhao’s model in preserving the cross-layer
correlation.

C. Modeling P and B-Frame Sizes

Recall that the cross-correlation between{εP
i (n)} and

{φP
i (n)} and that between{εB

i (n)} and {φB
i (n)} are also

strong, as shown in Fig. 11. We use the linear model from
Section IV-B to estimate the sizes of thei-th P and B-frames
in the n-th GOP:

εP
i (n) = aφP

i (n) + w̃1(n), (11)

εB
i (n) = aφB

i (n) + w̃2(n), (12)

where a = r(0)σε/σφ, r(0) is the lag-0 cross-correlation
coefficient,σε is the standard deviation of the enhancement-
layer sequence, andσφ is the standard deviation of the cor-
responding base-layer sequence. Processes{w̃1(n)}, {w̃2(n)}
are independent of{φP

i (n)} and {φB
i (n)}. We examine

{w1(n)} and{w2(n)} and find they exhibit similar properties.
We show two examples of{w1(n)} in Fig. 15.

As observed from Fig. 15, the histogram of{w1(n)} is
asymmetric and decays fast on both sides. Therefore, we use
two exponential distributions to estimate its PDF. We first
left-shift {w1(n)} by an offsetδ to make the mode (i.e., the
peak) appear at zero. We then model the right side using one
exponential distributionexp(λ1) and the absolute value of
the left side using another exponential distributionexp(λ2).
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Fig. 17. QQ plots for the synthetic (a) single-layerStar Wars IV traffic
and (b)The Silence of the Lambs base-layer traffic.

Afterwards, we generate synthetic data{w̃1(n)} based on
these two exponential distributions and right-shift the result
by δ. As shown in Fig. 16, the histograms of{w̃1(n)} are
close to those of the actual data in bothStar Wars IV and
The Silence of the Lambs . We generate{w̃2(n)} in
the same way and find its histogram is also close to that of
{w2(n)}.

VI. M ODEL ACCURACY STUDY

As we stated earlier, a good traffic model should capture
the statistical properties of the original traffic and be able
to accurately predict network performance. There are three
popular studies to verify the accuracy of a video traffic
model [26]: quantile-quantile (QQ) plots, the variance of
traffic during various time intervals, and buffer overflow loss
evaluation. While the first two measures visually evaluate how
well the distribution of the synthetic traffic and that of the
original one matches, the overflow loss simulation examines
the effectiveness of a traffic model to capture the temporal
burstiness of original traffic.

The QQ plot is a graphical technique to verify the distri-
bution similarity between two test data sets. If the two data
sets have the same distribution, the points should fall along
the 45 degree reference line. The greater the departure from
this reference line, the greater the difference between the two
test data sets.

Different from the QQ plot, the variance of traffic during
various time intervals shows whether the second-order moment
of the synthetic traffic fits that of the original one. This
second-order descriptor is used to capture burstiness properties
of arrival processes [1]. This measure operates as follows.
Assume that the length of a video sequence isl and there
are m frames at a given time interval. We segment the one-
dimensional data into am× n matrix, wheren = l/m. After
summing all the data in each column, we obtain a sequence of
lengthn and then calculate its variance. Thus, we can obtain
a set of variances given a set of time intervals.

Besides the distribution, we also examine how well our
approach preserves the temporal information of the original
traffic. A common test for this is to pass the synthetic traffic
through a generic router buffer with capacityc and drain rated
[26]. The drain rate is the number of bytes drained per second
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Fig. 18. Comparison of variance between synthetic and original traffic in
(a) single-layerStar Wars IV and (b)The Silence of the Lambs
base layer.

and is simulated as different multiples of the average traffic
rate r̄.

In the following two sections, we evaluate the accuracy of
our model in both single-layer and multi-layer traffic using the
above three measures. We should note that simulations with
additional video sequences have demonstrated results similar
to those shown throughout this paper.

A. Single-layer and the Base layer Traffic

We first show QQ plots of the synthetic single-layerStar
Wars IV and the synthetic base layer ofThe Silence of
the Lambs that are generated by our model in Fig. 17 (a)
and (b), respectively. As shown in the figure, the generated
frame sizes and the original traffic are almost identical.

In Fig. 18, we give a comparison between the variance of the
original traffic and that of the synthetic traffic generated from
differen models at various time intervals. The figure shows
that the second-order moment of our synthetic traffic is in a
good agreement with that of the original one.

