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Abstract—In this paper, we consider applications that read
sequential data from n input files and write the result into m
output files, which encompasses many types of external-memory
sorting, database join/group queries, and MapReduce computa-
tion. We call this I/O model bowtie streaming and develop novel
algorithms for modeling its throughput, maximizing sequential
run lengths, and obtaining optimal multi-pass split/merge factors
under non-trivial stream-switching (i.e., seek) delay. Based on
these developments, we build a platform called Tuxedo for general
bowtie computation and show that it is able to perform external-
memory sorting with a million times fewer attempted seeks
than Hadoop and two orders of magnitude fewer than highly
optimized external-memory frameworks STXXL and nsort.

I. INTRODUCTION

Modern society relies on enormous clusters to deliver such
vital services as web search, social-network analysis, and
machine learning. Their datasets often exceed RAM size by
orders of magnitude and require external-memory algorithms
that are both scalable and efficient. This becomes especially
important in an I/O model we call bowtie streaming, where the
application concurrently interacts with multiple files on both
input and output, but processes each of them sequentially (i.e.,
without seeking within the file). A prime example would be
merging n sorted sequences into one output; however, bowtie
streaming includes many other applications – MapReduce
computation [7], [17], external-memory sorting [19], graph
mining [16], [26], join/group/aggregate queries in databases,
and stream analytics [8], [9], [10], [11].

With the per-byte cost of magnetic drives (HDDs) still
significantly lower than that of SSDs and the number of write
cycles much higher, large storage arrays of spinning disks
are common today. Furthermore, emerging laser-assisted heat
recording technology (HAMR/HDMR), which is predicted to
deliver 100 TB in a 3.5” form factor in the next decade [25],
[30], [31], [33], promises to maintain this advantage in the fu-
ture [14]. Therefore, understanding performance of streaming
applications in the context of HDDs has important worldwide
implications. To appreciate the issues involved, consider a
disk volume that achieves high sequential throughput within
individual files (e.g., 10 or 20 GB/s with a 36-disk RAID), but
incurs a non-negligible latency δ for switching between the
streams. Because concurrent access to files on such volumes
involves a conflict, i.e., competition for shared resources,
applications that do not take into account δ and other disk
parameters often deliver highly disappointing performance.

This category of methods includes many software systems
for processing bulk data in external memory, such as Hadoop
[7], Spark [8], Stratosphere [3], Apache Beam [5], Facebook
Cassandra [27], NoSQL databases [28], and the C++ library

STXXL [19]. A fundamental issue that plagues existing so-
lutions is that they often rely on principles that stem from a
long line of work in the field of external-memory algorithms
[1], [10], [12], [13], [19], [36], [37], [38], where I/O cost is
decoupled from application runtime. While this may be fine
for slow computation, we are interested in high-performance
frameworks that can sustain multi-GB/s rates during data
streaming and whose bottleneck lies specifically in I/O.

To this end, we study theory and algorithms for neutralizing
the negative effect of file-switching, with the goal to create a
faster stream-processing platform over high-speed arrays of
HDDs. For these scenarios, we propose an accurate model of
I/O-related runtime and design novel algorithms for construct-
ing a sequence of alternating I/O operations that minimizes
seeking. We also consider parameter selection for multi-pass
merge/distribution, an integral part of bowtie streaming, which
in the past 30 years has had multiple ad-hoc recommendations
[18], [36], [38], but no solution that is provably optimal
in practice. Finally, we utilize the developed techniques and
models to build an external-memory bowtie-streaming system
called Tuxedo that delivers over a million times fewer seeks
than Hadoop/Spark [7], [8] and 200× fewer than STXXL [18]
in sorting tasks.

II. BOWTIE STREAMING

A. Definitions

Big-data computation commonly relies on streaming seman-
tics to deal with the ever-growing scale of input [2], [4], [6],
[7], [8], [9], [15], [16], [17], [22], [26]. Define a stream to be a
data object over which the application cannot acquire random
access, i.e., the only supported operations are open/close and
read/write from the current device pointer. While streaming
may operate over various physical devices and abstract data
types, including networks and inter-thread shared queues, our
examples throughout the paper focus on the storage subsystem
of the host. In these cases, we use the terms stream and file
interchangeably.

We consider an application with a user-supplied processing
function f that merges n ≥ 0 input streams and distributes
the result to m ≥ 0 output streams, where n + m > 0. To
allow asymmetric I/O, define α ∈ [0, 1] to be the fraction
of traffic that comes from input. Further suppose N is the
number of bytes in all streams and T is the runtime of the
application. Then, letting λ = N/T be the throughput of the
system, it follows that function f consumes from each input
file at rate αλ/n and produces into each output stream at rate
(1−α)λ/m. To keep this scenario interesting, we assume that
I/O is the main bottleneck, i.e., function f can keep up with
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Fig. 1. Taxonomy of bowtie streaming.

individual streams, and the amount of memory M allocated to
buffering is smaller than N . We call this I/O model, illustrated
in Fig. 1(a), a bowtie.

Bowtie streaming encompasses five individual categories,
which are presented in Fig. (b)-(f) using constraints on n,m.
We call the first two distribution, the next two merge, and
the last one interconnect. In D0 and M0, the omitted half
of the pipeline is either generated/consumed in RAM or
delivered from/to a non-disk device (e.g., network). These
cases are particularly important in cluster computing and
distributed systems. Interestingly, their analysis and optimal
I/O strategies differ from those of D1 andM1. Also note that
an n×m interconnect can be implemented using anM1 merge
into an intermediate object, followed by a D1 distribution;
however, this two-stage approach generally performs worse
than methods that directly use n+m streams in a single stage,
which explains why it belongs in a separate category.

I/O traffic of a bowtie application can be viewed as bursts
of sequential operations on individual streams, interspersed
by seeks, i.e., inter-stream jumps with some average delay
δ(n,m) > 0. For HDD-based file systems, this is a compound
metric that includes not only such standard parameters as
inter-track seek time, rotational delays, and head-settling time,
but also RAID-controller read-ahead traffic, hard-drive cache
logic, out-of-order command sequencing, and OS overhead.
If the seek delay is non-negligible compared to the average
time spent sequentially interacting with a stream, we call the
bowtie high-latency. This is our main focus here.

