
564 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 4, AUGUST 2003

End-to-End Rate-Based Congestion Control:
Convergence Properties and Scalability Analysis

Dmitri Loguinov, Member, IEEE,and Hayder Radha, Senior Member, IEEE

Abstract—In this paper, we study several properties of binary-
feedback congestion control in rate-based applications. We first de-
rive necessary conditions for generic binary-feedback congestion
control to converge to fairness monotonically (which guarantees
asymptotic stability of the fairness point) and show that AIMD
is the only TCP-friendly binomial control with monotonic conver-
gence to fairness. We then study steady-state behavior of binomial
controls with competing flows on a single bottleneck. Our main
result here shows that combined probing for new bandwidth by
all flows results in significant overshoot of the available bandwidth
and rapid (often super-linear as a function of) increase in packet
loss. We also show that AIMD has the best scalability and lowest
packet-loss increase among all TCP-friendly binomial schemes. We
conclude the paper by deriving the conditions necessary to achieve
constant packet loss regardless of the number of competing flows
and examine one new scheme with such constant packet loss called
ideally scalable congestion controlin both simulation and streaming
experiments.

Index Terms—Binomial algorithms, congestion control,
MPEG-4, multimedia streaming, packet loss scalability.

I. INTRODUCTION

CONGESTION is an inherent property of the currently
best-effort Internet. Consequently, transport protocols

commonly implementcongestion control, which refers to
end-to-end algorithms executed by a protocol in order to
properly adapt the sending rate of a network flow to the avail-
able bandwidth in the network. Protocols with window-based
end-to-end flow control utilize one or another version of
TCP-friendly congestion control, which includes Jacobson’s
modifications to TCP [1], [15], TCP-like congestion control
(e.g., [43]), binary-feedback algorithms (e.g., [2], [3], [6],
[12], [21], [28], [38], [49]), and equation-based methods (e.g.,
[11], [40]). These algorithms are shown to work well in the
environment where the sender relies on “self-clocking,” which
refers to the use of positive acknowledgment not only to
recover lost packets, but also to slow down the sender during
congestion [15].

However, current real-time streaming applications in the In-
ternet [36], [44] typically rely onrate-basedend-to-end flow
control. Rate-based congestion control for transport-layer pro-

Manuscript received August 25, 2001; revised January 22, 2002 and January
3, 2003; approved by IEEE/ACM TRANSACTIONS ONNETWORKING Editor M.
Krunz.

D. Loguinov is with the Department of Computer Science, Texas A&M Uni-
versity, College Station, TX 77843 USA (e-mail: dmitri@cs.tamu.edu).

H. Radha is with the Department of Electrical and Computer Engi-
neering, Michigan State University, East Lansing, MI 48824 USA (e-mail:
radha@egr.msu.edu).

Digital Object Identifier 10.1109/TNET.2003.815291

tocols has not made it very far within the IETF and so far has
only been adopted in proprietary streaming applications [36],
[44]. But even then, the exact operation of these controls in
RealPlayer and Windows Media Player is not widely available
and is believed to consist of additive-increase additive-decrease
(AIAD) layer-dropping and layer-adding algorithms [36], [44].

In contrast to very few studies of rate-based controls in
end-to-end applications, a large body of data-link algorithms
exists [4], [22], [31], [39]; however, these methods often rely
on routers to compute the sending rate of each flow (e.g.,
in ATM) and explicitly feed it back to the end flows. In the
current Internet, such computation is considered too costly
to be implemented in the network layer, which makes these
methods unsuitable for end-to-end applications. Furthermore,
ATM is rarely available at the desktops and few end-to-end
paths are built entirely on top of the ATM technology. Thus,
many emerging streaming protocols cannot use native ATM
congestion control and have to rely on rate-based1 end-to-end
methods that utilize packet loss as the only feedback from the
network. Our work analyzes the performance of such methods
in video streaming and derives several novel results about
both generic binary-feedback controls as well as their special
nonlinear subclass calledbinomial algorithms[2], [3].

We first examine the problem of determining which
increase–decrease functions of binary-feedback controls guar-
antee convergence to fairness. To keep the problem tractable,
we only focus onmonotonicconvergence, which is a desirable
property of congestion control since it guarantees asymptotic
stability of the fairness point. Our results in this section show
that AIMD is the only TCP-friendly binomial control with
monotonic convergence to fairness.

We then focus on steady-state properties of binomial conges-
tion control and derive long-term link utilization and packet-loss
rates of these controls. This study shows that long-term av-
erage packet-loss rates increase as a super-linear function of
the number of flows , which prevents rate-based congestion
controls from scaling to a large number of flows. Our work
also finds that AIMD has the best scalability properties among
TCP-friendly binomial algorithms.

