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ABSTRACT

Traffic models play an important role in network simulation and
performance analysis. This paper presents a frame-level hybrid
framework for modeling variable bitrate (VBR) video traffic. To
accurately capture long-range dependent (LRD) and short-range
dependent (SRD) properties of video traffic, we incorporate ele-
ments of wavelet-domain analysis into classical time-domain mod-
eling found in prior work. However, unlike previous studies, we
analyze and successfully model both inter-GOPand intra-GOP
correlation. Through the use of QQ plots and leaky-bucket simu-
lations, we evaluate the accuracy of our approach and demonstrate
that the autocorrelation function and the frame-size distribution of
synthetic traffic match those of the original traffic very well. The
leaky-bucket simulation also demonstrates that our model effec-
tively preserves the temporal burstiness of the original video and
can be used to predict buffer overflow probabilities and network
packet loss.

1. INTRODUCTION

Accurate modeling of VBR video traffic is important for properly
allocating network resources, effectively designing networks, and
providing certain Quality of Service (QoS) to video applications.
A good traffic model should capture the characteristics of video se-
quences and accurately predict network performance (e.g., buffer
overflow probability and packet loss). Of all characteristics of
video traffic, two major concerns are the distribution of frame sizes
and their autocorrelation function (ACF).

Among the proposed models for the frame-size distribution
are the lognormal distribution [5], the Gamma distribution [15],
and several hybrid distributions such as Gamma/Pareto [10]. From
numerous video sequences, Rose [14] concludes that the Gamma
distribution is a good approximation for the PDF of I and P-frame
sizes, and the lognormal distribution matches that of B-frame sizes.

Compared to the task of fitting a model to the frame-size dis-
tribution, capturing the ACF structure of VBR video traffic is more
challenging due to the fact that VBR video exhibits both LRD and
SRD properties [11], [6]. Since LRD and SRD are embedded in
video traffic, using either a long-range dependent or a short-range
dependent modelalone cannot give satisfactory results. Thus,
many studies have been conducted to address this problem, but
only a few of them manage to model the ACF structure of video
traffic (e.g., [11], [10]).

The correlation that most models try to capture is theinter-
GOP (i.e., group of pictures) correlation, which exhibits both LRD
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and SRD trends and is well characterized by the correlation func-
tion of the I-frames. In contrast, even fewer studies analyze or
model theintra-GOP1 correlation, which is also an important char-
acteristic of video traffic, especially in precisely evaluating the data
loss of video transmission over the network [9].

In this paper, we develop a modeling framework that can cap-
ture both inter and intra-GOP correlation of video traffic. Given
the excellent performance of wavelet analysis in matching the prop-
erties of bursty network traffic [11], we model I-frame sizes in the
wavelet domain. The wavelet coefficients in the wavelet domain
are replaced with more tractable approximations, which are later
used to construct synthetic I-frame sizes. Furthermore, to preserve
intra-GOP correlation, we generate synthetic P-frame traffic us-
ing a linear model of the preceding I-frame in the time domain.
Although for demonstration purposes, we use the MPEG-4 coded
StarWars sequence [3] (coded at 25 frames/s with GOP struc-
ture IBBPBBPBBPBB), our framework applies to general
GOP-based video traffic.

This paper is organized as follows. In Section 2, we briefly
overview the related work and provide a background on wavelet
analysis. In Section 3, we give a short discussion of intra-GOP
correlation and explain how to generate synthetic I, P, and B-frame
sizes. We also evaluate the accuracy of our modeling framework
in this section. Section 4 concludes the paper.

2. RELATED WORK AND PRELIMINARIES

In this section, we provide a brief overview of related work and
background knowledge on wavelet analysis.

2.1. Related Work

Numerous studies have been conducted in modeling VBR video
traffic, which can be grouped into five categories according to the
dominant stochastic method applied in each model: Autoregres-
sive (AR) models [4], [5], [7], [10], Markov-modulated models
[9], [15], self-similar (fractional) models [6], [8], wavelet-based
methods [11], [13], and other methods [12].

In the first category, we discuss AR models, which are consid-
ered a classical approach in the area of traffic modeling. Krunzet
al. [5] model the deviation of I-frame sizes from their mean (in
each scene) using an AR(2) process. Building upon Krunz’ work
[5], Liu et al. [10] utilize anestedAR(2) model, which uses a sec-
ond AR(2) process to model the mean frame-size of each scene.
Heyman [7] propose an AR model called GBAR with Gamma-
distributed marginal statistics and a geometric autocorrelation. By

1The correlation between P/B-frames and the I-frame in the same GOP.
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considering the GOP cyclic structure of video traffic, Freyet al.
[4] extend GBAR in [7] to the GOP-GBAR model.

