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Abstract. This paper presents analysis of the Windows kernel network
stack and designs a novel high-performance NDIS driver platform called
IRLstack whose goal is to enable large-scale Internet measurements that
require sending billions of packets and managing millions of outstand-
ing connections on inexpensive commodity hardware available to any
research lab. Our results show that with just 75% of one modern CPU
core, IRLstack can saturate a gigabit link with SYN packets (i.e., 1.48M
pps) and achieve 3.52 Gbps (i.e., 5.25 Mpps) with a quad-core CPU.
IR Lstack’s transmission performance exceeds that of Winsock by a fac-
tor of 92-174, batch-mode WinPcap by a factor of 4.7-6.7, and the latest
optimized PF_RING/TNAPI Linux kernel by up to 30%.

1 Introduction

With the expansion in size and popularity of the Internet, many distributed
applications now require high-performance network stacks to sustain the scal-
ability demands of their users. Traditional domains that exhibit a significant
network burden in terms of bitrate and packets per second (pps) are massive
Internet services with hundreds of millions of active users (e.g., Google, Face-
book, Blogspot, root DNS servers, CDNs), whose main approach to solving scal-
ability issues has been to acquire vast server clusters and distribute incoming
requests across multiple geographic datacenters. While scaling the server side of
network applications in commercial applications has a well-established solution,
researchers often face scalability problems from the client side (i.e., issuing rather
than receiving requests) and often do not have the resources to deploy dedicated
clusters to conduct their Internet measurements. To overcome this problem, we
investigate scalability issues arising during Internet-wide experimental studies,
explore network-stack bottlenecks in the most-commonly deployed OS in the In-
ternet (i.e., Microsoft Windows), and propose a solution that enables large-scale
network measurements using a single inexpensive Windows host.

Due to its ever-growing size, diversity, decentralized nature, and enormous
amount of information, the Internet is becoming more of a mystery every day
(e.g., even Google does not know how big the web is [16]). Many Internet studies
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aim to shed light on its structure [2], [13], user behavior [14], [17], host availability
[6], [11], and web content [7], [10]; however, accurately capturing Internet-wide
metrics has long remained a challenging research problem. The main tradeoff
involves the amount of available hardware and the delay the user is willing to
tolerate. In many cases, measurements over a longer period of time are less
desirable as they skew the obtained result, delay the corresponding analysis,
and potentially impede future research. To provide additional motivation for
developing large-scale measurement platforms, we next outline several of our
projects that have experienced network-stack bottlenecks and then present our
solution.

Our first project [17] involves measurement of P2P networks and modeling
of various system properties (e.g., churn, lifetimes, topology) based on the ob-
tained results. This process relies on a Gnutella crawler that contacts all alive
ultra-peers in the system and obtains their neighbors via special requests. In
order for the measurement to be unbiased [15], it is highly beneficial to capture
Gnutella snapshots instantaneously; otherwise, a crawl of duration 7T samples
a superposition of multiple Gnutella networks that exist during interval [0, T7].
Given approximately 1.2M ultra-peers, connection rates on the order of 200K /sec
are needed to guarantee cover times that would approximate an instantaneous
snapshot (i.e., 10 seconds or less). While [17] was over 18 times faster than any
previous P2P crawler, its coverage delay of 3 minutes could use a lot of improve-
ment; however, various bottlenecks inside the Windows kernel leave no room for
much speedup.

Our second project [7] is a high-performance web crawler IRLbot, whose
main requirement has been keeping CPU utilization of the network stack close
to 0% in order to leave room for computationally expensive processing related
to spam control, HTML parsing, page decompression, calculation of domain
reputation, and checking for duplicates. With one CPU core almost entirely
dedicated to networking, IRLbot is usually CPU-limited during its crawls. Since
Winsock does not scale very well to multiple cores (see below), achieving very
high download rates is almost infeasible with a single host.

Our third project studies the DNS infrastructure for Internet-wide delay
measurements [8] and various botnet-related anomalies, which requires travers-
ing the DNS tree with over 650M DNS requests. Sending such a large number
of small packets presents a problem for Winsock and limits the duration of the
measurement to days instead of minutes. A slightly different, but related, mea-
surement goal that requires high pps sending rates is discovery of open services
using horizontal scanning [1], [3], [6], [11], where each IP address in the IANA
(3.3B destinations) or BGP (2.1B) space is probed with a packet on a given
port. Instead of using months to scan the Internet as in prior work [1], [3], [6],
[11], our goal in another ongoing project is to accomplish this activity in several
hours/days.