We finish the paper by showing the existence of binomial con-
trols calledideally scalable congestion control(ISCC) that do
not suffer from the rapid packet-loss increase observed among
the existing binomial schemes. We further evaluate one partic-
ular ISCC control equation both in simulation and Cisco exper-

1Note that window-based flow control could be used in real-time streaming,
but it typically results in some form of quality-of-service (QoS) penalty (such
as longer startup delays, more frequent buffer underflow events, etc.), because
video is an inherently rate-based application.

1063-6692/03$17.00 © 2003 IEEE

LOGUINOV AND RADHA: END-TO-END RATE-BASED CONGESTION CONTROL 565

iments and find it to scale significantly better than the existing
methods.

Studying ISCC controls in this paper, we drift away from
TCP-friendly schemes. Hence, we must mention breifly why we
find such practice acceptable. In the future Internet, it is possible
that UDP traffic will not compete with TCP in the same router
queues (e.g., DiffServ may be used to separate these types of
traffic at the router level). This intuition is driven by the fact
that real-time flows have substantially different delay require-
ments from those of TCP, and it may not be practical to mix the
two types of traffic in the same queues. Furthermore, rate-based
applications are unlikely to be fully TCP-friendly, because they
often do not follow TCP’sfast retransmitand timeout backoff
algorithms and do not rely on the “packet-conservation” prin-
ciple [15] in their flow control.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III studies the convergence proper-
ties of generic binary-feedback congestion control. Section IV
analyzes steady-state average link utilization and packet loss of
binomial schemes. Section V derives the rate of packet-loss in-
crease as a function of the number of flows. Section VI builds
ISCC and shows the performance of one such control in both
simulation and MPEG-4 streaming experiments. Section VII
concludes the paper.

II. RELATED WORK

A. End-to-End Binary-Feedback Congestion Control

Within the class of end-to-end congestion control protocols,
we focus on the class ofbinary-feedbackmethods. Binary-feed-
back congestion control implements a simple reactive control
system, which responds to congestion by decreasing the sending
rate and responds to the absence of congestion by increasing the
sending rate. Hence, at any stage, the decision of such conges-
tion control is binary.

Furthermore, the increase and decrease functions of conges-
tion control are assumed to belocal [2], [6], which means that
they only use the local state of a flow in computing the next
value of the sending rate. In addition, many existing models use
memorylesscontrols [2], [6], in which the amount of increase
and decrease is based only on the value of the current sending
rate rather than the history of the sending rate (e.g., several fla-
vors of “AIMD with history” are examined in [27] and [28]). In
this paper, we explicitly assume a local and memoryless model
of binary-feedback congestion control.

To prevent high-frequency oscillations, congestion control is
executed on discrete timescales oftime units long, where
is the delay of the control loop, which in many cases simply
equals the round-trip time (RTT). Many papers study conges-
tion control in the context ofwindow-basedflow control [2],
[12], [28], [49] and apply control formulas to the size of con-
gestion windowcwnd. In such notation, assuming that the size
of congestion windowcwnd during interval for a particular
flow is given by , binary-feedback congestion control can be
summarized as

(1)

where is the congestion feedback during interval(posi-
tive values indicate congestion), and and are the in-
crease and decrease functions ofwindow-basedcongestion con-
trol, respectively. In practice, feedbackis usually equal to the
packet-loss rate observed by the flow during interval.

Since our work focuses onrate-basedstreaming applications
in which cwndhas little meaning, we must write an equivalent
formulation of congestion control using the value of each flow’s
sending rate instead of congestion window . The conver-
sion from the window-based notation to the rate-based nota-
tion is straightforward, i.e., each unit of is equivalent to a
rate of MTU RTT bits/s, where the maximum transmission unit
(MTU) is given in bits and the RTT is given in seconds. In other
words, MTU RTT .

Therefore, we can rewrite congestion control in (1) as

(2)

where and are the increase and decrease functions of
rate-basedbinary-feedback congestion control, respectively.

One special case of end-to-end congestion control is given by
binomial algorithms, in which the increase and decrease curves
are power functions of the current rate [2]

(3)

where all constants , , , and are positive. For binomial
algorithms, the difference between the two notations lies only
in the constants in front of the corresponding power functions.
Hence, the conversion from the window-based to the rate-based
notation is supplied by the following formulas:

MTU
RTT

and
MTU
RTT

(4)

Throughout the rest of this paper, we will use both versions
of binomial algorithms in (3), sometimes referring to constants

instead of constants , while keeping in mind the
conversion in (4).

A special case of binomial congestion control that is imple-
mented in TCP is called additive increase multiplicative de-
crease (AIMD) [6], [15]. In AIMD, , i.e.,

, and , i.e., . Hence,
in the absence of congestion, AIMD probes for new bandwidth
linearly, and during congestion, AIMD backs off exponentially.
Note that notation AIMD refers to awindow-basedver-
sion of AIMD with increase–decrease constantsand . There-
fore, AIMD(1, 1/2) (implemented in TCP) increases the rate by
one packet per RTT in the absence of congestion and decreases
the rate by half during congestion.