We also compare the accuracy of several models using
a leaky-bucket simulation. To understand the performance
differences between various models, we define the relative
error e as the difference between theactual packet lossp
observed in the buffer fed with the original traffic and that
observed using the synthetic traffic generated by each of the
models:

e =
|p− pmodel|

p
. (13)

In Table I, we illustrate the values ofe for various buffer
capacities and drain ratesd. As shown in the table, the
synthetic traffic generated by our model provides a very
accurate estimate of the actual data loss probabilityp and
significantly outperforms the other methods. In addition, our
synthetic traffic is approximately30% more accurate than the
i.i.d. models of prior work in estimating the loss ratio of P-
frames.

In Fig. 19, we show the relative errore of synthetic
traffic generated from different models in H.264Starship
Troopers coded atQ = 1, 31, given d = r̄. Since GOP-
GBAR model [7] is specifically developed for MPEG traffic,
we do not apply it to H.264 sequences. The figure shows that



TABLE I

RELATIVE DATA LOSS ERRORe IN Star Wars IV

Buffer Traffic type Drain rate
capacity 2r̄ 4r̄ 5r̄
20ms Our Model 0.93% 0.61% 1.13%

GOP-GBAR [7] 3.84% 2.16% 3.77%
Nested AR [17] 5.81% 2.77% 8.46%
GammaA [26] 5.20% 0.61% 2.57%
GammaB [26] 4.89% 1.93% 2.05%

30ms Our Model 0.25% 0.33% 0.95%
GOP-GBAR [7] 4.94% 3.33% 5.68%
Nested AR [17] 6.94% 4.14% 9.92%
GammaA [26] 4.88% 1.10% 4.48%
GammaB [26] 4.67% 2.17% 4.03%
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Fig. 19. Givend = r̄, the errore of various synthetic traffic in H.264
Starship Troopers coded at (a)Q = 1 and (b)Q = 31.

our model outperforms the other three models inStarship
Troopers coded with smallQ and performs as good as
model GammaA [26] with large Q (the relative errore of
both models is less than 1% in Fig. 19 (b)).

B. Enhancement Layer Traffic

We evaluate the accuracy of the synthetic enhancement
layer by using QQ plots and show two examples in Fig. 20,
which displays two QQ plots for the syntheticThe Silence
of the Lambs and Star Wars IV enhancement-layer
traffic. The figure shows that the synthetic frame sizes in both
sequences have the same distribution as those in the original
traffic.

We also compare the variance of the original traffic and that
of the synthetic traffic in Fig. 21. Due to the computational
complexity of model [28] in calculating long sequences, we
only take the first5000 frames ofStar Wars IV andThe
Silence of the Lambs . As observed from the figure,
our model preserves the second-order moment of the original
traffic well.

We next examine the data loss ratio predicted by our
synthetic traffic passed through a generic buffer as shown
in the previous section. Recall that the model in [1] is only
applicable to sequences with a CBR base layer and the one in
[28] is suitable only for short sequences. Therefore, we are not
able to show results using leaky-bucket simulations for these
multi-layer models given the nature of our sample sequences.
In Fig. 22 and Fig. 23, we show the overflow data loss ratio
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(b) The Silence of the Lambs

Fig. 20. QQ plots for the synthetic enhancement-layer traffic: (a)Star
Wars IV and (b)The Silence of the Lambs .
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Fig. 21. Comparison of variance between the synthetic and original
enhancement layer traffic in (a)Star Wars IV and (b) The Silence
of the Lambs .

of the enhancement layers in bothThe Silence of the
Lambs (54, 000 frames) andStar Wars IV (108, 000
frames) with different drain ratesd for buffer capacityc = 10
ms andc = 30 ms, respectively. Thex-axis in the figure
represents the ratio of the drain rates to the average traffic
rate r̄. The figure shows that the synthetic enhancement layer
preserves the temporal information of the original traffic very
well.

VII. C ONCLUSION

In this paper, we presented a framework for modeling H.264
and MPEG-4 multi-layer full-length VBR video traffic. This
work precisely captured the inter- and intra-GOP correlation in
compressed VBR sequences, by incorporating wavelet-domain
analysis into time-domain modeling. Whereas many previous
traffic models are developed at slice-level or even block-level
[26], our framework uses frame-size level, which allows us to
examine the loss ratio for each type of frames and apply other
methods to improve the video quality at the receiver. We also
proposed novel methods to model cross-layer correlation in
multi-layer sequences. In future work, we plan to apply our
traffic model and optimize network delivery of VBR video to
design layered peer-to-peer video systems.
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