The second category consists of Markov-modulated models,
which employ Markov chains to create other processes (e.g., the
Bernoulli process [9]). Sarkaret al. [15] propose two Markov-
modulated Gamma-based algorithms. At each state of the Markov
chain, the sizes of I, P, and B-frames are generated as Gamma-
distributed random variables with different sets of parameters. Al-
though Markov-modulated models can capture the LRD of video
traffic, it is difficult to accurately define and segment video sources
into different states in the time domain due to the dynamic nature
of video traffic [11].

We group models based on a self-similar process in the third
category. Garrettet al. [6] propose a fractional ARIMA (Autore-
gressive Integrated Moving Average) model to capture the LRD of
video traffic, but explicit modeling of the SRD structure has not
been provided. Using the results of [6], Huanget al. [8] present
a self-similar fractal traffic model. However, this model does not
capture the multi-timescale variations in video traffic [5]. By con-
trast, Transform-Expand-Sample (TES) methods (e.g., [12]) are
accurate in matching the ACF at both small and large lags. How-
ever, they have high computational complexity and often must use
special software (e.g.,TEStool) to generate synthetic sequences.

Different from the above time-domain methods, several pow-
erful wavelet models [11], [13] recently emerged due to their abil-
ity to accurately capture both LRD and SRD properties of video
traffic [11]. Since background of wavelets is required to better un-
derstand these methods, we elaborate on the basics of these models
next.

2.2. Wavelet Analysis

Wavelet analysis is typically based on the decomposition of the
signal using an orthonormal family of basis functions, which in-
cludes a high-pass wavelet function and a low-pass scaling filter.
The former generates thedetailedcoefficients while the latter gen-
erates theapproximationcoefficients of the original signal.

Wavelet transform can strongly reduce the temporal correla-
tion of the input signal, which indicates that even though a sig-
nal has LRD properties, its corresponding wavelet coefficients are
short-range dependent [11]. In Fig. 1 (left), we show the corre-
lation of detailed and approximation coefficients (labeled as “ACF
detailed” and “ACF approx”, respectively). As shown in the figure,
the ACF of detailed coefficients is almost zero at non-zero lags,
which means that they arei.i.d. (uncorrelated) random variables.
This explains why previous literature commonly models detailed
coefficients as zero-meani.i.d. Gaussian variables [11]. Fig. 1
(left) also shows that the approximation coefficients have a slower
decaying ACF compared to that of the detailed coefficients, which
implies that theycannotbe modeled asi.i.d. random variables.

Notice that the Gamma distribution is a very good approx-
imation of the histogram of I-frame sizes [9], [14] and wavelet
transform is linear. We next examine the relationship between the
original signal and the approximation coefficients in various se-
quences and observe that the approximation coefficients also fol-
low a Gamma distribution. To understand this scenario better, in
Fig. 1 (right), we illustrate the distribution of the original signal
and that of the first-level approximation coefficients using Haar
wavelets. The figure shows that the two distributions have a simi-
lar shape, but with different parameters.

3. MODELING VIDEO TRAFFIC

In this section, we model I-frame sizes in the wavelet domain and
P-frame sizes based on the intra-GOP correlation.
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Fig. 1. The ACF structures of the coarsest approximation coefficients and
a typical set of detailed coefficients (left). The distribution of I-frame sizes
and the coarsest approximation coefficients (right).

3.1. Generating Synthetic I-Frame Sizes

In the following discussion, we defineAj to be theapproxima-
tion coefficients andDj the detailedcoefficients at the wavelet
decomposition levelj. We also assume thatj = J is the coarsest
scale andj = 0 is the original signal. As mentioned earlier, pre-
vious wavelet-based methods often modelDj as zero-meani.i.d.
Gaussian variables [11]. We examined the statistical properties of
Dj and found that a mixture-Laplacian distribution [1] matches
the PDF ofDj better than the Gaussian distribution. In Fig. 2
(left), we show the distributions of the actual and the estimated
coefficientsD1 in StarWars . The figure shows that a mixture-
Laplacian estimation outperforms the Gaussian model.

Recall that current methods generate the coarsest approxima-
tion coefficientsAJ either as independent Gaussian [11] or Beta
random variables [13]. However, as shown in Fig. 1 (left), these
approximation coefficients are noti.i.d. distributed. To preserve
the correlation inAJ and achieve the expected distribution of the
synthetic coefficients, we assume that the coarsest approximate co-
efficients are dependent random variables with marginal Gamma
distributions. We first generateN multivariate Gaussian variables
xi using ak × k correlation matrix, whereN is the length ofAJ

and the correlation matrix is obtained fromAJ . The number of
preserved correlation lagsk is chosen to be a reasonable value
(e.g., the average scene length). By applying the Gaussian CDF
FG(x) directly toxi, we convert them into a uniformly distributed
set of variablesFG(xi). It is well known that ifF is a continuous
distribution with inverseF−1 andu is a uniform random number,
then F−1(u) has the distributionF . Based on this insight, we
pass the result from the last step through the inverse Gamma CDF
to generate (still dependent) Gamma random variables [2].