AIMD is TCP-friendlyif it achieves the same average
throughput when competing with a TCP connection under the

566 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 4, AUGUST 2003

same end-to-end conditions. The necessary condition for such
long-term fairness is [12], [28], [49]2

(5)

On the other hand, for binomial congestion control (3) to be
TCP-friendly, Bansalet al. [2] show that must be equal
to 1. Among such (non-AIMD) TCP-friendly binomial conges-
tion control, they propose two methods called inverse-increase
additive-decrease (IIAD) with , , and Square Root
(SQRT) with .

Finally, we should mention that the analysis of increase–de-
crease congestion control typically assumes an ideal network
with synchronized and immediate feedback [2], [6], [19], [27],
[28]. Synchronizedfeedback means that all flows sharing a con-
gested link receive notifications about packet loss at the same
time. Immediatefeedback means that if the capacity of any link
along an end-to-end path is exceeded during interval, feedback

is strictly positive. Under these ideal conditions, Chiu and
Jain [6] show that all AIMD schemes converge to a fair state. In
addition, Bansalet al. [2] show that for binomial algorithms (3)
to converge to fairness, must be strictly greater than zero.

B. ATM Rate-Based Congestion Control

Asynchronous Transfer Mode (ATM) networks implement
congestion control on the data-link layer. The available bitrate
(ABR) service in ATM allows connections to send data without
prior admission control or reservations (ABR is similar to
the best-effort class in DiffServ). Two types of congestion
control were originally proposed for ABR—credit-based [24]
and rate-based [39]. The credit-based approach implements
hop-by-hop window-based congestion control [39]. The
rate-based methods rely on the network to provide congestion
feedback in special resource management (RM) cells. In its
simplest form, the feedback consists of a single-bit congestion
indication. These schemes include forward explicit congestion
notification (FECN), backward ECN (BECN), proportional
rate controller (PRCA), and several other derivatives [39].
Upon receiving the feedback from the network, these schemes
typically use linear controls to reduce or increase their sending
rate. However, even the most advanced controllers in this
category suffer from undesirable performance penalties when
RM cells are lost (which leads to increased congestion and/or
poor fairness together with oscillation).

In addition to congestion-notification schemes, the feedback
in ABR may carry theexplicit rate (ER) that the flow should
use. Depending on the particular mechanism, ABR ER may
or may not require the switch to maintain local per-flow state.
Among a volume of work in this area, the proposed schemes
range from simple [such as enhanced PRCA (EPRCA),
adaptive proportional rate control (APRC), and EPRCA
[39]] to more sophisticated with provable convergence and

2Note that some papers [2], [48], [49] use a different notation, in which
W (w) = (1 � �)w and this formula has a different form. Furthermore, if
the rate of AIMD is dominated by timeouts, the formula assumes yet another
form [49].

stability. For example, Benmohamedet al. [4] propose and
study proportional and proportional-derivative (PD) controllers
applied to the switch’s queue size, Mascoloet al. [31] use a
fair-queuing switch that feeds back the size of each flow’s
queue, and Kulkarniet al. [23] model the ABR service using
a quasi-death–birth process and incorporate round-trip delays
into their model. Kalyanaramanet al. [17] propose a rate-based
control called explicit rate indication for congestion avoidance
(ERICA) in which the switch estimates the number of active
flows and divides the available bandwidth equally among all
competing flows. Kolarovet al. [22] use a dual PD controller
to achieve good convergence to stability during both transient
and steady states. Other research related to ATM ER including
stochastic modeling of queue sizes and video transport over
ATM ABR can be found in [7], [13], [14], [46], and [50].

C. Continuous Feedback and Utility Functions

Continuous-feedback congestion control explicitly takes the
valueof the feedback into the control loop. In other words, these
methods can be summarized as a simple differential equation

(6)

where is the sending rate and is the continuous
feedback from the network (typically, packet loss). Kellyet
al. [19] propose and study an AIMD-like continuous-feedback
controller (converted to the end-to-end context)

(7)

The paper shows that flows using the controls in (7) con-
verge to so-calledproportional fairnessand maximize the
combined utility of all flows, where each utility function
is logarithmic. Massouliéet al. [33] further study fairness
issues in congestion control and developminimum potential
delay fairness, which maximizes combined utility for users
with hyperbolic functions . Kunniyur et al. [25] study
long-term throughput behavior of proportional and minimum
potential delay fairness [33] both analytically and in simula-
tion. Johariet al. [16] prove stability of end-to-end continuous
feedback controller (7) under nonnegligible propagation de-
lays. Massoulié [32] examines a similar issue in the context
of heterogeneous delays. Karet al. [18] study distributed
convergence of proportional-fairness controllers in networks
where users have different utility functions . Continuous
feedback controllers are further analyzed in the context of
active queue management (AQM), e.g., in [30] and [47].