B. Throughput

Assume some scheduling algorithm A that regulates file
interleaving during bowtie streaming. To assess performance
of the system, define (Sr, Sw) to be the sequential read/write
speed of the streams and let (sr, sw) be the number of
read/write stream switches executed by A. It then follows that
the runtime of the application consists of sequential scanning
through αN input bytes, sequential writing of (1−α)N output
bytes, and (sr + sw) seeks, i.e.,

T (n,m) =
αN

Sr
+

(1− α)N

Sw
+ (sr + sw)δ(n,m). (1)
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Fig. 2. Multi-pass stream bowtie.

Note that α = 0 covers D0, α = 1 produces M0, and
the remaining cases α ∈ (0, 1) fall under the interconnect
(which includes M1,D1). Define L(n,m) = N/(sr + sw) to
be the average sequential run length achieved by the bowtie
scheduler. Recalling that throughput λ(n,m) = N/T (n,m),
we get

λ(n,m) =
[ α
Sr

+
1− α
Sw

+
δ(n,m)

L(n,m)

]−1

. (2)

A simple objective of an application may be to optimize (2),
which translates into maximizing L(n,m); however, the prob-
lem has additional angles. An important consequence of non-
negligible seek delays and finite M is that throughput λ(n,m)
dramatically drops as the number of files increases beyond
some threshold. It is therefore often possible to achieve faster
rates by performing multiple passes of merge/distribution [19],
[32]. This is shown schematically in Fig. 2, where a 6 × 4
initial problem is replaced by three binary M1 merges on
input, a 3 × 2 interconnect, and two binary D1 distributions.
The question then becomes how to select the optimal sets
of merge factors n = (n1, n2, . . .) and distribution factors
m = (m1,m2, ...) to achieve the highest throughput λ(n,m),
which we study in the remainder of the paper.

III. DISTRIBUTION AND MERGING

We begin analysis with pure distribution and merge, follow-
ing the order in Fig. 1(b)-1(e). These four scenarios not only
serve as building blocks for the more complex bowties later
in the paper, but also reflect special cases of interest for which
having simple formulas is beneficial.

A. Distribute from Memory

For D0 in Fig. 1(b), a naive solution would be to never
share RAM across files by providing each stream with a
dedicated M/m memory. This trivially yields runs of size
M/m; however, we can more than double this result. Suppose
the system evolves in discrete steps t = 1, 2, . . . and the
available memory M is split into m output buckets, each
holding Xi(t) bytes of buffered data for stream i, where∑m−1
i=0 Xi(t) = M . Define xi(t) = E[Xi(t)] to be the

expected size of the i-th bucket, into which the bowtie deposits
new items with probability 1/m.

When the memory is exhausted, our first Algorithm A1

chooses the largest bucket W (t) = argmaxiXi(t) and starts
writing it to disk. As the I/O progresses, blocks of memory
released from bucket W (t) allow additional data to arrive
from function f and top off the buckets, including W (t).
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Fig. 3. Steady-state characteristics of distribution bowties (M = 16 GB).

This continues until bucket W (t) becomes empty, which also
implies that the memory is maxed out using the remaining
m − 1 buckets. This stops the current run for stream W (t),
the time is advanced to t+ 1, and the process repeats.

Let y(t) be a vector of expected bucket occupancies x(t) =
(x0(t), . . . , xm−1(t)) sorted in descending order.

Theorem 1. Algorithm A1 converges y(t) in D0 to a station-
ary state y∗, where

y∗i =
2M

m

(
1− i

m− 1

)
, i ∈ [0,m− 1]. (3)

Because y∗ is an attractive fixed point of the system, its run
length can be easily computed from (3).

Theorem 2. The steady-state sequential run length of Algo-
rithm A1 solving the D0 bowtie is

L(0,m) =
2M

m− 1
. (4)

Fig. 3(a) shows that (4) matches simulations quite well. It
also plots the run length of the naive allocator, which is worse
than (4) by a factor of 2m/(m−1). This ratio begins at 4 and
converges to 2 as m→∞.

B. Distribute from File

For scenario D1 in Fig. 1(c), new data cannot be added
to output buckets without first switching to the reader, which
incurs a seek that we did not have before. A naive solution is
to split memory equally between input/output streams, reading
M/2 bytes into a buffer, processing them with f into m
buckets, and then saving each of the buffers to disk. This
results in M bytes exchanged using m + 1 seeks, which
trivially yields L = M/(m + 1). However, we can again do
much better.

When the memory is full, Algorithm A2 selects a group of
c ≥ 1 largest buckets, where m/c is an integer, writes them
to disk, and then reloads enough data from the input file to
replenish the departed chunk, running function f concurrently
with read traffic. By overlapping input I/O and computation,
the reader side of the bowtie requires only negligible buffering
(e.g., two blocks). Hence the entire memory M is still shared
across m output buckets. Since f is no slower than the
sequential disk rate, the I/O never goes idle during execution
of the system. Also note that each step t now contains c+ 1
seeks, out of which c are for writing and one is for reading.

Define ỹi(t) to be the size of the i-th largest group (i.e.,
sum of its bucket occupancies) at the start of step t when the
memory is full.

Theorem 3. Algorithm A2 converges ỹ(t) in D1 to a station-
ary state ỹ∗, where

ỹ∗i =
2M

m/c+ 1

(
1− ic

m

)
, i ∈ [0,m/c− 1]. (5)

Given this equilibrium, the average run length follows.

