
IRLbot: Scaling to 6 Billion Pages and Beyond

Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov
∗

Department of Computer Science, Texas A&M University
College Station, TX 77843 USA

{h0l9314, dleonard, xmwang, dmitri}@cs.tamu.edu

ABSTRACT
This paper shares our experience in designing a web crawler
that can download billions of pages using a single-server im-
plementation and models its performance. We show that
with the quadratically increasing complexity of verifying
URL uniqueness, BFS crawl order, and fixed per-host rate-
limiting, current crawling algorithms cannot effectively cope
with the sheer volume of URLs generated in large crawls,
highly-branching spam, legitimate multi-million-page blog
sites, and infinite loops created by server-side scripts. We
offer a set of techniques for dealing with these issues and
test their performance in an implementation we call IRLbot.
In our recent experiment that lasted 41 days, IRLbot run-
ning on a single server successfully crawled 6.3 billion valid
HTML pages (7.6 billion connection requests) and sustained
an average download rate of 319 mb/s (1, 789 pages/s). Un-
like our prior experiments with algorithms proposed in re-
lated work, this version of IRLbot did not experience any
bottlenecks and successfully handled content from over 117
million hosts, parsed out 394 billion links, and discovered a
subset of the web graph with 41 billion unique nodes.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

General Terms
Algorithms, Measurement, Performance

Keywords
IRLbot, large-scale, crawling

1. INTRODUCTION
Over the last decade, the World Wide Web (WWW) has

evolved from a handful of pages to billions of diverse ob-
jects. In order to harvest this enormous data repository,
search engines download parts of the existing web and of-
fer Internet users access to this database through keyword
search. Search engines consist of two fundamental compo-
nents – web crawlers, which find, download, and parse con-

∗Supported by NSF grants CCR-0306246, ANI-0312461,
CNS-0434940, CNS-0519442, and CNS-0720571.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

tent in the WWW, and data miners, which extract key-
words from pages, rank document importance, and answer
user queries. This paper does not deal with data miners,
but instead focuses on the design of web crawlers that can
scale to the size of the current1 and future web, while imple-
menting consistent per-website and per-server rate-limiting
policies and avoiding being trapped in spam farms and in-
finite webs. We next discuss our assumptions and explain
why this is a challenging issue.

1.1 Scalability
With the constant growth of the web, discovery of user-

created content by web crawlers faces an inherent tradeoff
between scalability, performance, and resource usage. The
first term refers to the number of pages N a crawler can
handle without becoming “bogged down” by the various al-
gorithms and data structures needed to support the crawl.
The second term refers to the speed S at which the crawler
discovers the web as a function of the number of pages al-
ready crawled. The final term refers to the CPU and RAM
resources Σ that are required to sustain the download of
N pages at an average speed S. In most crawlers, larger
N implies higher complexity of checking URL uniqueness,
verifying robots.txt, and scanning the DNS cache, which ul-
timately results in lower S and higher Σ. At the same time,
higher speed S requires smaller data structures, which often
can be satisfied only by either lowering N or increasing Σ.

Current research literature [2], [4], [6], [8], [13], [15], [19],
[22], [23], [25], [26], [27] generally provides techniques that
can solve a subset of the problem and achieve a combina-
tion of any two objectives (i.e., large slow crawls, small fast
crawls, or large fast crawls with unbounded resources). They
also do not analyze how the proposed algorithms scale for
very large N given fixed S and Σ. Even assuming sufficient
Internet bandwidth and enough disk space, the problem of
designing a web crawler that can support large N (hun-
dreds of billions of pages), sustain reasonably high speed S
(thousands of pages/s), and operate with fixed resources Σ
remains open.

1.2 Reputation and Spam
The web has changed significantly since the days of early

crawlers [4], [23], [25], mostly in the area of dynamically
generated pages and web spam. With server-side scripts
that can create infinite loops, high-density link farms, and

1Adding the size of all top-level domains using site queries
(e.g., “site:.com”), Google’s current index size can be esti-
mated at 30 billion pages and Yahoo’s at 37 billion.

1

unlimited number of hostnames, the task of web crawling has
changed from simply doing a BFS scan of the WWW [24] to
deciding in real time which sites contain useful information
and giving them higher priority as the crawl progresses.

Our experience shows that BFS eventually becomes trapped
in useless content, which manifests itself in multiple ways:
a) the queue of pending URLs contains a non-negligible frac-
tion of links from spam sites that threaten to overtake le-
gitimate URLs due to their high branching factor; b) the
DNS resolver succumbs to the rate at which new hostnames
are dynamically created within a single domain; and c) the
crawler becomes vulnerable to the delay attack from sites
that purposely introduce HTTP and DNS delays in all re-
quests originating from the crawler’s IP address.

No prior research crawler has attempted to avoid spam or
document its impact on the collected data. Thus, designing
low-overhead and robust algorithms for computing site rep-
utation during the crawl is the second open problem that we
aim to address in this work.

1.3 Politeness
Even today, webmasters become easily annoyed when web

crawlers slow down their servers, consume too much Internet
bandwidth, or simply visit pages with“too much” frequency.
This leads to undesirable consequences including blocking of
the crawler from accessing the site in question, various com-
plaints to the ISP hosting the crawler, and even threats of
legal action. Incorporating per-website and per-IP hit limits
into a crawler is easy; however, preventing the crawler from
“choking” when its entire RAM gets filled up with URLs
pending for a small set of hosts is much more challenging.
When N grows into the billions, the crawler ultimately be-
comes bottlenecked by its own politeness and is then faced
with a decision to suffer significant slowdown, ignore polite-
ness considerations for certain URLs (at the risk of crashing
target servers or wasting valuable bandwidth on huge spam
farms), or discard a large fraction of backlogged URLs, none
of which is particularly appealing.

While related work [2], [6], [13], [23], [27] has proposed sev-
eral algorithms for rate-limiting host access, none of these
studies have addressed the possibility that a crawler may
stall due to its politeness restrictions or discussed manage-
ment of rate-limited URLs that do not fit into RAM. This is
the third open problem that we aim to solve in this paper.

1.4 Our Contributions
The first part of the paper presents a set of web-crawler

algorithms that address the issues raised above and the sec-
ond part briefly examines their performance in an actual web
crawl.2 Our design stems from three years of web crawling
experience at Texas A&M University using an implementa-
tion we call IRLbot [16] and the various challenges posed in
simultaneously: 1) sustaining a fixed crawling rate of several
thousand pages/s; 2) downloading billions of pages; and 3)
operating with the resources of a single server.

The first performance bottleneck we faced was caused by
the complexity of verifying uniqueness of URLs and their
compliance with robots.txt. As N scales into many billions,
even the disk algorithms of [23], [27] no longer keep up with
the rate at which new URLs are produced by our crawler
(i.e., up to 184K per second). To understand this problem,

2A separate paper will present a much more detailed analysis
of the collected data.

we analyze the URL-check methods proposed in the litera-
ture and show that all of them exhibit severe performance
limitations when N becomes sufficiently large. We then in-
troduce a new technique called Disk Repository with Update
Management (DRUM) that can store large volumes of arbi-
trary hashed data on disk and implement very fast check,
update, and check+update operations using bucket sort. We
model the various approaches and show that DRUM’s over-
head remains close to the best theoretically possible as N
reaches into the trillions of pages and that for common disk
and RAM size, DRUM can be thousands of times faster than
prior disk-based methods.