Continuous-feedback congestion control has a nice property
of converging to a single stationary point and maintaining
constant (i.e., smooth) transmission rate in the steady state.
However, since this stationary point has a strictly nonzero
packet loss, continuous-feedback controllers are incompatible
with TCP flows as they are too aggressive in comparison to
any binary-feedback controller. An interesting combination of
both binary and continuous feedback called additive-increase

LOGUINOV AND RADHA: END-TO-END RATE-BASED CONGESTION CONTROL 567

loss-proportional-decrease (AIPD) is evaluated by Leeet al. in
[27].

D. Other Rate-Based Congestion Control

Keshav [20] studies rate-based flow control using packet-pair
sampling of the available bandwidth in fair-queuing networks.
A similar method is proposed by Legoutet al. [29] in the con-
text of layered multicast. Fendicket al. [10] show that delayed
feedback results in oscillatory behavior of generic rate-based
controllers. Mishraet al. [37] use rate-based controllers inside
routers that exchange queue length information with neighbors
to achieve hop-by-hop congestion control.

III. CONVERGENCEPROPERTIES

Not all increase–decrease functions and guarantee
convergence to fairness. In the context of congestion control,
convergence to fairnessis usually defined as the ability of a
number of identical flows sharing a common bottleneck link to
reach a state in which their rates become equal and stay equal
infinitely long. Even though in practice this is a very difficult
goal to achieve due to nonuniform and delayed feedback, under
ideal conditions of Chiu and Jain’s model, many schemes can
guarantee convergence to fairness.

One of the interesting properties of congestion control that
guarantees its asymptotic stability ismonotonic convergence to
fairness. If fairness during interval is given by ,
, then the following conditions are necessary for monotonic

convergence:

and (8)

From the point of view of control theory, monotonic conver-
gence is desirable even though it is not necessary. Monotoni-
cally convergent controls guarantee stability of the stationary
point , which means that if a system is started in some neigh-
borhood of the stationary point, it stays there. Consider an il-
lustration of these two types of convergence in Fig. 1. Fig. 1(a)
shows a particle that oscillates around the stationary point and
eventually converges to it nonmonotonically (i.e., the distance
from the particle to the attractor is not monotonically decreasing
at a function of time). A similar scenario with monotonic con-
vergence is shown in Fig. 1(b).

It is important to remember that the convergence tofairnessis
different from the convergence toefficiencyin congestion con-
trol. Binary-feedback controls do not asymptotically converge
to efficiency and always oscillate around the efficiency line. On
the other hand, both binary and continuous feedback controls
can asymptotically converge to fairness. In what follows in this
section, we study monotonic convergence tofairnessof generic
binary-feedback controls and derive conditions necessary for
asymptotic stability of point .

It is common [2], [6] to examine the case of two flows sharing
a link, since the extension toflows can be performed by con-
sidering flows pairwise. It is also common to use a continuous
fluid approximation model [2] and disregard the discrete nature
of packets. Furthermore, in this paper, we use a max–min fair-
ness function instead of Chiu’s fairness index [6]. Recall

(a) (b)

Fig. 1. (a) Nonmonotonic convergence leads to quasi-asymptotic stability. (b)
Monotonic convergence leads to asymptotic stability.

Fig. 2. Two-flow binary-feedback control system.

that max–min fairness of flows with nonzerosending rates
() is given by

(9)

Consider two flows and sharing a bottleneck link under
the above assumptions. Suppose that during interval, the flows’
sending rates are given by and , respectively. To help us
understand the behavior of a two-flow control system, we use
Fig. 2 from [6]. In the figure, the axes represent the sending
rates of the two flows. Furthermore, line is known as
the fairness lineand represents points (,) in which fairness

equals 1. Assuming that the capacity of the bottleneck link is
, line is called theefficiency lineand represents

points in which the bottleneck link is about to overflow. Given
a particular point in the figure, line
connecting to the origin is called theequi-fairness line(i.e.,
points along the line have the same fairness).
Furthermore, we defineefficiency of point as the combined
rate of both flows in that point, i.e., .