Theorem 4. The steady-state sequential run length of Algo-
rithm A2 solving the D1 bowtie is

L(1,m) =
2M

(1− α)(m/c+ 1)(c+ 1)
. (6)

We can now examine the various strategies for selecting
c. For this discussion, we use α = 1/2 commonly found in
sorting applications, i.e., no keys are removed from or added
to the streams by f . Two obvious approaches would be to
empty either one bucket (i.e., c = 1) or all buckets (c = m)
when the memory is full, both of which produce L(1,m) =
2M/(m+ 1). However, can we do better?

Theorem 5. Algorithm A2 achieves optimal performance with
c =
√
m, where the best run length is given by

L(1,m) =
2M

(1− α)(
√
m+ 1)2

. (7)

Compared to the more straightforward methods with c = 1
or c = m, (7) increases L(1,m) by 1.36× for m = 16, 1.6×
for m = 64, and 1.78× for m = 256, eventually converging
to 2 as m → ∞. This implies that an application using the
optimal c can achieve the same throughput as the obvious
methods using up to 2× less RAM. An example is shown in
Fig. 3(b) for α = 1/2, where simulations follow (6) precisely,
the optimal c = 8 agrees with Theorem 5, and the naive
strategy is 3.2× worse than (7).

C. Merge to Memory

We now deal with mergeM0 in Fig. 1(d), which has many
similarities to D0; however, there are important differences
as well. Suppose each step t of Algorithm A3 begins when
some bucket j reaches the empty state, after which it must
be reloaded for computation f to continue. The algorithm
performs a seek to the appropriate file and proceeds to stream
input data into bucket j, concurrently with f draining the items
across all streams, until another bucket becomes exhausted. By
this time, a large chunk of RAM has been freed, which we use
to refill bucket j until memory is maxed out again. When this
happens, time advances to step t+ 1 and the process repeats.

What is interesting about this system is that it is sensitive
to the initial state of the buckets. A naive approach preloads
them to equal size M/n; however, this causes them to reach
the empty state at roughly the same time, which in turn leads
to one bucket taking over the entire RAM, followed by a
deadlock. Instead, suppose Algorithm A3 starts the i-th largest
bucket at some size zi, where

∑n−1
i=0 zi = M .

3



Theorem 6. The optimal initial bucket occupancy for Algo-
rithm A3 solving M0 is

z∗i =
2M

n

(
1− i

n− 1

)
, i ∈ [0, n− 1]. (8)

This leads to the following result.

Theorem 7. The steady-state sequential run length of Algo-
rithm A3 under the optimal initial state is

L(n, 0) =
2M

n− 1
. (9)

Not surprisingly, M0 has the same stationary vector as D0

(except m is replaced by n); however, the main difference
is that this equilibrium does not occur naturally, i.e., the
system does not converge to it unless the initial state is
properly selected. This distribution of bucket sizes must also
be maintained during the run so that small deviations from
the ideal staircase pattern in (8) does not cause divergence to
suboptimal (or even deadlock) states.

D. Merge to File

For scenario M1 in Fig. 1(e), consider Algorithm A4 that
breaks n streams into groups of size c and preloads each of
them to some initial size z̃, i.e., each bucket in group i is filled
to occupancy z̃i/c and

∑n/c−1
i=0 z̃i = M . The algorithm then

runs function f concurrently with sequential writes to output
until some bucket becomes exhausted. It then reloads the c
smallest buckets, filling the memory back to M and splitting
the available space equally among the reloaded group.

Theorem 8. The optimal initial state for group i in Algorithm
A4 working on M1 is

z̃∗i =
2M

n/c+ 1

(
1− ic

n

)
, i ∈ [0, n/c− 1]. (10)

The next result follows from the proof of Theorem 5.

Theorem 9. Algorithm A4 with an optimal preload is opti-
mized by c =

√
n, which results in

L(n, 1) =
2M

α(
√
n+ 1)2

. (11)

Our final observation in this section is that α has an
asymmetric impact on (7) and (11), which actually makes
sense. As α → 0, the majority of I/O comes from the write
component, which helps increase the run length in (11) for
M1. At the same time, small values of α have a detrimental
effect on the run length in (7) for D1, where long sequential
reads become shorter. As α → 1, the read/write roles are
reversed and the formulas behave the opposite.

IV. INTERCONNECT

We now deal with the interconnect scenario in Fig. 1(f).
For this section, we aim to investigate bowties that operate
by directly reading n ≥ 1 input files and writing into m ≥ 1
using a single pass over the data.

Our main observation here is that we can stitch the reader
part of optimal merge algorithms with the writer part of

distribution, both developed in the previous section, to solve
the interconnect. Out of the four combinations, only three are
valid – (M1 + D1), (M0 + D1), and (M1 + D0), whereas
(M0 +D0) is impossible since it requires overlapping f with
concurrent streaming on both input and output. Our next topic
is to understand which of these methods is better. To avoid
clutter during comparison, we fix α = 1/2 and generalize the
best method towards the end of this section.

A. Non-Overlapping

Our first approach is Algorithm A5, which starts by allocat-
ing n buckets for reading and m buckets for writing, where the
total size of the former is Mr bytes, that of the latter is Mw,
and Mr + Mw = M . Note that explicit separation between
read/write components is necessary to support multi-file I/O
on both sides of function f . On the reader side, Algorithm
A5 plays the M1 game using the corresponding elements of
Algorithm A4 and on the writer side, it runs the D1 game
using the appropriate parts of Algorithm A2.

In more detail, we partition input/output buckets into groups
of size cr and cw, respectively. Each time step t begins with
some input bucket j reaching the empty state. Under ideal
conditions to be determined below, this coincides with output
space Mw being exhausted. Thus, the largest group of output
buckets is offloaded to disk, using cw seeks, which frees up
enough room for f to continue. Then, the group to which
bucket j belongs is reloaded from input, saturating Mr to
maximum utilization, which requires another cr seeks.

Unlike prior techniques developed in this paper, Algorithm
A5 does not overlap computation with I/O. As a result, the
disk will experience idle periods when f is shuffling items
between input and output buckets in memory.