The second bottleneck we faced was created by multi-
million-page sites (both spam and legitimate), which became
backlogged in politeness rate-limiting to the point of over-
flowing the RAM. This problem was impossible to overcome
unless politeness was tightly coupled with site reputation.
In order to determine the legitimacy of a given domain, we
use a very simple algorithm based on the number of incom-
ing links from assets that spammers cannot grow to infinity.
Our algorithm, which we call Spam Tracking and Avoid-
ance through Reputation (STAR), dynamically allocates the
budget of allowable pages for each domain and all of its
subdomains in proportion to the number of in-degree links
from other domains. This computation can be done in real
time with little overhead using DRUM even for millions of
domains in the Internet. Once the budgets are known, the
rates at which pages can be downloaded from each domain
are scaled proportionally to the corresponding budget.

The final issue we faced in later stages of the crawl was
how to prevent live-locks in processing URLs that exceed
their budget. Periodically re-scanning the queue of over-
budget URLs produces only a handful of good links at the
cost of huge overhead. As N becomes large, the crawler ends
up spending all of its time cycling through failed URLs and
makes very little progress. The solution to this problem,
which we call Budget Enforcement with Anti-Spam Tactics
(BEAST), involves a dynamically increasing number of disk
queues among which the crawler spreads the URLs based on
whether they fit within the budget or not. As a result, al-
most all pages from sites that significantly exceed their bud-
gets are pushed into the last queue and are examined with
lower frequency as N increases. This keeps the overhead of
reading spam at some fixed level and effectively prevents it
from “snowballing.”

The above algorithms were deployed in IRLbot [16] and
tested on the Internet in June-August 2007 using a sin-
gle server attached to a 1 gb/s backbone of Texas A&M.
Over a period of 41 days, IRLbot issued 7, 606, 109, 371 con-
nection requests, received 7, 437, 281, 300 HTTP responses
from 117, 576, 295 hosts, and successfully downloaded N =
6, 380, 051, 942 unique HTML pages at an average rate of 319
mb/s (1, 789 pages/s). After handicapping quickly branch-
ing spam and over 30 million low-ranked domains, IRLbot
parsed out 394, 619, 023, 142 links and found 41, 502, 195, 631
unique pages residing on 641, 982, 061 hosts, which explains
our interest in crawlers that scale to tens and hundreds of
billions of pages as we believe a good fraction of 35B URLs
not crawled in this experiment contains useful content.

2. RELATED WORK
There is only a limited number of papers describing de-

tailed web-crawler algorithms and offering their experimen-

2

Crawler Year Crawl size URLseen RobotsCache DNScache Q

(HTML pages) RAM Disk RAM Disk

WebCrawler [25] 1994 50K database – – database

Internet Archive [5] 1997 N/A site-based – site-based – site-based RAM

Mercator-A [13] 1999 41M LRU seek LRU – – disk

Mercator-B [23] 2001 473M LRU batch LRU – – disk

Polybot [27] 2001 120M tree batch database database disk

WebBase [6] 2001 125M site-based – site-based – site-based RAM

UbiCrawler [2] 2002 45M site-based – site-based – site-based RAM

Table 1: Comparison of prior crawlers and their data structures.

tal performance. First-generation designs [8], [22], [25], [26]
were developed to crawl the infant web and commonly re-
ported collecting less than 100, 000 pages. Second-generation
crawlers [2], [6], [14], [13], [23], [27] often pulled several hun-
dred million pages and involved multiple agents in the crawl-
ing process. We discuss their design and scalability issues in
the next section.

Another direction was undertaken by the Internet Archive
[5], [15], which maintains a history of the Internet by down-
loading the same set of pages over and over. In the last 10
years, this database has collected over 85 billion pages, but
only a small fraction of them are unique. Additional crawlers
are [4], [7], [12], [19], [28], [29]; however, their focus usually
does not include the large scale assumed in this paper and
their fundamental crawling algorithms are not presented in
sufficient detail to be analyzed here.

The largest prior crawl using a fully-disclosed implemen-
tation appeared in [23], where Mercator obtained N = 473
million HTML pages in 17 days (we exclude non-HTML
content since it has no effect on scalability). The fastest
reported crawler was [12] with 816 pages/s, but the scope
of their experiment was only N = 25 million. Finally, to
our knowledge, the largest webgraph used in any paper was
AltaVista’s 2003 crawl with 1.4B pages and 6.6B links [10].

3. OBJECTIVES AND CLASSIFICATION
This section formalizes the purpose of web crawling and

classifies algorithms in related work, some of which we study
later in the paper. Due limited space, all proofs in this paper
have been relegated to the technical report [20].

3.1 Crawler Objectives
We assume that the ideal task of a crawler is to start

from a set of seed URLs Ω0 and eventually crawl the set of
all pages Ω∞ that can be discovered from Ω0 using HTML
links. The crawler is allowed to dynamically change the or-
der in which URLs are downloaded in order to achieve a
reasonably good coverage of “useful” pages ΩU ⊆ Ω∞ in
some finite amount of time. Due to the existence of legiti-
mate sites with hundreds of millions of pages (e.g., ebay.com,
yahoo.com, blogspot.com), the crawler cannot make any re-
stricting assumptions on the maximum number of pages per
host, the number of hosts per domain, the number of do-
mains in the Internet, or the number of pages in the crawl.
We thus classify algorithms as non-scalable if they impose
hard limits on any of these metrics or are unable to maintain
crawling speed when these parameters become very large.

We should also explain why this paper focuses on the per-
formance of a single server rather than some distributed ar-

chitecture. If one server can scale to N pages and maintain
speed S, then with sufficient bandwidth it follows that m
servers can maintain speed mS and scale to mN pages by
simply partitioning the subset of all URLs and data struc-
tures between themselves (we assume that the bandwidth
needed to shuffle the URLs between the servers is also well
provisioned). Therefore, the aggregate performance of a
server farm is ultimately governed by the characteristics of
individual servers and their local limitations. We explore
these limits in detail throughout the paper.

3.2 Crawler Operation
The functionality of a basic web crawler can be broken

down into several phases: 1) removal of the next URL u from
the queue Q of pending pages; 2) download of u and extrac-
tion of new URLs u1, . . . , uk from u’s HTML tags; 3) for each
ui, verification of uniqueness against some structure URLseen
and checking compliance with robots.txt using some other
structure RobotsCache; 4) addition of passing URLs to Q
and URLseen; 5) update of RobotsCache if necessary. The
crawler may also maintain its own DNScache structure in
cases when the local DNS server is not able to efficiently
cope with the load (e.g., its RAM cache does not scale to
the number of hosts seen by the crawler or it becomes very
slow after caching hundreds of millions of records).