With the estimated approximation and detailed coefficients,
inverse wavelet transform is performed and the synthetic I-frame
sizes are generated. Fig. 2 (right) shows the ACF of the actual I-
frames and that of the synthetic traffic in long range. Fig. 3 (left)
shows the correlation of the synthetic traffic from the GOP-GBAR
model [4] and GammaA model [15] in short range. As observed
in both figures, our synthetic I-frame sequence captures both the
LRD and SRD properties of the original traffic and outperforms
the previous models.

3.2. Intra-GOP Correlation

Lombardoet al. [9] noticed that there is a strong correlation be-
tween the P/B-frames and the I-frame belonging to the same GOP.
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Fig. 2. The PDF of actualD1 with Gaussian and mixture-Laplacian esti-
mations inStarWars (left). The ACF of the actual I-frame sizes and that
of the synthetic traffic in long range (right).
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  Fig. 3. The ACF of the actual I-frame sizes and that of the synthetic
traffic in short range (left). The correlation betweenφP

i (n) andφI(n),
with i = 1, 2, 3 (right).

Motivated by their results, we investigate the correlation2 between
P/B-frame sizes and the I-frame sizes from the same GOP.

Before further discussion, we define I, P and B-frame size se-
quencesas follows. Assuming thatn represents the GOP sequence
number, we defineφI(n) to be the I-frame size of then-th GOP,
φP

i (n) to be the size of thei-th P-frame in GOPn, andφB
i (n) to

be the size of thei-th B-frame in GOPn. For example,φP
3 (10)

represents the size of the third P-frame in the10-th GOP.
We display the correlation between processes{φI(n)} and

{φP
i (n)} in Fig. 3 (right). As shown in the figure, the correla-

tion is almost identical between the different P-frame sequences
and the I-frame sequence, which is rather convenient for modeling
P-frame sizes. Due to limited space, we do not show the correla-
tion between{φB

i (n)} and the I-frame sequence{φI(n)}, which
also does not change as a function ofi.

Lombardoet al. [9] further model the sizes of P and B-frames
as Gamma distributed random variables, with mean and variance
estimated by alinear function of I-frame sizes. The sample video
sequences in [9] are MPEG-1 coded; however, we find that this
linear estimation does not hold for general video traffic. As shown
in Fig. 4 (left), the means of P and B-frames are not linear func-
tions of I-frame sizes in MPEG4-codedStarWars . Therefore,
we propose an alternative modeling framework in the following
section that captures the intra-GOP correlation for general GOP-
based video.

3.3. Modeling P and B-Frame Sizes

The above discussion shows that there is a similar correlation be-
tween{φP

i (n)} and{φI(n)} with respect to differenti. Thus,

2In traffic modeling literature, the normalized auto-covariance function
is often used instead of the autocorrelation function.

we propose the following model to estimate the size of thei-th
P-frame in then-th GOP:

φP
i (n) = aφ̃I(n) + ṽ(n), (1)

whereφ̃I(n) = φI(n) − E[φI(n)] and ṽ(n) is a process that is
independent of̃φI(n).

Lemma 1. To capture the intra-GOP correlation, the value of co-
efficienta in (1) must be equal to:

a =
r(0)σP

σI
, (2)

whereσP is the standard deviation of{φP
i (n)}, σI is the standard

deviation of{φI(n)}, andr(0) is their normalized correlation co-
efficient at lag zero.

Proof. Without loss of generality, we assume that bothφ̃I(n) and
φP

i (n) are wide-sense stationary processes. Thus,E[φP
i (n)] is

constant and:

E[φ̃I(n− k)] = E[φ̃I(n)] = 0. (3)

Denote byC(k) the covariance betweenφP
i (n) andφ̃I(n) at lag

k:

C(k) = E[(φP
i (n)− E[φP

i ])(φ̃I(n− k)− E[φ̃I ])]. (4)

Recall that̃v(n) andφ̃I(n) are independent of each other and thus
E[ṽ(n) · φ̃I(n)] = E[ṽ(n)] ·E[φ̃I(n)] = 0. ThenC(k) becomes:

C(k) = E[(aφ̃I(n) + ṽ(n)− E[φP
i ])φ̃I(n− k)]

= aE[φ̃I(n)φ̃I(n− k)] (5)

Next, observe that the normalized correlation coefficientr at lag
zero is:

r(0) =
C(0)

σP σĨ

=
aE[φ̃I(n)2]

σP σĨ

, (6)

whereσĨ is the standard deviation of̃φI(n). Recalling thatE[φ̃I(n)] =

0, we haveE[φ̃I(n)2] = σ2
Ĩ

= σ2
I and:

a · σI

σP
= r(0), (7)

which leads to (2).