Other applications that are enabled by a scalable network stack are vari-
ous Intrusion Detection Systems (IDS), firewalls, software routers, and network
monitoring tools, all of which require line-rate capture of incoming packets and



sometimes certain processing on the fly. Leaving as much CPU as possible for
processing and not dropping any packets are both of critical importance.

The novelty of this work lies not only in our approach to designing a high-
performance client-side rather than server-side network stack, but also in our
tackling of this problem in Windows, which has not been attempted before (see
[4], [5], [12] for Linux approaches). The benefit of using just the client side of
TCP is that it requires minimal functionality of performing the SYN handshake
and sending one request packet, without tedious congestion-control functionality,
management of complex timers and buffers, and retransmission overhead. As a
result, a well-designed TCP stack can function at wire speed. The benefit of using
Windows lies in its wide range of powerful APIs, outstanding support (in terms
of software and hardware), and more ubiquitous deployment opportunities (i.e.,
finding a Windows host to conduct measurements is simpler than a Linux host,
especially at remote locations). As there is a general perception that Windows is
too slow for serious high-performance research work, we aim to dispel this myth
and provide researchers with an additional platform option.

2 Overview of Windows and Linux Network Stacks

The structure of the Windows networking stack is illustrated in Fig. 1(a). Ap-
plication packets are transmitted through a Winsock API into the kernel driver
afd.sys whose main purpose is to manage the socket interface and interact with
protocol drivers inside NDIS. Most normal Winsock exchange takes place with
the default TCP/IP protocol driver tcpip.sys. Packet buffers created by TCP /IP
are then sent down the stack to any filter drivers that are registered in the stack,
which may do additional processing and/or filtering. The last step of this chain
are miniport drivers, which are specific to each NIC and whose purpose is to
directly interface with the hardware, set up DMA transfers, process interrupts,
and manage the assigned adapter. Once the miniport has sent the frame (or
queued it internally) and no longer needs the structure it received, it issues a
callback up the stack indicating completion of the request, which causes the cor-
responding protocol driver to notify the user-space caller of the completion of
their request. This process, described in terms of the synchronous send path, is
similar on the receive side and for asynchronous operations.

Besides Winsock, network applications can use WinPcap [9], which is a pop-
ular tool for network capture and transmission on Windows. It is implemented
as a filter driver with an API directly exported to a user-space library. Since
it is located below tcpip.sys inside NDIS, it handles raw link-layer frames and
bypasses most of the Windows network stack, which in theory should enable it
to perform significantly faster than standard Windows sockets. However, as we
will show in Section 3, this is not the case in practice.

The third alternative is a highly optimized Linux network stack such as the
one developed by the ntop project [5] (the default Linux performance is lower
and not studied here). Ntop makes use of a custom Linux kernel and modified
network adapter drivers to exploit the features of the latest NICs. The first
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Fig. 1. Windows network stack, NDIS, and IR Lstack.

main modification is PF_RING, whose primary contribution is using DMA in
combination with technologies such as Intel’s I/OAT to directly expose kernel
memory buffers (into which incoming packets have been transferred) to user-
space processes. The second modification is TNAPI, which deserializes receive
operations by exposing multiple RX (receive) queues as virtual adapters that can
be used concurrently in user-space. This distributes load across several processors
and allows the stack to scale in multi-core systems.

3 Performance of Winsock and WinPcap

Most of the issues discussed in the introduction arise from the poor small-packet
performance of default Windows and Linux kernels. Our goal then is to achieve
wire-rate transmission of arbitrary packets from user-space to many unique des-
tinations, which translates into high rates of outgoing TCP connections/sec, fast
horizontal scanning of the Internet, and low-overhead management of millions
of concurrent connections to numerous remote servers (e.g., using multiple IPs
aliased to the same interface with 64K ports each).