A summary of prior crawls and their methods in manag-
ing URLseen, RobotsCache, DNScache, and queue Q is shown
in Table 1. The table demonstrates that two approaches to
storing visited URLs have emerged in the literature: RAM-
only and hybrid RAM-disk. In the former case [2], [5], [6],
crawlers keep a small subset of hosts in memory and visit
them repeatedly until a certain depth or some target num-
ber of pages have been downloaded from each site. URLs
that do not fit in memory are discarded and sites are as-
sumed to never have more than some fixed volume of pages.
This approach performs truncated web crawls that require
different techniques from those studied here and will not be
considered in our comparison.

In the latter approach [13], [23], [25], [27], URLs are first
checked against a buffer of popular links and those not found
are examined using a disk file. The RAM buffer may be an
LRU cache [13], [23], an array of recently added URLs [13],
[23], a general-purpose database with RAM caching [25],
and a balanced tree of URLs pending a disk check [27]. To
fully understand whether caching provides improved perfor-
mance, one must consider a complex interplay between the
available CPU capacity, spare RAM size, disk speed, perfor-
mance of the caching algorithm, and crawling rate. Due to
insufficient space, we do not study caching here and direct
the reader to the technical report [20].

3

Most prior approaches keep RobotsCache in RAM and
either crawl each host to exhaustion [2], [5], [6] or use an
LRU cache in memory [13], [23]. The only hybrid approach
is used in [27], which employs a general-purpose database for
storing downloaded robots.txt and relevant DNS records.
Finally, with the exception of [27], prior crawlers do not
perform DNS caching and rely on the local DNS server to
store these records for them.

4. SCALABILITY OF DISK METHODS
We next describe disk-check algorithms proposed in prior

literature, analyze their performance, and then introduce
our approach.

4.1 Algorithms
Mercator-B [23] and Polybot [27] use a so-called batch

disk check – they accumulate a buffer of URLs in memory
and then merge it with a sorted URLseen file in one pass.
Mercator-B stores only hashes of new URLs in RAM and
places their text on disk. In order to retain the mapping
from hashes to the text, a special pointer is attached to
each hash. After the memory buffer is full, it is sorted in
place and then compared with blocks of URLseen as they are
read from disk. Non-duplicate URLs are merged with those
already on disk and written into the new version of URLseen.
Pointers are then used to recover the text of unique URLs
and append it to the disk queue.

Polybot keeps the entire URLs (i.e., actual strings) in
memory and organizes them into a binary search tree. Once
the tree size exceeds some threshold, it is merged with the
disk file URLseen, which contains compressed URLs already
seen by the crawler. Besides being enormously CPU inten-
sive (i.e., compression of URLs and search in binary string
trees are rather slow in our experience), this method has to
perform more frequent scans of URLseen than Mercator-B
due to the less-efficient usage of RAM.

4.2 Modeling Prior Methods
Assume the crawler is in some steady state where the

probability of uniqueness p among new URLs remains con-
stant (we verify that this holds in practice later in the pa-
per). Further assume that the current size of URLseen is U
entries, the size of RAM allocated to URL checks is R, the
average number of links per downloaded page is l, the aver-
age URL length is b, the URL compression ratio is q, and
the crawler expects to visit N pages. It then follows that
n = lN links must pass through URL check, np of them
are unique, and bq is the average number of bytes in a com-
pressed URL. Finally, denote by H the size of URL hashes
used by the crawler and P the size of a memory pointer.
Then we have the following result.

Theorem 1. The overhead of URLseen batch disk check
is ω(n, R) = α(n, R)bn bytes, where for Mercator-B:

α(n, R) =
2(2UH + pHn)(H + P)

bR
+ 2 + p (1)

and for Polybot:

α(n, R) =
2(2Ubq + pbqn)(b + 4P)

bR
+ p. (2)

This result shows that ω(n, R) is a product of two ele-
ments: the number of bytes bn in all parsed URLs and how

many times α(n, R) they are written to/read from disk. If
α(n, R) grows with n, the crawler’s overhead will scale super-
linearly and may eventually become overwhelming to the
point of stalling the crawler. As n → ∞, the quadratic
term in ω(n, R) dominates the other terms, which places
Mercator-B’s asymptotic performance at

ω(n, R) =
2(H + P)pH

R
n2 (3)

and that of Polybot at

ω(n, R) =
2(b + 4P)pbq

R
n2. (4)

The ratio of these two terms is (H + P)H/[bq(b + 4P)],
which for the IRLbot case with H = 8 bytes/hash, P = 4
bytes/pointer, b = 110 bytes/URL, and using very opti-
mistic bq = 5 bytes/URL shows that Mercator-B is roughly
7.2 times faster than Polybot as n →∞.

The best performance of any method that stores the text
of URLs on disk before checking them against URLseen (e.g.,
Mercator-B) is αmin = 2 + p, which is the overhead needed
to write all bn bytes to disk, read them back for processing,
and then append bpn bytes to the queue. Methods with
memory-kept URLs (e.g., Polybot) have an absolute lower
bound of α′min = p, which is the overhead needed to write
the unique URLs to disk. Neither bound is achievable in
practice, however.

4.3 DRUM
We now describe the URL-check algorithm used in IRL-

bot, which belongs to a more general framework we call Disk
Repository with Update Management (DRUM). The purpose
of DRUM is to allow for efficient storage of large collections
of <key,value> pairs, where key is a unique identifier (hash)
of some data and value is arbitrary information attached to
the key. There are three supported operations on these pairs
– check, update, and check+update. In the first case, the
incoming set of data contains keys that must be checked
against those stored in the disk cache and classified as being
duplicate or unique. For duplicate keys, the value associated
with each key can be optionally retrieved from disk and used
for some processing. In the second case, the incoming list
contains <key,value> pairs that need to be merged into the
existing disk cache. If a given key exists, its value is updated
(e.g., overridden or incremented); if it does not, a new en-
try is created in the disk file. Finally, the third operation
performs both check and update in one pass through the
disk cache. Also note that DRUM may be supplied with
a mixed list where some entries require just a check, while
others need an update.

A high-level overview of DRUM is shown in Figure 1. In
the figure, a continuous stream of tuples <key,value,aux>

arrives into DRUM, where aux is some auxiliary data asso-
ciated with each key. DRUM spreads pairs <key,value>

between k disk buckets QH
1 , . . . , QH

k based on their key (i.e.,
all keys in the same bucket have the same bit-prefix). This is
accomplished by feeding pairs <key,value> into k memory
arrays of size M each and then continuously writing them to
disk as the buffers fill up. The aux portion of each key (which
usually contains the text of URLs) from the i-th bucket is
kept in a separate file QT

i in the same FIFO order as pairs
<key,value> in QH

i . Note that to maintain fast sequential
writing/reading, all buckets are pre-allocated on disk before
they are used.

4

…

<key,value> buffer 1

RAM

<key,value> buffer k

aux buffer 1

disk

bucket
buffer

∆

cache Z

aux buffer k

<key,value,aux>
tuples

Figure 1: Operation of DRUM.