Theorem 10. The steady-state sequential run length of Algo-
rithm A5 under optimal memory partitioning (Mr,Mw) is

L(n,m) =
4M

(cr + cw)(n/cr +m/cw + 2)
. (12)

B. Overlapping

We now consider Algorithm A6 that combines either (M0+
D1) or (M1 + D0), depending on which one is faster for a
particular pair of (n,m). It overlaps I/O and computation on
one of the two sides, which not only achieves a larger run
length, but also reduces the runtime by never allowing the
disk to become idle. This overcomes both limitations of A5.

For (M0 + D1), Algorithm A6r uses cr = 1 on input and
cw ≥ 1 on output. At every time t, there is a current bucket j
from which the reader is streaming data into the input of f .
The remaining n − 1 files are prebuffered in their respective
buckets. Once another bucket i 6= j gets empty, the following
sequence takes place: a) file j continues producing data until
its bucket is refilled to maximum size (i.e., Mr runs out of
space), which requires no additional seeks; b) the largest group
of cw output buckets is saved to disk, which requires cw seeks;
and c) bucket i becomes the current bucket, from which we
begin streaming into f in the next iteration, which requires

4
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Fig. 4. Run length in n×m interconnect bowties (M = 16 GB).

one seek. For (M1 + D0), Algorithm A6w works similarly,
except cr ≥ 1 and cw = 1.

Theorem 11. Both version of Algorithm A6 achieve

L(n,m) =
4M

(cw + cr)(n/cr +m/cw)
. (13)

Note that (13) is strictly larger than (12) for the same values
of (cr, cw). Combining this with the fact that Algorithm A5

runs into disk stalls, while A6 does not, leads to the following.

Corollary 1. Under their respectively optimal parameters
(cr, cw), Algorithm A6 yields smaller runtimes than A5.

To obtain the best run length L(n,m), we next derive the
optimal point of (13).

Theorem 12. Algorithm A6r wins over A6w when m ≥ n,
in which case cw =

√
m/n is optimal; otherwise, A6w wins

and cr =
√
n/m is optimal. In both cases,

L(n,m) =
4M

(
√
n+
√
m)2

. (14)

For example, a 3×100 interconnect in (14) achieves a decent
L(n,m) ≈M/34. Compared to performing a full 3×1 merge
M1 into a file, followed by a 1× 100 distribution D1, which
runs with a similar L(n,m) ≈M/30, Algorithm A6 saves two
full passes over the data. Fig. 4 shows that model (13) matches
the actual run length in our system and that the optimal
(cr, cw) are in agreement with the prediction in Theorem 12.
Additionally, the figure demonstrates that incorrect selection of
these parameters may yield a drastic reduction in performance,
e.g., from 450 MB to 70 MB in Fig. 4(a).

C. Generalization

We now address α 6= 1/2. Let two functions be reader-
writer symmetric if one can be converted into the other by
swapping every occurrence of n with m, α with 1 − α, and
cr with cw.

Theorem 13. When m > 1 + α(n− 1)/(1− α), the optimal
choice is Algorithm A6r, where group size

cw =

√
(1− α)m

(1− α) + α(n− 1)
(15)

achieves the best run length

L(n,m) =
2M

(
√

(1− α)m+
√

(1− α) + α(n− 1))2
; (16)

otherwise, Algorithm A6w is better, where the optimal group
size cr and the corresponding run length are reader-writer
symmetric to (15) and (16).

When α = 1/2, the result in (16) reduces to (14). Fur-
thermore, Algorithm A6 subsumes our earlier methods for all
cases with n,m ≥ 1, i.e., its optimal run length (16) matches
that of A2 in (7) when n = 1 and its reader-symmetric version
achieves the same performance as A4 in (11) when m = 1. It
still cannot handle n = 0 or m = 0 due to the assumption
that streams exist on both sides; however, for such cases
Algorithms A1,A3 offer good solutions to D0,M0 bowties.

V. MULTI-PASS OPTIMIZATION

We now arrive at the issue of choosing the best multi-pass
factors n = (n1, . . . , nr) and m = (m1, . . . ,mw) that guaran-
tee peak performance. In prior literature, this problem has been
considered only forM1/D1 and only in a limited context, i.e.,
all split factors were assumed to be equal to some constant k
and there was no data expansion/shrinkage between the levels.
Even then, the results are often conflicting. For example, Vitter
in one paper [36, p. 123] uses k =

√
M/B/ ln2(M/B), where

B is the I/O block size. This result produces binary merging
under common conditions (e.g., M = 2− 16 GB and B = 1
MB). The companion book [38, p. 32], however, specifies
k = min(n,M/B), which results in single-pass merging for
all n ≤M/B. An identical approach is mentioned in [12] and
a recent paper [23, p. 3]. Finally, STXXL [18] computes the
optimal k as n1/γ , where γ = dlogM/B ne is the number of
merge passes. This yields k = n for n ≤ M/B and k =

√
n

for n ∈ (M/B, (M/B)2].

A. Merge and Distribution

Before attempting bowties that contain interconnects with
n,m ≥ 2, we first have to solve the multi-pass M1,D1 prob-
lems. Since merge and distribution are symmetric, description
focuses on merge M1. For the multi-pass solution to make
sense, the final outcome needs to be invariant to the selection
of vector n. In other words, a 4-way merge, followed by a
3-way merge, produces the same amount of data as a single
12-way merge. It is then convenient to introduce a function
p(k) that specifies the amount of data remaining in k files
after an (n/k)-way merge.