To better understand the distribution of{ṽ(n)}, we next ex-
amine theactual residual processv(n) = φP

i (n) − aφ̃I(n) for
eachi. We show the histograms of{v(n)} for P-frame sequences
i = 1, 2, 3 in StarWars in Fig. 4 (right). The figures shows
that the residual process{v(n)} possesses very similar statistical
properties when modeling different P-frame sequences. We also
observe that{v(n)} follows a shifted Gamma distribution with
parametersµ, α, β. The statistical parameters (r(0), σP , σI , µ, α,
β) needed for this model can be easily estimated from the original
sequences.

We illustrate the difference between our model and a typical
i.i.d method of prior work (e.g., [10], [15]) in Fig. 5 (left). The
figure shows that our model indeed preserves the intra-GOP corre-
lation of the original traffic much better than the common methods
of related work.

Since the sizes of B-frames are relatively small compared to
those of P-frames (as shown in Fig. 4 (left) ), we generate the
synthetic B-frame traffic simply using ani.i.d. lognormal random
number generator.
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Fig. 4. The mean sizes of P and B-frames given the sizes of I-frames (left).
The histograms of{v(n)} when modeling{φP

i (n)}, with i = 1, 2, 3
(right).
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  Fig. 5. The correlation betweenφP
1 (n) andφI(n) in StarWars (left).

The QQ plot for the syntheticStarWars traffic (right).

3.4. Model Accuracy Study

There are two popular studies to verify the accuracy of a video traf-
fic model [15]: quantile-quantile (QQ) plots and packet-loss buffer
evaluation. The QQ plot is a graphical technique to verify the dis-
tribution similarity between two test data sets. If the two sets have
the same distribution, the points should fall along the 45 degree
reference line. Fig. 5 (right) shows the QQ plot of the synthetic
traffic generated by our model and demonstrates that the generated
frame sizes and the original traffic are statistically identical.

Besides the distribution, we also examine how well our ap-
proach preserves the temporal information of the original traffic.
A common test for this is to pass the synthetic traffic through a
generic buffer with capacityc and drain rated [15]. The drain
rate is the number of bytes drained per second and is simulated
as different multiples of the average traffic rater̄. To understand
the performance difference between the various models, we define
the relative errore between theactual packet lossp observed in
the buffer fed with the original traffic and that observed using the
synthetic traffic generated by each of the models:

e =
|p− pmodel|

p
. (8)

In Table 1, we illustrate the values ofe for various buffer capac-
ities and drain ratesd. As shown in the table, the synthetic traffic
generated by our model provides a very accurate estimate of the
actual packet-loss probabilityp and significantly outperforms the
other methods. We should note that additional simulations with
other video sequences have demonstrated results similar to those
shown throughout this paper.

4. CONCLUSION

In this paper, we presented a framework for modeling full-length
VBR video traffic. This framework incorporated wavelet-domain

Buffer Traffic type Drain rate
capacity 2r̄ 4r̄ 5r̄
10ms Our Model 1.80% 0.93% 0.50%

GOP-GBAR [4] 2.44% 2.51% 4.01%
Nested AR [10] 4.02% 2.05% 5.63%
GammaA [15] 5.54% 1.04% 0.99%
GammaB [15] 5.76% 1.81% 1.15%

20ms Our Model 0.93% 0.61% 1.13%
GOP-GBAR [4] 3.84% 2.16% 3.77%
Nested AR [10] 5.81% 2.77% 8.46%
GammaA [15] 5.20% 0.61% 2.57%
GammaB [15] 4.89% 1.93% 2.05%

30ms Our Model 0.25% 0.33% 0.95%
GOP-GBAR [4] 4.94% 3.33% 5.68%
GammaA [15] 4.88% 1.10% 4.48%
GammaB [15] 4.67% 2.17% 4.03%

Table 1. Relative packet-loss errore using theStarWars sequence.

analysis into time-domain modeling. This work precisely captures
the LRD as well as SRD properties of video traffic and accurately
describes its intra-GOP correlation. Furthermore, since our frame-
work is developed at the frame-size level (much of previous work
uses slice-level or even block-level [15]), future applications can
predict the loss ratio for each type of frames and apply various
methods (e.g., guarantee the transmission of certain frames) to im-
prove the video quality at the receiver.
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