Once the largest bucket reaches a certain size r < R, the
following process is repeated for i = 1, . . . , k: 1) bucket QH

i

is read into the bucket buffer shown in Figure 1 and sorted;
2) the disk cache Z is sequentially read in chunks of ∆ bytes
and compared with the keys in bucket QH

i to determine their
uniqueness; 3) those <key,value> pairs in QH

i that require
an update are merged with the contents of the disk cache
and written to the updated version of Z; 4) after all unique
keys in QH

i are found, their original order is restored, QT
i

is sequentially read into memory in blocks of size ∆, and
the corresponding aux portion of each unique key is sent for
further processing (see below). An important aspect of this
algorithm is that all buckets are checked in one pass through
disk cache Z.3

We now explain how DRUM is used for storing crawler
data. The most important DRUM object is URLseen, which
implements only one operation – check+update. Incoming
tuples are <URLhash,-,URLtext>, where the key is an 8-byte
hash of each URL, the value is empty, and the auxiliary data
is the URL string. After all unique URLs are found, their
text strings (aux data) are sent to the next queue for possible
crawling. For caching robots.txt, we have another DRUM
structure called RobotsCache, which supports asynchronous
check and update operations. For checks, it receives tu-
ples <HostHash,-,URLtext> and for updates <HostHash,

HostData,->, where HostData contains the robots.txt file,
IP address of the host, and optionally other host-related in-
formation. The last DRUM object of this section is called
RobotsRequested and is used for storing the hashes of sites
for which a robots.txt has been requested. Similar to URLseen,
it only supports simultaneous check+update and its incom-
ing tuples are <HostHash,-,HostText>.

Figure 2 shows the flow of new URLs produced by the
crawling threads. They are first sent directly to URLseen

using check+update. Duplicate URLs are discarded and
unique ones are sent for verification of their compliance with
the budget (both STAR and BEAST are discussed later in
the paper). URLs that pass the budget are queued to be
checked against robots.txt using RobotsCache. URLs that
have a matching robots.txt file are classified immediately
as passing or failing. Passing URLs are queued in Q and
later downloaded by the crawling threads. Failing URLs are
discarded.

URLs that do not have a matching robots.txt are sent
to the back of queue QR and their hostnames are passed

3Note that disk bucket sort is a well-known technique that
exploits uniformity of keys; however, its usage in checking
URL uniqueness and the associated performance model of
web crawling has not been explored before.

crawling
threads DRUM

URLseen

BEAST budget
enforcement

DRUM
RobotsCache

ready queue Q

robots-check
queue QR

DRUM
RobotsRequested

robots &
DNS threads

new URLs
unique URLs

pass budget

unable to
check

fail
robots

unique
hostnames

URLs

STAR budget
check

robots download
queue QD

robots request
queue QE

check

update

check +
update

check +
update

hostnames

pass
robots

Figure 2: High level organization of IRLbot.

through RobotsRequested using check+update. Sites whose
hash is not already present in this file are fed through queue
QD into a special set of threads that perform DNS lookups
and download robots.txt. They subsequently issue a batch
update to RobotsCache using DRUM. Since in steady-state
(i.e., excluding the initial phase) the time needed to down-
load robots.txt is much smaller than the average delay in
QR (i.e., 1-2 days), each URL makes no more than one cy-
cle through this loop. In addition, when RobotsCache de-
tects that certain robots.txt or DNS records have become
outdated, it marks all corresponding URLs as “unable to
check, outdated records,” which forces RobotsRequested to
pull a new set of exclusion rules and/or perform another
DNS lookup. Old records are automatically expunged dur-
ing the update when RobotsCache is re-written.

It should be noted that URLs are kept in memory only
when they are needed for immediate action and all queues in
Figure 2 are stored on disk. We should also note that DRUM
data structures can support as many hostnames, URLs, and
robots.txt exception rules as disk space allows.

4.4 DRUM Model
Assume that the crawler maintains a buffer of size M =

256 KB for each open file and that the hash bucket size r
must be at least ∆ = 32 MB to support efficient reading dur-
ing the check-merge phase. Further assume that the crawler
can use up to D bytes of disk space for this process. Then
we have the following result.

Theorem 2. Assuming that R ≥ 2∆(1+P/H), DRUM’s
URLseen overhead is ω(n, R) = α(n, R)bn bytes, where:

α(n, R) =

{
8M(H+P)(2UH+pHn)

bR2 + 2 + p + 2H
b

R2 < Λ
(H+b)(2UH+pHn)

bD
+ 2 + p + 2H

b
R2 ≥ Λ

(5)
and Λ = 8MD(H + P)/(H + b).

The two cases in (5) can be explained as follows. The
first condition R2 < Λ means that R is not enough to fill up
the entire disk space D since 2Mk memory buffers do not
leave enough space for the bucket buffer with size r ≥ ∆.
In this case, the overhead depends only on R since it is
the bottleneck of the system. The second case R2 ≥ Λ
means that memory size allows the crawler to use more disk
space than D, which results in the disk now becoming the
bottleneck. In order to match D to a given RAM size R

5

N Mercator-B Polybot DRUM

800M 11.6 69 2.26

8B 93 663 2.35

80B 917 6, 610 3.3

800B 9, 156 66, 082 12.5

8T 91, 541 660, 802 104

Table 2: Overhead α(n, R) for R = 1 GB and D = 4.39
TB.

and avoid unnecessary allocation of disk space, one should
operate at the optimal point given by R2 = Λ:

Dopt =
R2(H + b)

8M(H + P)
. (6)

For example, R = 1 GB produces Dopt = 4.39 TB and
R = 2 GB produces Dopt = 17 TB. For D = Dopt, the
corresponding number of buckets is kopt = R/(4M), the size
of the bucket buffer is ropt = RH/[2(H + P)] ≈ 0.33R, and
the leading quadratic term of ω(n, R) in (5) is now R/(4M)
times smaller than in Mercator-B. This ratio is 1, 000 for
R = 1 GB and 8, 000 for R = 8 GB. The asymptotic speed-
up in either case is significant.

Finally, observe that the best possible performance of any
method that stores both hashes and URLs on disk is α′′min =
2 + p + 2H/b.

4.5 Comparison
We next compare disk performance of the studied meth-

ods when non-quadratic terms in ω(n, R) are non-negligible.
Table 2 shows α(n, R) of the three studied methods for
fixed RAM size R and disk D as N increases from 800
million to 8 trillion (p = 1/9, U = 100M pages, b = 110
bytes, l = 59 links/page). As N reaches into the trillions,
both Mercator-B and Polybot exhibit overhead that is thou-
sands of times larger than the optimal and invariably become
“bogged down” in re-writing URLseen. On the other hand,
DRUM stays within a factor of 50 from the best theoretically
possible value (i.e., α′′min = 2.256) and does not sacrifice
nearly as much performance as the other two methods.

Since disk size D is likely to be scaled with N in order
to support the newly downloaded pages, we assume for the
next example that D(n) is the maximum of 1 TB and the
size of unique hashes appended to URLseen during the crawl
of N pages, i.e., D(n) = max(pHn, 1012). Table 3 shows
how dynamically scaling disk size allows DRUM to keep the
overhead virtually constant as N increases.