A. Decrease Function

To ensure monotonic convergence and proper response to
congestion signals, the following four conditions must hold
during eachdecreasestep assuming that the system is in some
point just before the decrease step. First, the efficiency in
the new state must be strictly less than that in the old state,
i.e., . This condition ensures that flows back off
during congestion. Second, fairness must not decrease in
the new state, i.e., , which guarantees monotonic
convergence to fairness. As pointed out before, this condition
is desired, but not necessary. Third, to properly maintain
convergence, the system must not arbitrarily cross or oscillate

568 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 4, AUGUST 2003

around the fairness line,3 i.e., it must stay on the same side of
the fairness line at all times. For the case in Fig. 2, we can write

. Finally, the system must not
allow rates below or equal to zero, i.e., given an arbitrary state
with and , we must guarantee that and

.
The first condition is equivalent to

(10)

which can be satisfied with any positive function ,
. The second condition is equivalent to

(11)

Expanding (11) using (2) and generalizing by dropping the
indexes (the inequality depends only onand)

(12)

Writing and dividing both sides by

(13)

(14)

Restricting to be a differentiable function for all
, (14) is equivalent to

(15)

This result is interesting in its simplicity. To understand the
properties of this solution, bring to the left and integrate
both sides [both and are positive]:

(16)

(17)

(18)

The result in (18) shows that the original condition (15) re-
stricts to growno slowerthan some linear function .
Using similar derivations, the third (noncrossover) condition re-
sults in

(19)

which means that mustgrow slower than function [i.e.,
the slope of in all points must be less than 1].
Finally, the fourth condition

(20)

is automatically satisfied by combining (15) and (19) above.
To summarize by combining (18) and (19), must be

a positive differentiable function for all values of and
must be an asymptotically (i.e., for substantially large) linear

3It is impossible to maintain monotonic convergence and nonnegative rates if
we allow the scheme to cross the fairness line. The interested reader can show
this analytically following the derivations in this section.

function of , with the slope strictly less than 1. For example,
AIMD function satisfies these conditions for

. Note that nonlinear functions [such as] can
also be used, but their advantage over similar linear functions is
not clear.

B. Increase Function

The analysis of increase function is similar to the
above. This time, instead of four conditions, we have only
three. First, the efficiency in the new state must increase (i.e.,

), which guarantees that flows will probe for new
bandwidth in the absence of congestion. Second, fairness must
not decrease (i.e.,), which is the result of the same
monotonicity requirement as before. Third, the system must not
cross the fairness line (i.e.,). Crossing the fairness
line violates monotonic converge to fairness and, as we will see
later, never happens in practice among binomial schemes.

The first condition is satisfied with any positive function
, i.e., , . The second condition is the

opposite of (15) due to a different sign in (2)

(21)

Finally, the third condition is similar to (19), but assumes the
following shape:

(22)

Using (21), we find that must grow no faster than some
linear function and using (22), cannot decay quicker
than . For example, the AIMD increase function
again satisfies all conditions of monotonic convergence for
. We look at other examples in the next section while studying

binomial [2] congestion control methods.

C. Convergence

Note that the above conditions still do not guarantee conver-
gence to fairness. In other words, the conditions guarantee that
if the system converges, it will do so monotonically, but the fact
of convergence has not been established yet. Hence, we impose
a final restriction on and —either the decrease or the in-
crease step must strictly improve fairness, i.e., one of (15), (21)
must be astrict inequality. If (15) is made into a strict inequality,
we can no longer satisfy the condition in (19). Consequently,
(15) must remain in its present form, and (21) must become a
strict inequality.

The proof of convergence under the above restrictions pro-
ceeds as follows. First note that point is an upper bound
for sequence . Since is monotonically non-
decreasing and bounded above, it must converge. Suppose that
the system doesnotconverge to fairness under these conditions,
i.e., . In other words, the system converges to some
stationary (fixed) point strictly less than 1. Restart the system
in point . During each congestion control cycle that
includes at least one decrease step and one increase step fair-
ness muststrictly improve. Therefore, after several steps, fair-
ness will reach some point . The latter condition con-
tradicts the fact that the system previously converged to a fixed

LOGUINOV AND RADHA: END-TO-END RATE-BASED CONGESTION CONTROL 569

(stationary) point . Consequently, the flows must converge to
the only stationary point .

We finish this section by making an observation that
the above convergence conditions hold for window-based
increase–decrease functions and and cases when

.

IV. PROPERTIES OFBINOMIAL ALGORITHMS

A. Overview

Consider binomial algorithms in (3). Both functions and
are positive for and, therefore, satisfy the first condi-

tion. The second condition (i.e., monotonically nondecreasing
fairness) results in the following restrictions onand from ap-
plying (15) and a strict form of (21):

(23)

The third (i.e., noncrossover) condition derived from (19) and
(22) restricts even further, but does not impose any limit on
(assuming sufficiently large)

anything
(24)

The restriction on in (24) is dictated by the fact that sending
rate of a flow is not limiteda priori and the selection of apos-
itive constant such that it is less than , for substantially
large , is feasible only when power is nonnegative.4

Later in this paper, we will show how restriction can be
lifted and what kind of advantages such schemes bring to con-
gestion control protocols.