To calculate the target pps rate, we focus on gigabit Ethernet as one common
example. The IEEE 802.3 Ethernet standards define the minimum frame size as
64 bytes, with smaller packets padded by the adapter as necessary. Taking into
account the inter-grame gap (12 bytes), preamble (7 bytes), and the “start of
frame” delimiter (1 byte), 84 bytes (672 bits) must be transmitted per minimum-
size frame including overhead. We thus arrive at 1,000, 000,000/672 = 1,488,095
frames per second as the absolute upper limit for gigabit Ethernet, which is our
performance goal. Using three handshake packets (SYN, SYN-ACK, ACK) and
one RST for terminating connections, the absolute best performance of any TCP
stack is 371K connections/sec. In applications that require graceful termination
with four FIN packets, this number is 212K/sec.



Method Destinations| Rate in pps (link utilization) |CPU
1 port / 1 core[4 ports / 4 cores
Winsock (default)  |single 116,037 (7.7%)] 193, 142 (3.2%) |100%
all unique | 16,290 (1%) | 30,110 (0.5%) |100%
Winsock (services off)|single 207,041 (14%) | 244,196 (4.1%) |100%
all unique | 75,687 (5%) | 153,232 (2.5%) |100%
WinPcap 4.1 single 19,349 (3.3%) | 152,467 (2.5%) | 75%
all unique | 49,493 (3.3%) | 152,297 (2.5%) | 5%

Table 1. Server 2008 SP2 raw SYN transmission performance.

3.1 Raw Packets

We now examine the performance of the Windows network stack to measure
the maximum send rate of TCP SYN packets on a raw socket (ICMP and UDP
results are nearly identical and thus omitted). All Windows tests in this paper
are run on a dual AMD Opteron 2427 (2.2GHz, six cores per socket) system with
32GB of DDR2-667 RAM. The NIC is an Intel Pro/1000 PT Quad-Port Gigabit
PCI-E NIC, and the OS is Windows Server 2008 SP2. We dedicate a single CPU
core to each gigabit port and restrict the OS kernel, all drivers, and user-space
programs to run on as many cores as there are ports being used during the
test. All reported CPU utilization numbers later in the paper are relative to the
number of active cores.

As shown in the first row of Table 1, Winsock can send packets to a single
destination at rates between 116 Kpps (single core, single port) and 193 Kpps
(quad-core, quad-port) at 100% CPU utilization. Winsock additionally drops
its performance by a factor of 7 when each packet targets a unique IP address
(demonstrated in the next line of the table). In order to alleviate the CPU
overhead, we experimentally found that completely disabling (not just turning
off) certain default Windows services (e.g., firewall and network list service)
allowed Winsock to achieve a 25-80% speedup for a single destination and a
five-fold rate increase for multiple destinations as shown in the next two rows
of the table. However, this performance is still quite poor compared to the line
rate of 1.48 Mpps and far from desirable in practice as no other processing can
be done on the server due to the high CPU utilization. Furthermore, disabling
critical Windows services (such as the firewall) causes installation of certain OS
updates to fail and potentially leaves the host vulnerable to attack, which is
undesirable. Another interesting result, shown in the last two rows of the table,
is that WinPcap performs no better (and sometimes worse) than Winsock with
disabled services.

As CPU usage is extremely high for the number of packets sent for both
approaches above and multi-core scaling is rather poor due to various bottlenecks
in the kernel, one must conclude that Winsock and WinPcap are unsuitable for
truly high-performance applications.



Method Rate (conn/sec) CPU
1 port / 1 core[4 ports / 4 cores

connect /closesocket 16,656 39, 462 100%
connectEx/disconnectEx 20, 801 45,277 100%
WSK (kernel mode) 31,389 54,783 100%

Table 2. Server 2008 SP2 TCP connection performance to a single destination.

3.2 TCP Connections

TCP connection performance to a single destination is summarized in Table 2.

The standard approach using the Unix BSD socket interface (i.e., connect/closesocket)
achieves between 16K and 39K connections/sec, which is slightly surpassed by

the new Winsock APIs connectEx/disconnectEx with their 20 and 45K connec-
tions/sec, respectively. The performance gain is related to the fact that these
APIs keep sockets open between subsequent connections. Finally, the new (i.e.,
Vista/Server 2008) kernel-level Winsock interface WSK is measurably faster at

31 and 54K connections/sec, but its multi-core scalability is again quite poor.
Connection rates to multiple unique destinations are much worse and not shown
here due to limited space.