To compute the average crawling rate that the above meth-
ods support, assume that W is the average disk I/O speed
and consider the next result.

Theorem 3. Maximum download rate (in pages/s) sup-
ported by the disk portion of URL uniqueness checks is:

Sdisk =
W

α(n, R)bl
. (7)

We use IRLbot’s parameters to illustrate the applicability
of this theorem. Neglecting the process of appending new
URLs to the queue, the crawler’s read and write overhead
is symmetric. Then, assuming IRLbot’s 1-GB/s read speed
and 350-MB/s write speed (24-disk RAID-5), we obtain that
its average disk read-write speed is equal to 675 MB/s. Al-

N R = 4 GB R = 8 GB

Mercator-B DRUM Mercator-B DRUM

800M 4.48 2.30 3.29 2.30

8B 25 2.7 13.5 2.7

80B 231 3.3 116 3.3

800B 2, 290 3.3 1, 146 3.3

8T 22, 887 8.1 11, 444 3.7

Table 3: Overhead α(n, R) for D = D(n).

locating 15% of this rate for checking URL uniqueness4, the
effective disk bandwidth of the server can be estimated at
W = 101.25 MB/s. Given the conditions of Table 3 for
R = 8 GB and assuming N = 8 trillion pages, DRUM yields
a sustained download rate of Sdisk = 4, 192 pages/s (i.e.,
711 mb/s using IRLbot’s average HTML page size of 21.2
KB). With 10 DRUM servers and a 10-gb/s Internet link,
one could create a search engine with a download capacity
of 100 billion pages per month. In crawls of the same scale,
Mercator-B would be 3, 075 times slower and would admit
an average rate of only 1.4 pages/s. Since with these pa-
rameters Polybot is 7.2 times slower than Mercator-B, its
average crawling speed would be 0.2 pages/s.

5. SPAM AND REPUTATION
This section explains the necessity for detecting spam dur-

ing crawls and proposes a simple technique for computing
domain reputation in real-time.

5.1 Problems with BFS
Prior crawlers [6], [13], [23], [27] have no documented

spam-avoidance algorithms and are typically assumed to
perform BFS traversals of the web graph. Several studies
[1], [3] have examined in simulations the effect of changing
crawl order by applying bias towards more popular pages.
The conclusions are mixed and show that PageRank order
[4] can be sometimes marginally better than BFS [1] and
sometimes marginally worse [3], where the metric by which
they are compared is the rate at which the crawler discovers
popular pages.

While BFS works well in simulations, its performance on
infinite graphs and/or in the presence of spam farms remains
unknown. Our early experiments show that crawlers even-
tually encounter a quickly branching site that will start to
dominate the queue after 3− 4 levels in the BFS tree. Some
of these sites are spam-related with the aim of inflating the
page rank of target hosts, while others are created by regu-
lar users sometimes for legitimate purposes (e.g., calendars,
testing of asp/php engines), sometimes for questionable pur-
poses (e.g., intentional trapping of unwanted robots), and
sometimes for no apparent reason at all. What makes these
pages similar is the seemingly infinite number of dynami-
cally generated pages and/or hosts within a given domain.
Crawling these massive webs or performing DNS lookups on
millions of hosts from a given domain not only places a sig-
nificant burden on the crawler, but also wastes bandwidth
on downloading largely useless content.

Simply restricting the branching factor or the maximum
number of pages/hosts per domain is not a viable solu-

4Additional disk I/O is needed to verify robots.txt, perform
reputation analysis, and enforce budgets.

6

tion since there is a number of legitimate sites that con-
tain over a hundred million pages and over a dozen million
virtual hosts (i.e., various blog sites, hosting services, direc-
tories, and forums). For example, Yahoo currently reports
indexing 1.2 billion objects just within its own domain and
blogspot claims over 50 million users, each with a unique
hostname. Therefore, differentiating between legitimate and
illegitimate web “monsters” becomes a fundamental task of
any crawler.

Note that this task does not entail assigning popularity
to each potential page as would be the case when return-
ing query results to a user; instead, the crawler needs to
decide whether a given domain or host should be allowed
to massively branch or not. Indeed, spam-sites and vari-
ous auto-generated webs with a handful of pages are not a
problem as they can be downloaded with very little effort
and later classified by data-miners using PageRank or some
other appropriate algorithm. The problem only occurs when
the crawler assigns to domain x download bandwidth that
is disproportionate to the value of x’s content.

Another aspect of spam classification is that it must be
performed with very little CPU/RAM/disk effort and run
in real-time at speed SL links per second, where L is the
number of unique URLs per page.

5.2 Controlling Massive Sites
Before we introduce our algorithm, several definitions are

in order. Both host and site refer to Fully Qualified Do-
main Names (FQDNs) on which valid pages reside (e.g.,
motors.ebay.com). A server is a physical host that ac-
cepts TCP connections and communicates content to the
crawler. Note that multiple hosts may be co-located on the
same server. A top-level domain (TLD) or a country-code
TLD (cc-TLD) is a domain one level below the root in the
DNS tree (e.g., .com, .net, .uk). A pay-level domain (PLD)
is any domain that requires payment at a TLD or cc-TLD
registrar. PLDs are usually one level below the correspond-
ing TLD (e.g., amazon.com), with certain exceptions for cc-
TLDs (e.g., ebay.co.uk, det.wa.edu.au). We use a com-
prehensive list of custom rules for identifying PLDs, which
have been compiled as part of our ongoing DNS project.

While computing PageRank [18], BlockRank [17], or Sit-
eRank [9], [30] is a potential solution to the spam problem,
these methods become extremely disk intensive in large-scale
applications (e.g., 41 billion pages and 641 million hosts
found in our crawl) and arguably with enough effort can be
manipulated [11] by huge link farms (i.e., millions of pages
and sites pointing to a target spam page). In fact, strict
page-level rank is not absolutely necessary for controlling
massively branching spam. Instead, we found that spam
could be “deterred” by budgeting the number of allowed
pages per PLD based on domain reputation, which we de-
termine by domain in-degree from resources that spammers
must pay for. There are two options for these resources –
PLDs and IP addresses. We chose the former since classifi-
cation based on IPs (first suggested in Lycos [21]) has proven
less effective since large subnets inside link farms could be
given unnecessarily high priority and multiple independent
sites co-hosted on the same IP were improperly discounted.

While it is possible to classify each site and even each
subdirectory based on their PLD in-degree, our current im-
plementation uses a coarse-granular approach of only lim-
iting spam at the PLD level. Each PLD x starts with

crawling
threads DRUM

URLseen check +
update

update

DRUM
PLDindegree

PLD links

new URLs

unique
URLs

check +
update

STAR

BEAST budget
enforcement

URLs & budgets

robots-check
queue QR

pass budget

Figure 3: Operation of STAR.

a default budget B0, which is dynamically adjusted using
some function F (dx) as x’s in-degree dx changes. Budget
Bx represents the number of pages that are allowed to pass
from x (including all hosts and subdomains in x) to crawling
threads every T time units.