Assuming that the upper limit onis not known, for binomial
controls to possess monotonic convergence to fairness, both (23)
and (24) must be satisfied. This combination of conditions con-
strains to be strictly 1. Now recall that for binomial algorithms
to be TCP-friendly, must also be 1. Consequently, the first
major result of this paper is that AIMD () is the only
TCP-friendly binomial algorithm with monotonic convergence
to fairness. This result shows that linear controls of AIMD are
expected to be more robust in their convergence (i.e., asymp-
totically stable) than any other TCP-friendly binomial control
under a variety of network conditions. Nonmonotonic controls
discussed below (IIAD and SQRT) can also guarantee stability
of , however, this stability isquasi-asymptotic.

B. Nonmonotonic Schemes

Among nonmonotonic binomial schemes, Bansalet al. [2]
study controls that are forced to reduce fairness during thede-
creasestep (i.e.,) according to (23) and increase fairness
during theincreasestep (i.e.,). This is illustrated in
Fig. 3(a) from [2] and [6]. The equi-fairness line in the figure
is given by and . Any deviation to the right from

4We implicitly assume thatx is limited below by some constantx . In
window-based congestion control,x is equivalent to one unit ofcwnd(i.e.,
MTU/RTT), and in rate-based congestion control,x is the minimum rate at
which real-time material can be received.

(a) (b)

Fig. 3. (a) Nonmonotonic convergence to fairness. (b) Oscillation of the
sending rate in the steady state.

the equi-fairness line increases fairness (or) and
deviation to the left decreases fairness (or). The
system in the figure first reduces fairness from pointto point

during the decrease step, but then recovers and achieves fair-
ness in point that is higher than that in point.

Hence, as long as the resulting cycle (i.e., steps between
points and) increases fairness, the scheme will eventually
converge to fairness. Parametersand in (3) determine the
shape of the curve along which the increase and decrease steps
are taken. Constantsand in (3) determine the size of each
step taken along the corresponding curve. Note that if ,
the system will oscillate along the curve given by
(or , which is the same). Under the assumption of a
continuous fluid approximation [2], condition makes
the protocol take decrease steps along the same curve as the
increase steps, resulting in no advance toward or away from
the fairness line. This can be formulated differently: a binomial
scheme converges to fairnessiff and divergesiff

[2].
Consequently, combining (24) with the convergence rule

, we notice that the necessary restrictions onand for
convergence ofnonmonotonicbinomial algorithms are
and .

C. Efficiency

The average efficiency is an important property of a conges-
tion control scheme, which reflects how well the scheme utilizes
the bottleneck bandwidth in the steady state. Higher efficiency
is more desirable (but not necessarily at the expense of other
properties such as packet loss or responsiveness). Analysis in
this section not only helps us study the efficiency of binomial
schemes, but is also a necessary background for our packet-loss
scalability analysis in the next section.

It is common to define theaverage efficiencyof a scheme as
the long-term link utilization once the scheme has reached its
steady state. In the steady state, each flow’s sending rate will
oscillate between two points, which we call theupper point()
and thelower point() as shown in Fig. 3(b). When a single
flow is present in the network, equals the capacity of the bot-
tleneck link . When flows compete over a shared link of ca-
pacity , equals for each flow (because the flows have
reached fairness by this time). In both cases,
according to (3). In addition, since the pattern in Fig. 3(b) is
repetitive, it is sufficient to determine the average throughput

570 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 4, AUGUST 2003

of a flow during a single oscillation (i.e., between pointsand
) rather than over a longer period of time. Note that in the

window-based notation of congestion control, the maximum ca-
pacity of the link is given by RTT MTU .

Using a continuous fluid approximation and results from [2],
each flow’s rate during the increase phase(i.e., between
points and) is given by

(25)

where is a fixed duration of the control interval. Following
[2], duration between points and in Fig. 3(b) is

(26)

and the total amount of bits transmitted during the same interval
is

(27)

Consequently, we derive that the flow’s average sending rate
during the interval is and theaverage efficiency(i.e., per-
cent link utilization) of a binomial congestion control scheme is

(28)

Equation (28) can be converted to the window-based nota-
tion by replacing with and rate with its window equiva-
lent. We also note that for large, the exact model of efficiency

in (28) becomes inapplicable when drops below
. We can no longer use the above derivations, because

term in the equation becomes negative. This is caused
by the “drop-below-zero” effect [i.e., rate becomes nega-
tive] that we tried to avoid before in (20). Nonzero rates were
automatically guaranteed given monotonic convergence to fair-
ness in (15), but in the absence of monotonicity, we must ex-
plicitly restrict to the following:

(29)

We next focus on simplifying the expression in (28). Equation
(28) contains two terms of the form , which can be
expanded using Taylor series to

(30)

Note that for , the value of is also less than 1, which
means that the higher order terms in (30) get progressively
smaller. We first consider keeping only the leading term of the
Taylor expansion as used in [2], i.e., theterm, and examine
how well the resulting approximation reflects the actual values

(a) (b)