This formulation provides the necessary properties (i.e., op-
timal substructure, overlapping subproblems) to allow dynamic
programming in Listing 1 to optimize the runtime of a multi-
way merge. Let time[k] keep track of the best runtime
achievable by a 1 × k merge bowtie and path[k] be the
corresponding vector of merge factors n. Then, for every
j ∈ [2, n], we iterate over all i ∈ [2, j] to examine if the
optimal solution for a 1× j merge can be constructed using a
k-way merge followed by an i-way, where k = dj/ie (Lines 3-
6). During this step, the system reads p(n/k) bytes and writes
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Listing 1: Optimal Multi-Pass Merge Factors

1 Func PrepareMultipassMergeTable(n)
2 time[1] = 0; path[1] = ∅ . zero cost for n = 1
3 for (j = 2; j ≤ n; j++) do
4 time[ j ] =∞ . best time initially unknown
5 for (i = 2; i ≤ j; i++) do
6 k = d j / i e . k-way merge, followed by i-way
7 e = p(n/k) / Sr + p(n/j) / Sw + δ(p(n/k) + p(n/j)) / L(i,1)
8 t = time[k] + e . time for a j-way merge
9 if t < time[j] then

10 time[j] = t; path[j] = path[k] ∪ { i }
11 return (time, path)

p(n/j), which leads to the runtime of the i-way merge in
Line 7. Combining this with time[k] in Line 8 to optimally
perform a k-way merge, we find the total runtime for j. If this
beats the current best estimate, we update both time[j] and
path[j] in Line 10.

We now show an example to illustrate performance benefits
of multi-pass optimizations that run over real I/O curves of
the physical device rather than hardcoding k = 2 or k = n as
suggested in prior work. Consider a 24-disk Areca RAID array
that merges a 64-TB workload across n = 8, 000 files using
M = 8 GB. Under the optimal M0 run length 2M/(n − 1),
usage of k = 2 [36] requires 13 passes and delivers an end-
to-end throughput of only λ(n,m) = 273 MB/s. The more
popular choice of k = n [12], [18], [38] is even worse,
finishing a single pass @ 208 MB/s. Instead, our system
constructs an optimal two-pass merge tree with n1 = 90 and
n2 = 89 whose overall throughput is 1,353 MB/s. This is
5− 6.5× faster than the prevalent solutions in the literature.

For distribution D1, the optimization algorithm is similar,
except function p is replaced by its output-equivalent q, n by
m, L(i, 1) with L(1, i), and time[k] is changed to represent
the minimum delay to split k initial files into m.

B. Interconnect

To tackle general bowties that may include an interconnect,
our system uses the algorithm in Listing 2. The first step (Lines
2-3) is to prepare optimal merge-distribution tables, which
constructs one-dimensional vectors of optimal runtime using
Listing 1. We then iterate over all possible (i, j), performing
a n/i-way multi-pass merge from n to i files, an i × j
interconnect, and an m/j-way multi-pass distribution from j
files to m (Lines 5-10).

The overall CPU cost of this algorithm is Θ(n2 + m2),
which is quite reasonable for the typical values encountered in
practice (i.e., up to a few thousand files). When higher speed is
desirable, the tables could be filled at exponentially increasing
intervals so that a quick approximation can be obtained in
Θ(log2 n+ log2m) time. Then a more detailed search can be
performed in the vicinity of the discovered solution, if needed.

VI. I/O COMPARISON PLATFORM

A. Methodology

We combine the algorithms and models developed so far
into a high-performance bowtie streaming system we call

Listing 2: Optimal Multi-Pass Bowtie

1 Func OptimalBowtie(n, m)
2 mT = PrepareMultipassMergeTable(n)
3 dT = PrepareMultipassDistributionTable(m)
4 best =∞ . unknown runtime yet
5 for (i = 1; i ≤ n; i++) do
6 for (j = 1; j ≤ m; j++) do
7 t = p(i) / Sr + q(j) / Sw + δ(p(i) + q(j)) / L(i, j)
8 t += mT.time[n / i] + dT.time[j] . addM1, D1 times
9 if t < best then

10 best = t; path = (i, j)
11 return (best, path)

Tuxedo. It provides an open-source platform [35] for perform-
ing I/O-intensive computation using the various algorithms
and techniques introduced earlier, including measurement of
disk parameters, accurate prediction of throughput λ(n,m),
maximization of sequential run lengths L(n,m), and optimal
calculation of multi-pass/interconnect factors. Tuxedo can ac-
commodate any suitable user function f , which we illustrate
by building an external-memory sorter that uses our multi-
pass scenario D1 to split the input stream into m files, each
of which fits in RAM, perform a sort on the resulting chunks
using Vortex [24], and output them back to disk. Our target
application performs a sort on uniform 64-bit integers.

We compare Tuxedo to several existing implementations –
two tremendously popular big-data processing engines Hadoop
[7] and Spark [8]; a highly optimized C++ library STXXL for
external-memory data structures and algorithms [18]; and a
repeated winner of the sort benchmark [34], now a commercial
product, called nsort [29]. While the sort competition [34] has
seen a number of impressive records, many of them utilize
existing programs (i.e., nsort, Hadoop, Spark, STXXL), while
others provide no publicly available executables/code, which
makes comparison with them either redundant or impossible.

Since most frameworks in our test bottleneck on the CPU
sort, there needs to be a systematic way to compare the quality
of their I/O schedulers. By focusing on file-access patterns,
rather than just the runtime, we eliminate interference from
the in-memory sort/merge and from various inefficiencies in
the pipeline (e.g., data movement). Ideally, the measurement
platform would log all I/O calls performed by the sort and
reenact them later in a standardized way. In some situations,
it may be possible to manually modify the source code of
each program to accomplish such recording; however, this is
generally tedious and error-prone (e.g., the STXXL codebase
is almost 100,000 lines of C++, Hadoop has over 3.3M). In
other cases, this is simply impossible (e.g., nsort is closed-
source). To overcome these issues, we develop a novel set of
software tools that can record, analyze, and consistently replay
I/O traces of any process in Windows.

This toolkit, explained in more detail below, includes three
components: 1) process-tracing system, whose purpose is to
intercept and record calls to file APIs; 2) log-conversion
system, which merges, cleans, and translates the logs into
a format that permits easier analysis; and 3) replay system,
which reads converted log files, issues its I/O requests in the
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most efficient way, and generates a performance report.