Figure 3 shows how our system, which we call Spam Track-
ing and Avoidance through Reputation (STAR), is organized.
In the figure, crawling threads aggregate PLD-PLD link in-
formation and send it to a DRUM structure PLDindegree,
which uses a batch update to store for each PLD x its hash
hx, in-degree dx, current budget Bx, and hashes of all in-
degree neighbors in the PLD graph. Unique URLs arriving
from URLseen perform a batch check against PLDindegree,
and are given Bx on their way to BEAST, which we discuss
in the next section.

Note that by varying the budget function F (dx), one can
implement a number of policies – crawling of only pop-
ular pages (i.e., zero budget for low-ranked domains and
maximum budget for high-ranked domains), equal distribu-
tion between all domains (i.e., budget Bx = B0 for all x),
and crawling with a bias toward popular/unpopular pages
(i.e., budget directly/inversely proportional to the PLD in-
degree).

6. POLITENESS AND BUDGETS
This section discusses how to enable polite crawler oper-

ation and scalably enforce budgets.

6.1 Rate Limiting
One of the main goals of IRLbot from the beginning was to

adhere to strict rate-limiting policies in accessing poorly pro-
visioned (in terms of bandwidth or server load) sites. Even
though larger sites are much more difficult to crash, unleash-
ing a crawler that can download at 500 mb/s and allowing it
unrestricted access to individual machines would generally
be regarded as a denial-of-service attack.

Prior work has only enforced a certain per-host access de-
lay τh (which varied from 10 times the download delay of a
page [23] to 30 seconds [27]), but we discovered that this pre-
sented a major problem for hosting services that co-located
thousands of virtual hosts on the same physical server and
did not provision it to support simultaneous access to all
sites (which in our experience is rather common in the cur-
rent Internet). Thus, without an additional per-server limit
τs, such hosts could be easily crashed or overloaded.

We keep τh = 40 seconds for accessing all low-ranked
PLDs, but then for high-ranked PLDs scale it down pro-
portional to Bx, up to some minimum value τ0

h . The rea-
son for doing so is to prevent the crawler from becoming

7

“bogged down” in a few massive sites with millions of pages
in RAM. Without this rule, the crawler would make very
slow progress through individual sites in addition to eventu-
ally running out of RAM as it becomes clogged with URLs
from a few“monster”networks. For similar reasons, we keep
per-server crawl delay τs at the default 1 second for low-
ranked domains and scale it down with the average budget
of PLDs hosted on the server, up to some minimum τ0

s .
By properly controlling the coupling between budgets and

crawl delays, one can ensure that the rate at which pages are
admitted into RAM is no less than their crawl rate, which
results in no memory backlog.

6.2 Budget Checks
We now discuss how IRLbot’s budget enforcement works

in a method we call Budget Enforcement with Anti-Spam
Tactics (BEAST). The goal of this method is not to dis-
card URLs, but rather to delay their download until more
is known about their legitimacy. Most sites have a low rank
because they are not well linked to, but this does not nec-
essarily mean that their content is useless or they belong to
a spam farm. All other things equal, low-ranked domains
should be crawled in some approximately round-robin fash-
ion with careful control of their branching. In addition, as
the crawl progresses, domains change their reputation and
URLs that have earlier failed the budget check need to be
rebudgeted and possibly crawled at a different rate. Ideally,
the crawler should shuffle URLs without losing any of them
and eventually download the entire web if given infinite time.

A naive implementation of budget enforcement in prior
versions of IRLbot maintained two queues Q and QF , where
Q contained URLs that had passed the budget and QF those
that had failed. After Q was emptied, QF was read in its
entirety and again split into two queues – Q and QF . This
process was then repeated indefinitely.

We next offer a simple overhead model for this algorithm.
As before, assume that S is the number of pages crawled
per second and b is the average URL size. Further define
E[Bx] < ∞ to be the expected budget of a domain in the
Internet, V to be the total number of PLDs seen by the
crawler in one pass through QF , and L to be the number of
unique URLs per page (recall that l in our earlier notation
allowed duplicate links). The next result shows that the
naive version of BEAST must increase disk I/O performance
with crawl size N .

Theorem 4. Lowest disk I/O speed (in bytes/s) that al-
lows the naive budget-enforcement approach to download N
pages at fixed rate S is:

λ = 2Sb(L− 1)αN , (8)

where

αN = max
(
1,

N

E[Bx]V

)
. (9)

This theorem shows that λ ∼ αN = Θ(N) and that re-
checking failed URLs will eventually overwhelm any crawler
regardless of its disk performance. For IRLbot (i.e., V =
33M, E[Bx] = 11, L = 6.5, S = 3, 100 pages/s, and b = 110),
we get λ = 3.8 MB/s for N = 100 million, λ = 83 MB/s for
N = 8 billion, and λ = 826 MB/s for N = 80 billion. Given
other disk-intensive tasks, IRLbot’s bandwidth for BEAST
was capped at about 100 MB/s, which explains why this
design eventually became a bottleneck in actual crawls.

crawling
threads

DRUM
URLseen

check + update

new URLs

unique
URLs

BEAST

URLs &
budgets

QF Qj Q
1

STAR budget
check

Q
2

Queue shuffler

…

robots-check
queue QR

pass budget

Figure 4: Operation of BEAST.

The correct implementation of BEAST rechecks QF at
exponentially increasing intervals. As shown in Figure 4,
suppose the crawler starts with j ≥ 1 queues Q1, . . . , Qj ,
where Q1 is the current queue and Qj is the last queue.
URLs are read from the current queue Q1 and written into
queues Q2, . . . , Qj based on their budgets. Specifically, for
a given domain x with budget Bx, the first Bx URLs are
sent into Q2, the next Bx into Q3 and so on. BEAST can
always figure out where to place URLs using a combination
of Bx (attached by STAR to each URL) and a local array
that keeps for each queue Qj the left-over budget of each
domain. URLs that do not fit in Qj are all placed in QF as
in the previous design.

After Q1 is emptied, the crawler moves to reading the
next queue Q2 and spreads newly arriving pages between
Q3, . . . , Qj , Q1 (note the wrap-around). After it finally emp-
ties Qj , the crawler re-scans QF and splits it into j addi-
tional queues Qj+1, . . . , Q2j . URLs that do not have enough
budget for Q2j are placed into the new version of QF . The
process then repeats starting from Q1 until j reaches some
maximum OS-imposed limit or the crawl terminates.

There are two benefits to this approach. First, URLs from
sites that exceed their budget by a factor of j or more are
pushed further back as j increases. This leads to a higher
probability that good URLs with enough budget will be
queued and crawled ahead of URLs in QF . The second ben-
efit, shown in the next theorem, is that the speed at which
the disk must be read does not skyrocket to infinity.