Fig. 4. (a) Exact average efficiency and relative error for one-term and
two-term approximations,n = 1. (b) Increase in approximation error as the
number of flows becomes large,n = 50; 150.

of and . Keeping only the leading term, average efficiency
is given by

(31)

The result in (31) suggests that link utilization of binomial al-
gorithms is 100% regardless of the values ofand even though
it is clearly incorrect (e.g., AIMD never achieves 100% utiliza-
tion unless). To examine how close this equation
models reality, we plotted in Fig. 4(a) theexactaverage effi-
ciency computed from (28) and the relative error between the
exact value and the one derived from (31) for a single-flow case
(i.e.,). As the figure shows, for values ofbelow 0.5, the
efficiency is very high (close to 100%) and the corresponding
error is negligible. However, asapproaches 1.0, the error in-
creases to 31%. The figure is plotted using , ,
and . The results do not change significantly for dif-
ferent values of : the error for varies monotonically from
35% for to 28% for .

Since Bansalet al. [2] use schemes with (i.e., IIAD
and SQRT), their analysis does not suffer from significant
round-off errors given a small number of flows(see below
for the discussion of larger). Having established that the
leading term alone in (30) is insufficient to achieve a good
approximation to the exact formula for values ofclose to 1,
we next examine a two-term approximation to (28)

(32)

To perform a self-check, we plug AIMD parameters (
) into (32) and get a familiar (and exact) formula of the

average efficiency of an AIMD scheme: (recall
that in AIMD). The result of comparing (32) with (28) is
also shown in Fig. 4(a). Depending on the value of, the error of
the two-term approximation (32) is between 5 and 1000 times
smaller than that of the single-term approximation (31).

It is interesting that (32) depends on the value of, which
means that efficiency will depend on the number of flows
sharing a link. Consider a case offlows instead of one flow
(i.e.,). It is easy to notice that controllers with multi-
plicative decrease (i.e.,) are theonlyschemes in which the
efficiency does not change regardless of the number of flows,
because in (32) is zero. However, the rest of binomial

LOGUINOV AND RADHA: END-TO-END RATE-BASED CONGESTION CONTROL 571

schemes with suffer a reduction in efficiency as can be
seen by using in (32)

(33)

For larger , term becomes smaller, becauseis less
than 1. Consequently, both the denominator in (33) andbe-
come smaller for larger. This is illustrated in Fig. 4(b). The top
two curves in the figure show how the exact efficiency changes
with for two cases of equal to 50 and 150 (the curves marked

and , respectively). As the figure shows, for large, the
efficiency of schemes with suffers a drastic reduction
compared to similar cases with fewer flows in Fig. 4(a). In ad-
dition, when approaches its upper limit in (29)
(which is 158 for), the performance of all schemes
with becomes worse than that of AIMD.

The two bottom curves in Fig. 4(b) show the amount of ac-
cumulated error when using one-term and two-term approxima-
tions for . The amount of error in the single-term ap-
proximation is substantially increased compared to that when
was 1 and stays between 30% and 65%. This was expected, be-
cause in (30) becomes close to 1.0 asbecomes large and the
higher order terms are no longer insignificant.

In practice, it may prove to be difficult to fine-tune binomial
schemes with to achieveconsistentperformance over
links of all capacities , because the average efficiency of these
schemes will depend on both the number of flowssharing
the link and capacity , none of which are usually known in
advance.

We should also mention that binomial schemes with
possess limited scalability and can support a large number of
flows only when is very large or is very small as seen
in (29). When exceeds , such schemes will be
forced to reduce their rates to zero (or some minimum rate)
upon each packet loss, which is clearly not very efficient and
can be achieved with simpler methods. Consequently, we find
that AIMD may be the best solution for heterogeneous links
of the current Internet, because its average efficiency does not
change from link to link or when users join and leave a partic-
ular end-to-end path.

In addition, as we will see in the next section, a more serious
problem with schemes utilizing is that their packet-loss
rates increase at a faster pace than that in AIMD as the number
of flows becomes large.

D. Packet Loss

The amount of packet loss during the steady state is another
important property of a congestion control scheme. Consider
one oscillation cycle between pointsand in Fig. 3(b) and
the case of a single flow. The maximum amount of overshoot
under nonideal (i.e., discrete) conditions will be the value of the
increase function just before the flow reaches its upper boundary

in point . Hence, the amount of the maximum overshoot for
a single flow is given by , where is the fixed dura-
tion between control actions as discussed before. Knowing how
many bits were sent by the flow during the interval of duration

, we can write the average percentage of lost datausing
(27) and assuming the worst case of a maximum overshoot as

(34)

when . In particular, for AIMD schemes, the av-
erage packet-loss rate given the maximum overshoot is

(35)

A closer look at the last equation reveals that as the number
of flows increases (i.e., is replaced by), AIMD’s
packet-loss rate will also increase. Furthermore, the amount of
increase is proportional to , where is the number of flows.
This confirms a well-known fact that AIMD scales as when
it comes to packet loss [38]. Note that as , the amount
of overshoot becomes large compared to the value of

, and the approximations above no longer work. However,
the exact formulas in (34) and (35) asymptotically approach
the correct value of 100%.