B. Tracing

To log all I/O requests of a given process, we insert detours
(i.e., inline hooks) into file APIs [20], [21]. This is done by
modifying the assembly code of the target function to perform
a jump to a user-specified monitor. The overwritten bytes in
the original function are stored in a separate buffer and merged
with special trampoline code that allows the API to be called
directly (i.e., bypassing the hook). After this, all interaction
of the process with files is redirected to our custom handler,
which logs the relevant parameters and then passes the call
to the kernel through the trampoline. On the way back, the
handler records the error codes provided by the OS, discards
unsuccessful I/O attempts, and adjusts I/O size to the value
reported by the API. Furthermore, to avoid infinite looping
when writing into the log file from the handler, the hook
ignores I/O requests that come from itself.

In order for this technique to work, the handler must execute
in the virtual space of the sorting framework. This task,
known as DLL injection, is accomplished by creating a remote
thread in the target process and instructing it to load our
hooking DLLs. To prevent the sorter from performing I/O
before detours are installed, our platform starts each measured
process in a suspended state and waits for the remote thread
to finish before resuming the application. To account for cases
when the studied framework (e.g., Hadoop) spawns additional
processes, which may perform their own I/O, our code also
hooks process-creation APIs. This allows the measurement
platform to automatically inject a copy of itself into each child
process, no matter how many are created.

Building a robust hooking library has additional challenges,
a few of which we describe here. One example would be
calls to ReadFile and WriteFile with network sockets, which
is frequently done by Hadoop. Since there is no simple way
to differentiate between file and network descriptors in user
space, the platform must maintain a list of handles previously
issued by CreateFile and remember which of them are still
active. The second example is dealing with Windows over-
lapped (asynchronous) I/O, where requests are issued through
one API and results (i.e., errors, transfer sizes) are collected
through a different API, possibly at a later time and by an
unrelated thread. Another interesting case involves jumping
within files using a mixture of absolute and relative offsets.
For example, seeking from the end of the file requires current
knowledge of file size, which changes over time and/or may be
initially unknown. To deal with these uncertainties, the hook
library must log the new file pointer carried in the response
from seek APIs; otherwise, subsequent I/Os cannot be properly
ordered for replay.

C. Conversion

To keep the hooking DLL maximally efficient and simple,
we delegate the responsibility of reconstructing the I/O-request
sequence of the application to an offline package. Its high-
level objective is to sort the log entries recorded from the

hooked processes using their I/O timestamps, resolve aliases
(i.e., multiple handles concurrently referring to the same file),
track handle reuse after files are closed, properly locate the
position of each I/O based on preceding seeks, and create a
chronological trace of disk activity consisting of tuples (file ID,
offset, I/O size, type). This system allows fairly complicated
scenarios. For example, one process may issue a read of size
x at offset y within a given file, followed by a seek to the
end of the stream. Then, another process, which has an open
handle to the same file, requests a seek to offset x+ y and a
read of size z. Our platform detects this as a sequential I/O
of length x+ z, despite the multiple seeks in the middle.

The output from the conversion phase includes not only
the sequenced I/O tuples, but also the peak size reached by
each of the streams. The latter bit of information is needed
for the replay component to preallocate space and ensure that
file clusters are laid out contiguously on disk. This guarantees
that sequential access reaches the maximum read/write speed
and incurs no seeks within the file.

D. Replay

The last component of the measurement platform replays
the I/O pattern of each framework using a custom virtual file
system (VFS) that we built on top of NTFS. There are two
reasons for creating it. First, sequential I/O speed at the end
of hard drives is typically half of that at the start, which stems
from different surface density in outer and inner tracks. When
the OS is tasked with choosing free clusters on disk, it often
writes some of them near the start of the file system and others
near the end, i.e., without regard to performance. This leads
to unpredictable speed during replay, which is undesirable.
The second issue is internal file fragmentation, where the OS
scatters clusters of a file into non-contiguous blocks on the
volume, causing unnecessary seeks.

To eliminate interference from the OS, the VFS first moves
all existing objects to the end of the volume, which is done
by reading the MTF (Master File Table) of NTFS and running
atomic cluster relocation on each existing file/directory. The
VFS then creates a dedicated file of sufficient size to hold
all data generated during future replays. If the clusters of
this file are not sequential or fail to map to the start of the
disk, they are reorganized in correct order as well. To prevent
the OS or language wrappers/libraries (e.g., FILE, iostream)
from buffering data and effectively extending RAM size M
beyond the limits given to each framework, the replay uses
unbuffered (i.e., direct) I/O that bypasses the OS cache. This
also dramatically increases performance during streaming. In
the end, the VFS enjoys maximum sequential I/O speed,
physical seeks that correspond only to logical ones found in the
trace, and a high level of consistency in the obtained results.

VII. EXPERIMENTS

The test machine runs an 8-core Intel i7-7820X @ 4.7
GHz with 32 GB of DDR4-3000 RAM and a 24-disk (8
TB Hitachi Ultrastar) RAID-50 array powered by two Areca
1882ix PCIe 3.0 x8 controllers. Across both adapters, the
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volume has 176 TB of space, a 2-GB onboard cache, and a 4-
GB/s sequential read/write speed. Because the merge function
f does not shrink/expand the data, α = 1/2 applies throughout
this section (i.e., αN refers to both input and output size).

A. Java Frameworks

We begin our experiments with Hadoop [7] and Spark [8],
which are big-data analytics frameworks commonly used for
various sorting, aggregation, join, and MapReduce tasks. For
large sorts, both take an enormous amount of time to finish,
which makes them impossible to fully benchmark against the
other methods. We therefore examine them only briefly to
illustrate some of the interesting behavior collected by our
trace software.