Theorem 5. Lowest disk I/O speed (in bytes/s) that al-
lows BEAST to download N pages at fixed rate S is:

λ = 2Sb
[2αN

1 + αN
(L− 1) + 1

]
≤ 2Sb(2L− 1). (10)

For N → ∞ and fixed V , disk speed λ → 2Sb(2L − 1),
which is roughly four times the speed needed to write all
unique URLs to disk as they are discovered during the crawl.
For the examples used earlier in this section, this implemen-
tation needs λ ≤ 8.2 MB/s regardless of crawl size N . From
the proof of Theorem 5 in [20], it also follows that the last
stage of an N -page crawl will contain:

j = 2dlog2(αN+1)e−1 (11)

queues. This value for N = 8B is 16 and for N = 80B only
128, neither of which is too imposing for a modern server.

7. EXPERIMENTS
This section briefly examines the important parameters of

the crawl and highlights our observations.

8

0

500

1000

1500

2000

2500

3000

3500

0 7 14 21 28 35 42

Crawl duration (days)

C
ra

w
l r

at
e

(p
ag

es
/s

)

(a) pages/s

0

50

100

150

200

250

300

350

400

450

500

0 7 14 21 28 35 42

Crawl duration (days)

R
ec

ei
vi

ng
 r

at
e

(m
b/

s)

(b) mb/s

Figure 5: Download rates during the experiment.

7.1 Summary
Between June 9 and August 3, 2007, we ran IRLbot on

a quad-CPU AMD Opteron 2.6 GHz server (16 GB RAM,
24-disk RAID-5) attached to a 1-gb/s link at the campus
of Texas A&M University. The crawler was paused several
times for maintenance and upgrades, which resulted in the
total active crawling span of 41.27 days. During this time,
IRLbot attempted 7, 606, 109, 371 connections and received
7, 437, 281, 300 valid HTTP replies. Excluding non-HTML
content (92M pages), HTTP errors and redirects (964M),
IRLbot ended up with N = 6, 380, 051, 942 responses with
status code 200 and content-type text/html.

We next plot average 10-minute download rates for the
active duration of the crawl in Figure 5, in which fluctu-
ations correspond to day/night bandwidth limits imposed
by the university.5 The average download rate during this
crawl was 319 mb/s (1, 789 pages/s) with the peak 10-minute
average rate of 470 mb/s (3, 134 pages/s). The crawler re-
ceived 143 TB of data, out of which 254 GB were robots.txt
files, and transmitted 1.8 TB of HTTP requests. The parser
processed 161 TB of HTML code (i.e., 25.2 KB per uncom-
pressed page) and the gzip library handled 6.6 TB of HTML
data containing 1, 050, 955, 245 pages, or 16% of the total.
The average compression ratio was 1:5, which resulted in
the peak parsing demand being close to 800 mb/s (i.e., 1.64
times faster than the maximum download rate).

IRLbot parsed out 394, 619, 023, 142 links from downloaded
pages. After discarding invalid URLs and known non-HTML
extensions, the crawler was left with K = 374, 707, 295, 503
potentially“crawlable” links that went through URL unique-
ness checks. We use this number to obtain K/N = l ≈ 59
links/page used throughout the paper. The average URL
size was 70.6 bytes (after removing “http://”), but with
crawler overhead (e.g., depth in the crawl tree, IP address
and port, timestamp, and parent link) attached to each
URL, their average size in the queue was b ≈ 110 bytes. The
number of pages recorded in URLseen was 41, 502, 195, 631
(332 GB on disk), which yielded L = 6.5 unique URLs per
page. These pages were hosted by 641, 982, 061 unique sites.

As promised earlier, we now show in Figure 6(a) that the
probability of uniqueness p stabilizes around 0.11 once the
first billion pages have been downloaded. Since p is bounded
away from 0 even at N = 6.3 billion, this suggests that our
crawl has discovered only a small fraction of the web. While
we certainly know there are at least 41 billion pages in the

5The day limit was 250 mb/s for days 5− 32 and 200 mb/s
for the rest of the crawl. The night limit was 500 mb/s.

0

0.05

0.1

0.15

0.2

0.25

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4
Pages crawled (billion)

U
ni

qu
en

es
s

pr
ob

ab
ili

ty
 p

(a) fraction of unique pages

1E0

1E1

1E2

1E3

1E4

1E5

1E0 1E2 1E4 1E6

PLD in-degree

U
R

L
s
 c

ra
w

le
r

p
e

r
P

L
D

(b) effectiveness of STAR

Figure 6: Evolution of p throughout the crawl
and effectiveness of budget-control in limiting low-
ranked PLDs.

Internet, the fraction of them with useful content and the
number of additional pages not seen by the crawler remain
a mystery at this stage.

7.2 Domain Reputation
The crawler received responses from 117, 576, 295 sites,

which belonged to 33, 755, 361 pay-level domains (PLDs)
and were hosted on 4, 260, 532 unique IPs. The total number
of nodes in the PLD graph was 89, 652, 630 with the num-
ber of PLD-PLD edges equal to 1, 832, 325, 052. During the
crawl, IRLbot performed 260, 113, 628 DNS lookups, which
resolved to 5, 517, 743 unique IPs.

Without knowing how our algorithms would perform, we
chose a conservative budget function F (dx) where the crawler
would give only moderate preference to highly-ranked do-
mains and try to branch out to discover a wide variety of low-
ranked PLDs. Specifically, top 10K ranked domains were
given budget Bx linearly interpolated between 10 and 10K
pages. All other PLDs received the default budget B0 = 10.
Figure 6(b) shows the average number of downloaded pages
per PLD x based on its in-degree dx. IRLbot crawled on
average 1.2 pages per PLD with dx = 1 incoming link, 68
pages per PLD with dx = 2, and 43K pages per domain
with dx ≥ 512K. The largest number of pages pulled from
any PLD was 347, 613 (blogspot.com), while 90% of visited
domains contributed to the crawl fewer than 586 pages each
and 99% fewer than 3, 044 each. As seen in the figure, IRL-
bot succeeded at achieving a strong correlation between do-
main popularity (i.e., in-degree) and the amount of band-
width allocated to that domain during the crawl.

Our manual analysis of top-1000 domains shows that most
of them are highly-ranked legitimate sites, which attests to
the effectiveness of our ranking algorithm. Several of them
are listed in Table 4 together with Google’s PageRank of the
main page of each PLD and the number of pages downloaded
by IRLbot. The exact coverage of each site depended on its
link structure, as well as the number of hosts and physical
servers (which determined how polite the crawler needed
to be). By changing the budget function F (dx), much more
aggressive crawls of large sites could be achieved, which may
be required in practical search-engine applications.