4 IRLstack: Overcoming the Bottlenecks

Kernel stack traces indicate that the performance drop when sending raw packets
to many unique destinations occurs in afd.sys and tcpip.sys in Fig. 1(a). Bypass-
ing them completely and generating raw SYN packets entirely from within the
kernel brings performance up to 289 Kpps (single-core) and 652 Kpps (quad-
core), regardless of firewall settings and how many destinations are used. Never-
theless, this solution is hardly acceptable as it still consumes 100% of the CPU,
stays well below link capacity, and requires writing kernel-level code for each
high-performance application, which is cumbersome and prone to crashing the
system.

Further profiling of NDIS shows that its path from protocol to miniport
drivers in Fig. 1(a) has another major bottleneck in synchronization spinlocks
and DMA transfers to the NIC. To overcome this problem, we developed a
general-purpose suite of network drivers called IRLstack that accepts buffers of
packets from user-space (using standard Windows API calls such as WriteFile)
and transmits them in a single call to the miniport driver. Multiple outstanding
asynchronous requests are supported via overlapped I/0. The buffer consists
of multiple raw link-layer frames, each preceded by an IRLstack-specific header.
Link-layer, IP, and TCP/UDP checksums may be omitted as they are calculated
by the NIC using checksum offloading.

At the kernel level, the protocol driver scans through the buffer creating the
appropriate auxiliary data structures for each encountered packet and proceeds
to send the entire batch in a single call as allowed by NDIS. Batching multiple
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Fig. 2. IRLstack transmission performance and CPU utilization using 40-byte SYN
packets.

packets maximizes useful work between acquisitions of kernel spinlocks, ensures
that the send path remains zero-copy, and allows the NIC to perform large DMA
transfers directly from user-space. In Fig. 1(b), protocol driver IRLstackP.sys
handles raw application-layer packets through a special IRLstack API, while
filter driver IRLstackF .sys intercepts return packets and channels those destined
to IRLstack applications back to IRLstackP.sys. The remaining packets are sent
to tcpip.sys as before. This is accomplished by redirecting any incoming traffic
destined to non-default TP addresses on the NIC (assumed to be allocated for
IRLstack’s use) to our protocol driver.

4.1 Sending

The first issue we investigate is the transmit performance of IRLstack and the
optimal batch size needed to saturate the link. Results of our testing can be seen
in Fig. 2(a). All transmission rates are far from optimal until the burst size starts
to exceed 50 packets, at which point IRLstack achieves 50-66% (depending on
the number of cores) link utilization. For single and dual-core cases, full wire
speed is reached with any batch size between 128 and 1,024 packets, while the
3-core setup has a unique peak at 256 packets and the 4-core case maxes out at
1,024. Interestingly, for very large batch sizes, performance actually drops due
to bottlenecks in the Intel miniport driver, which for some reason is unable to
efficiently handle large bursts of packets.

As seen in Fig. 2(b) at batch sizes 128-512, IRLstack can saturate a 1 Gbps
link with just 75% CPU utilization of a single 2.2GHz core and two gigabit links
using 75% of two cores. With multiple NIC ports, IRLstack scales much better
than Winsock and achieves 5.25 Mpps as shown Table 3. This scaling is less than
linear due to synchronization bottlenecks stemming from the common (single-
threaded) miniport driver controlling all four ports, though the main sublinear
dropoff only occurs when increasing from 3 to 4 ports.



Method Rate in pps (link utilization)

1 port /1 core [2 ports / 2 cores [3 ports / 3 cores[4 ports / 4 cores
IRLstack |1, 487,298 (100%)|2, 973,933 (100%) |4, 379,999 (98%)|5, 245, 458 (88%)
WinPcap| 319,814 (21%) | 485,617 (16%) | 648,370 (14%) | 815,921 (14%)

Table 3. Send performance with SYN packets using optimal batch size (2.2 GHz
Opteron 2427).

While WinPcap also exports a batch-mode interface to user-space, it does
not fully utilize the interfaces provided in NDIS 5.x and later (e.g., NdisSendNet-
BufferLists in 6.x) for batching within the kernel. This makes its multi-packet
performance significantly lower than it could be as also seen in Table 3. We
thus note that IRLstack’s in-kernel batching techniques could be easily imple-
mented in WinPcap as well, benefitting those who seek higher pps performance
in WinPcap-based tools on commodity PC platforms.