Consider Hadoop performing a sort of αN = 100 GB of 64-
bit integers using M = 25 GB of RAM, which should result
in n = αN/M = 4 files that need to be sorted and merged.
During this process, which took 6.6 hours, Hadoop issued 2.83
TB of I/O (45% on read, 55% on write), spawned over 2K
processes, called CreateFile over 11M times, interacted with
100K unique filenames, executed 569M calls to file APIs, and
attempted 415M seeks. In theory, this many seeks @ 10 ms
each should take 48 days; however, not every such attempt
resulted in a physical seek. While we define seeks as non-
sequential I/O requests to the OS, the RAID/HDD controllers
were able to hide some of the associated latency by buffering
data and performing read-ahead. As shown by the 6.6-hour
runtime, the cache aided Hadoop tremendously. Eliminating
the sort/merge bottlenecks, a replay of Hadoop’s I/O in our
platform still takes a hefty 1.5 hours, which is enough time to
scan through the input 223 times.

Spark performs better, which allows it to finish the same
sort with only 10 GB of RAM (i.e., n = 10). Over this 10.2-
hour job, it performed 511 GB of total I/O, generated 34M
seeks, made 20.5M calls to CreateFile, and interacted with
16K unique filenames. The corresponding replay finishes in
32 minutes, which is 3× faster than Hadoop, but still far from
the level of performance needed for the sorts that we perform
later in this section.

B. C++ Frameworks

The remaining systems in our comparison, i.e., STXXL
[18], nsort [29], and our method Tuxedo, execute much
faster and exhibit better scalability. Their operation can be
split into two phases – 1) creation of sorted chunks, which
always generates N bytes of I/O across both read/write;
and 2) merge/distribution, which uses either the M1 or D1

bowtie. Because the I/O access pattern is identical between the
methods during the former phase (i.e., sequential scan through
two files), our analysis focuses on the latter.

Define ω to be the total I/O of the bowtie and d = ω/N
to be the number of passes it performs over the data. We
next examine six scenarios in Table I, where the size of input
αN and RAM capacity M are both listed in GB. STXXL
in the first column uses half the memory for sorting and the
other half for read-ahead, which produces n = 2αN/M sorted

TABLE I
BOWTIE I/O ω (GB) AND NUMBER OF MERGE/DISTRIBUTION PASSES d

M αN STXXL nsort Tuxedo
ω d ω d ω d

1 8 16 1 16 1.0 16 1
2 128 256 1 257 1.0 256 1

1,024 2,048 1 3,682 1.8 4,096 2
8,192 32,768 2 32,754 2.0 32,768 2

8 512 1,024 1 1,025 1.0 1,024 1
4,096 8,192 1 8,690 1.1 8,192 1

20 1,280 2,560 1 2,562 1.0 2,560 1

chunks. Its selection of merge factor k is not concerned with
runtime; instead, it aims to minimize the number of passes
over the data. Assuming B is the I/O block size, this amounts
to k = n if kB ≤ M and k =

√
n otherwise. In Table I,

STXXL enjoys a single pass for all cases except (2, 8192),
where the RAM is insufficient to hold n = 2αN/M = 8192
blocks of 2 MB each, triggering a double pass. The second
column shows nsort, whose non-integer d can be explained
by usage of merge factors that do not evenly divide n. As
a hypothetical example, a 7-way merge on a 10-file bowtie
could yield 1.7N bytes of I/O if chunks 1−7 are merged into
one file, which is then merged with the remaining 3.

In the last column, Tuxedo employs Algorithm A2 to imple-
ment the best-achievable run length L(n,m) from Theorem 5
and uses Listing 1 to select the optimal d based on the drive’s
non-linear I/O response curve λ(n,m) from (2). This is in
contrast to prior work, which does not attempt to optimize
throughput or take into account the characteristics of the
underlying file system (e.g., sequential I/O rate Sr, Sw, seek
delay δ). Even though rows (2, 1024) and (8, 4096) both use
512 sorted runs, Tuxedo’s optimization finds that the former
case is better handled by a two-pass approach, while the latter
can be done faster in a single pass due to larger RAM.

The benefit of our approach is summarized in Table II,
which records the number of read/write seeks sr + sw during
the bowtie phase. The first row (i.e., N = 8 GB input with
M = 1 GB of RAM) is visualized in Figs. 5(a)-(c) that
plot the offset of each I/O request (y-axis) in the order it
was issued by each framework (x-axis). Because the block
scheduler of STXXL in (a) is not concerned with run length,
it performs quite a barrage of seeks (i.e., 66× more than our
platform) across the sorted chunks. The situation is similar
with nsort in (b), except it uses even smaller blocks and sends
occasional requests out-of-order, which interrupts contiguous
I/O almost three times as often. This results in 178× more
seeks than Tuxedo. In (c), our method maintains the optimal
data-access pattern of Algorithm A2 and achieves the lowest
number of inter-stream jumps possible in this situation. Its
stationary distribution of bucket sizes, compared to Theorem
3, shows a good match in part (d) of the figure. The remaining
cases of Table II exhibit even more impressive gains, where
Tuxedo beats STXXL by 249× in last row and nsort by 537×.

The relationship between run length L(n,m) and bowtie
throughput λ(n,m) is generally given by (2); however,
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TABLE II
NUMBER OF SEEKS DURING THE BOWTIE

M αN STXXL nsort Tuxedo
1 8 4,165 11,232 63
2 128 66,126 139,772 2,675

1,024 575,718 2,181,102 18,263
8,192 12,501,188 21,972,942 341,059

8 512 262, 679 598,086 2,648
4,096 2,102,617 5,040,780 152,382

20 1,280 655,884 1,416,011 2,639

 0  4  8 12 16

total data accessed (GB)

 0

 4

 8

12

16

a
c
c
e
s
s
 o

ff
s
e

t 
(G

B
)

(a) STXXL seeks

 0  4  8 12 16

total data accessed (GB)

 0

 4

 8

12

16

a
c
c
e
s
s
 o

ff
s
e

t 
(G

B
)

(b) nsort seeks

 0  4  8 12 16

total data accessed (GB)

 0

 4

 8

12

16

a
c
c
e

s
s
 o

ff
s
e

t 
(G

B
)

(c) Tuxedo seeks

0 1 2 3 4 5 6 7

bucket i

0

50

100

150

200

250

b
u
c
k
e
t 
s
iz

e
 y

i*  (
M

B
) model

observed

(d) bucket sizes

Fig. 5. Captured bowtie seek patterns and stationary distribution of bucket
occupancy in Tuxedo (8 GB input, 1 GB RAM).