We believe that PLD-level domain ranking by itself is not
sufficient for preventing all types of spam from infiltrating
the crawl and that additional fine-granular ranking algo-
rithms may be needed for classifying individual hosts within
a domain and possibly their subdirectory structure. Future

9

Rank Domain In-degree PageRank Pages

1 microsoft.com 2, 948, 085 9 37, 755

2 google.com 2, 224, 297 10 18, 878

3 yahoo.com 1, 998, 266 9 70, 143

4 adobe.com 1, 287, 798 10 13, 160

5 blogspot.com 1, 195, 991 9 347, 613

7 wikipedia.org 1, 032, 881 8 76, 322

6 w3.org 933, 720 10 9, 817

8 geocities.com 932, 987 8 26, 673

9 msn.com 804, 494 8 10, 802

10 amazon.com 745, 763 9 13, 157

Table 4: Top ranked PLDs, their PLD in-degree,
Google PageRank, and total pages crawled.

work will address this issue, but our first experiment with
spam-control algorithms demonstrates that these methods
are not only necessary, but also very effective in helping
crawlers scale to billions of pages.

8. CONCLUSION
This paper tackled the issue of scaling web crawlers to

billions and even trillions of pages using a single server with
constant CPU, disk, and memory speed. We identified sev-
eral impediments to building an efficient large-scale crawler
and showed that they could be overcome by simply chang-
ing the BFS crawling order and designing low-overhead disk-
based data structures. We experimentally tested our algo-
rithms in the Internet and found them to scale much better
than the methods proposed in prior literature.

Future work involves refining reputation algorithms, as-
sessing their performance, and mining the collected data.

9. ACKNOWLEDGMENT
We are grateful to Texas A&M University and its net-

work administrators for providing the enormous amount of
bandwidth needed for this project and patiently handling
webmaster complaints.

10. REFERENCES
[1] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and

S. Raghavan, “Searching the Web,” ACM Transactions on
Internet Technology, vol. 1, no. 1, pp. 2–43, Aug. 2001.

[2] P. Boldi, B. Codenotti, M. Santini, and S. Vigna,
“UbiCrawler: A Scalable Fully Distributed Web Crawler,”
Software: Practice & Experience, vol. 34, no. 8, pp.
711–726, Jul. 2004.

[3] P. Boldi, M. Santini, and S. Vigna, “Do Your Worst to
Make the Best: Paradoxical Effects in PageRank
Incremental Computations,” LNCS: Algorithms and Models
for the Web-Graph, vol. 3243, pp. 168–180, Oct. 2004.

[4] S. Brin and L. Page, “The Anatomy of a Large-Scale
Hypertextual Web Search Engine,” in Proc. WWW, Apr.
1998, pp. 107–117.

[5] M. Burner, “Crawling Towards Eternity: Building an
Archive of the World Wide Web,” Web Techniques
Magazine, vol. 2, no. 5, May 1997.

[6] J. Cho, H. Garcia-Molina, T. Haveliwala, W. Lam,
A. Paepcke, and S. R. G. Wesley, “Stanford WebBase
Components and Applications,” ACM Transactions on
Internet Technology, vol. 6, no. 2, pp. 153–186, May 2006.

[7] J. Edwards, K. McCurley, and J. Tomlin, “An Adaptive
Model for Optimizing Performance of an Incremental Web
Crawler,” in Proc. WWW, May 2001, pp. 106–113.

[8] D. Eichmann, “The RBSE Spider – Balancing Effective
Search Against Web Load,” in Proc. WWW, May 1994.

[9] G. Feng, T.-Y. Liu, Y. Wang, Y. Bao, Z. Ma, X.-D. Zhang,
and W.-Y. Ma, “AggregateRank: Bringing Order to Web
Sites,” in Proc. ACM SIGIR, Aug. 2006, pp. 75–82.

[10] D. Gleich and L. Zhukov, “Scalable Computing for Power
Law Graphs: Experience with Parallel PageRank,” in Proc.
SuperComputing, Nov. 2005.

[11] Z. Gyongyi and H. Garcia-Molina, “Link Spam Alliances,”
in Proc. VLDB, Aug. 2005, pp. 517–528.

[12] Y. Hafri and C. Djeraba, “High Performance Crawling
System,” in Proc. ACM MIR, Oct. 2004, pp. 299–306.

[13] A. Heydon and M. Najork, “Mercator: A Scalable,
Extensible Web Crawler,” World Wide Web, vol. 2, no. 4,
pp. 219–229, Dec. 1999.

[14] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke,
“WebBase: A Repository of Web Pages,” in Proc. WWW,
May 2000, pp. 277–293.

[15] Internet Archive. [Online]. Available:
http://www.archive.org/.

[16] IRLbot Project at Texas A&M. [Online]. Available:
http://irl.cs.tamu.edu/crawler/.

[17] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.
Golub, “Exploiting the Block Structure of the Web for
Computing PageRank,” Stanford University, Tech. Rep.,
Mar. 2003. [Online]. Available:
http://www.stanford.edu/sdkamvar/papers/blockrank.pdf.

[18] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.
Golub, “Extrapolation methods for accelerating PageRank
computations,” in Proc. WWW, May 2003, pp. 261–270.

[19] K. Koht-arsa and S. Sanguanpong, “High Performance
Large Scale Web Spider Architecture,” in Proc.
Internataional Symposium on Communications and
Information Technology, Oct. 2002.

[20] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov,
“IRLbot: Scaling to 6 Billion Pages and Beyond,” Texas
A&M University, Tech. Rep. 2008-2-2, Feb. 2008. [Online].
Available: http://irl.cs.tamu.edu/publications/.

[21] M. Mauldin, “Lycos: Design Choices in an Internet Search
Service,” IEEE Expert Magazine, vol. 12, no. 1, pp. 8–11,
Jan./Feb. 1997.

[22] O. A. McBryan, “GENVL and WWWW: Tools for Taming
the Web,” in Proc. WWW, May 1994.

[23] M. Najork and A. Heydon, “High-Performance Web
Crawling,” Compaq Systems Research Center, Tech. Rep.
173, Sep. 2001. [Online]. Available: http://www.hpl.hp.
com/techreports/Compaq-DEC/SRC-RR-173.pdf.

[24] M. Najork and J. L. Wiener, “Breadth-First Search
Crawling Yields High-Quality Pages,” in Proc. WWW, May
2001, pp. 114–118.

[25] B. Pinkerton, “Finding What People Want: Experiences
with the Web Crawler,” in Proc. WWW, Oct. 1994.

[26] B. Pinkerton, “WebCrawler: Finding What People Want,”
Ph.D. dissertation, University of Washington, 2000.

[27] V. Shkapenyuk and T. Suel, “Design and Implementation of
a High-Performance Distributed Web Crawler,” in Proc.
IEEE ICDE, Mar. 2002, pp. 357–368.

[28] A. Singh, M. Srivatsa, L. Liu, and T. Miller, “Apoidea: A
Decentralized Peer-to-Peer Architecture for Crawling the
World Wide Web,” in Proc. SIGIR Workshop on
Distributed Information Retrieval, Aug. 2003, pp. 126–142.

[29] T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis,
M. Kharrazi, X. Long, and K. Shanmugasundaram,
“ODISSEA: A Peer-to-Peer Architecture for Scalable Web
Search and Information Retrieval,” in Proc. WebDB, Jun.
2003, pp. 67–72.

[30] J. Wu and K. Aberer, “Using SiteRank for Decentralized
Computation of Web Document Ranking,” in Proc.
Adaptive Hypermedia, Aug. 2004.

10