4.2 Receiving

While most of our projects have required high sending rates, additional research
can be enabled by a network stack that allows high capture rates as well. We
now turn our attention to receive performance in Table 4, where we only focus
on IRLstack, with Linux PF_RING/TNAPI numbers [5] provided as a reference.
(Winsock/WinPcap results are again vastly suboptimal and are thus omitted.)
Observe in the table that the receive path in IRLstack is approximately 20-50%
slower than the send path, which can be explained by two factors. First, our
receive path is not zero-copy as it was during transmission, because IRLstack
is able to directly export user-space buffers for DMA transfers into the NIC;
however, no reverse functionality (i.e., from the NIC) is provided by NDIS unless
specialized hardware is used. Second, the interrupt frequency is higher along the
receive path than the send path since the miniport driver controls the former
and IRLstack controls the latter. With the maximum miniport batch size equal
to 64 packets, it is no wonder that it is unable to sustain the wire speed along
the receive path. If future versions of Intel drivers remove this limitation, much
higher receive rates are to be expected.

Nevertheless, IRLstack’s receive performance compares quite favorably to the
latest Linux numbers from a custom PF_RING/TNAPI kernel [5]. Specifically,
both solutions achieve close to 3 Mpps with quad-cores and four independent
RX queues (we use four gigabit ports, while [5] uses a single 10 GE adapter
with four hardware queues). This is despite IRLstack’s receive path not being
zero-copy (which it is in [5] using Intel I/OAT), its use of rather frequent 64-
packet interrupts, standard Intel NIC drivers, default NIC settings (e.g., adaptive
interrupt moderation), and no kernel modifications (i.e., all drivers are loaded at
run-time). Furthermore, while [5] posts the highest throughput numbers we’ve
seen on Linux, it is meant for capture only and does not have a transmit path
for general-purpose traffic.



Method Rate (pps)

1 port / 1 core [2 ports / 2 cores[3 ports / 3 cores[4 ports / 4 cores
TRLstack| 1, 232, 745 (82%) |1, 526,460 (51%)]2, 282, 554 (51%)|2, 946, 707 (50%)
Linux [5] |~ 920,000 (61%) - - ~ 3,000, 000

Table 4. Receive performance with SYN packets (IRLstack on a 2.2 GHz Opteron
2427 vs. Linux on a 2.4 GHz Xeon 54xx).

4.3 TCP Connections

IRLstack implements the client side of TCP in user space, which simultaneously
allows for easy debugging and high-performance management of numerous out-
standing connections — hiding the work of constructing link-layer frames that
would otherwise be required of the user. All supported operations are performed
using batching and include issuing outgoing connections with three handshake
packets, ability to send requests in regular or ACK packets of the handshake
(which is however not always supported by remote servers), and standard SACK
TCP receiver functionality (i.e., selective ACKs, large windows, etc.). To avoid
keeping the server in the time-wait state, the application has an option of ter-
minating connections using RST packets, in which case the useful connection
throughput in Gnutella-like applications is close to 250K /sec (i.e., four control
packets, one request packet, one reply packet).

4.4 Latency

It should be noted that the receive-path interrupt batching provides notification
from the miniport to NDIS every 64 packets and is not under control of IRL-
stack. The batching delay along the send path, however, is user-selectable based
on the batch size passed down to IRLstack. Thus, applications that require ac-
curate timestamps might need to trade off pps performance for lower latency by
changing the miniport interrupt moderation and reducing the batch size during
transmission.

5 Conclusions and Future Work

We have shown that while Windows is often overlooked as a platform on which to
conduct serious networking research, perhaps due to impressions of inefficiency
or low performance, this need not be the case. With a well-designed NDIS 6.x
network stack, it is possible to achieve wire-rate transmission (and near wire-rate
reception) on gigabit Ethernet using inexpensive commodity hardware. IRLstack
achieves a nearly 100-fold increase in transmission performance over Winsock
(when unique destinations are used), with lower CPU usage. Moreover, it can
coexist with the default network stack on a single adapter so that other network
applications may run as usual.



Future work involves expanding IRLstack’s receive performance (e.g., using

DMA remapping, multiple hardware queues) and evaluating its performance on
10 GE hardware.
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