there is a caveat to this model. Specifically, it assumes
that (n + m)L(n,m) is sufficiently large to prevent buffer-
ing/interference from other components of the system (i.e.,
RAID/HDD caches). For distribution D1, this translates into
(m + 1)L(1,m) ≥ C, where C is the hardware cache size.
Inverting this formula using (7) and α = 1/2, we have that
Tuxedo cannot benefit from the hardware cache as long as
M ≥ C(

√
m + 1)2/4(m + 1). In our setup with C = 2 GB,

function (2) is accurate for all m as long as M ≥ 1 GB.
On the other hand, the existing frameworks execute with

much smaller L(n,m), which sometimes allows the cache
to artificially increase their run lengths and achieve better
performance than suggested by (2). This is demonstrated by
the replay speed in Table III, where as before λ(n,m) is
defined as the total size of input and output (i.e., N ) divided
by the runtime of the merge/distribution. We examine STXXL
first. Even though it runs with L(n,m) ≈ 4 MB in most cases,
the resulting merge speed varies quite a bit. It gets lucky in
the first row, where the RAID controllers manage to buffer
n = 16 streams very effectively, hiding a good portion of the
seeks and achieving throughput close to 600 MB/s. However,
the remaining cases are much slower, commonly in the 330-
380 MB/s range.

In the next column is nsort, which also merges much faster

TABLE III
BOWTIE REPLAY RATE λ(n,m) (MB/S)

M αN STXXL nsort Tuxedo
1 8 599 207 2,962
2 128 381 213 2,114

1,024 367 112 1,350
8,192 187 86 1,010

8 512 382 198 2,881
4,096 355 177 1,891

20 1,280 372 188 3,297

than would be expected considering its volume of seeks; how-
ever, it does not enjoy the same boost as STXXL. It is the only
existing method in our test that uses overlapped I/O, where the
framework issues many parallel requests (i.e., without waiting
for completion of earlier I/Os). If such requests all refer to
sequential scans, they can increase performance. On the other
hand, overlapping on scattered I/O, as nsort does, apparently
may serve the opposite role (e.g., interruption of ongoing
reads, cancelation of hardware read-ahead), depending on the
logic inside the RAID cards and HDDs.

In the last column of the table, our framework delivers rates
that are up to 9× faster than STXXL and 17× better than
nsort. As expected from the models derived earlier in the paper,
Tuxedo becomes faster as RAM size increases, which can be
seen by comparing N = 128 GB, 512 GB, and 1.25 TB cases,
each requiring 64 sorted chunks. The speed gradually increases
2114 → 2881 → 3297 MB/s, with eventual convergence to
the full sequential disk rate as M → ∞. On the contrary,
STXXL and nsort fail to take advantage of additional resources
and deliver approximately the same throughput regardless
of M . More importantly, our high-performance platform is
built on a suite of theoretical models that allow closed-
form optimization of λ(n,m) under all input sizes and future
hardware configurations. This is in contrast to prior methods,
which are heavily dependent on presence of external buffering
and whose performance is unpredictably shaped by controller
read-ahead/eviction/overlapping algorithms, as well as hidden
relationships between input size αN , memory size M , fan-out
factor k, cache size C, and disk parameters.

Furthermore, as faster hard drives and PCIe 5.0 devices
reach I/O rates in excess of 50 GB/s, the relative cost of seeks
will go up substantially, making Tuxedo’s advantage propor-
tionally higher. This can be seen in (2), where Sr, Sw → ∞
reduces throughput to a linear function of L(n,m), which in
turn is solely determined by the number of seeks. In these
cases, the performance margin will resemble that in Table II,
i.e., up to two orders of magnitude better for Tuxedo.

C. Sort Results

To study the developed platform in an actual application, we
now focus on the full sort speed, which we define as the input
size αN divided by the time needed to produce the output.
Assuming τ is the delay incurred by the creation of sorted
runs and recalling that T (n,m) is the bowtie runtime, this
translates into αN/(τ + T (n,m)). Compared to the previous
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TABLE IV
SORT RATE (MB/S)

M αN STXXL nsort Tuxedo
1 8 57 56 561
2 128 56 69 554

1,024 51 50 434
8,192 39 32 343

8 512 56 55 650
4,096 55 73 528

20 1,280 55 55 688

subsection, where rate λ(n,m) was defined as N/T (n,m),
the numbers here will be at least 2− 4× lower than in Table
III, even without considering bottlenecks in the CPU.

STXXL in Table IV crawls through the various cases at
fairly constant rates, typically around 50-60 MB/s. One notable
exception is the 8-TB file, where the speed drops to 39 MB/s
due to the usage of d = 2 passes. A similar scenario plays
out for nsort, which hovers around 55-75 MB/s in single-pass
scenarios and roughly half of that in double-pass. Tuxedo in
the last column increases this performance by 10×, tackling
the 8-GB sort in 14.6 seconds, the 1.25-TB file in 31.8
minutes, and the 4-TB stream in 2.2 hours. A full replay of
the last scenario completes only 19 minutes quicker, which
confirms that Tuxedo’s in-memory sorter/distributor are fast
enough to keep up with I/O at all stages of the sort. This
exemplifies the type of high-performance computation f that
Tuxedo and the remainder of the algorithms in this paper were
designed for.

VIII. CONCLUSION

We introduced the concept of bowtie streaming, which is
a novel generalization of several common computing models
in the big-data world, developed a theory for maximizing the
throughput of such applications, presented new algorithms for
increasing their sequential run length during interaction with
multiple files, and optimized the multi-pass operation of the
bowtie under fairly general constraints, including data expan-
sion and shrinkage. Our platform Tuxedo, which implements
the proposed algorithms, performs external-memory sorts 10×
faster than the previous efforts and delivers 2 − 3 orders of
magnitude fewer seeks.
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