Consider a simple explanation of why AIMD scales quadrat-
ically. In AIMD, the increase in packet loss by a factor of
comes from two places—from the reduction of both the number
of discrete increase stepsbetween points and in Fig. 3(b)
and interval by a factor of (because increase distance–
becomes times smaller). As a result, the number of bits sent
during the interval (which is proportional to) is reduced by
a factor of , and the amount of overshoot is unchanged (i.e.,

). Consequently, the total amount of lost packets relative to
the number of sent packets is increased by a factor of.

For example, according to these results, a single AIMD flow
may experience 0.1% packet loss over a given link. When 10
flows start sharing the same link, the loss will (theoretically)
increase by a factor of 100, reaching 10%. When 100 flows
are sharing the link, packet loss will (again in theory) approach
100%. There are two reasons why we do not see this kind of per-
formance degradation in practice. First, our results in (35) are
based on a continuous fluid model, which assumes that packets
are infinitely divisible. However, in practice, this approximation
is true only when the amount of increase is negligible com-
pared to the difference between the upper and lower limits, i.e.,

– in Fig. 3(b). Hence, when the number ofdiscreteincrease
steps becomes equal to 1 (or approaches 1), it can no longer
be reduced by a factor of, because it must remain an integer.
Taking into account values of close to 1, the increase in packet
loss becomes a subquadratic (often linear) function of.

Second, most protocols employing AIMD rely on positive ac-
knowledgment (ACK) in implementing congestion control. This
self-clocking [15], or packet conservation, is capable of signif-
icantly improving the scalability aspects of AIMD, because the

572 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 4, AUGUST 2003

sender does not inject more packets into the network than the
network can handle at any given time. Thus, window-based flow
control coupled with exponential timer backoff significantly in-
creases stability of TCP-like protocols. On the other hand, rate-
based congestion control does not have this nice cushion to fall
back on, which explains whyrate-basedAIMD schemes suffer a
much higher packet-loss increase than equivalent window-based
schemes (see the experimental results given later in this paper).

V. PACKET-LOSSSCALABILITY OF CONGESTIONCONTROL

A. Overview

Rapid packet-loss increase of AIMD, discussed at the end of
the previous section, is bad for rate-based protocols in general
and Internet video streaming in particular. However, the situa-
tion is not as gloomy as it appears at first since our analysis later
in the paper leads to the existence of end-to-end controls with
constant packet loss and much nicer properties than AIMD.

Suppose the average packet loss whenflows share a link of
capacity is given by . Letpacket-loss increase factor be
the ratio of to . Parameter specifies how fast packet loss
increases when more flows share a common link and directly
relates to the ability of the scheme to support a large number of
flows (i.e., schemes with lower scale better). Using (34)

(36)

and applying a two-term approximation from (30)

(37)

Hence, packet-loss increase factorof binomial algorithms
is proportional to for small (when overshoot
is small compared to) and grows no faster than for
the rest of . For AIMD, we get the familiar scalability formula
of , whereas IIAD () and SQRT (

) scale as and , respectively.
AmongTCP-friendlyschemes (i.e.,), packet-loss in-

crease is , which means that TCP-friendly schemes
with the largest scale best. Since we already established that
must be no more than 1 (the noncrossover condition), we imme-
diately arrive at our second major result—among TCP-friendly
binomial schemes, AIMD scales best.

Now we should make several observations about the applica-
bility of (37) in practice. First, we assumed in (34) that the over-
shoot will always be as large as possible, i.e., . However,
in many cases the actual overshoot will be some r andom value
distributed between zero and . Second, recall our dis-
cussion of AIMD’s scalability in the previous section. When the
increase distance– becomes small compared to the value of

Fig. 5. Packet-loss scalabilitys of AIMD and IIAD in simulation (note the
log scale of they axis).

the increase step, AIMD starts scaling as a linear function rather
than a quadratic function. Hence, (37) is accurate only when the
increase steps are small compared to . The results based
on the above model can be further skewed, if becomes
large compared to , in which case we must use the exact for-
mula in (34).

B. Simulation

To verify packet-loss scalability findings above and show
some examples, we present simulation results of rate-based
AIMD(1, 1/2) and IIAD(1, 1/2) over a T1 bottleneck link (i.e.,

kb/s). For AIMD, we set MTU RTT at two
constant values of 5 and 50 kb/s (the corresponding schemes
are called AIMD and AIMD) to show how their scalability
changes when becomes large compared to the upper boundary

. For IIAD, we selected MTURTT kb/s to
allow the scheme to maintain % (otherwise, IIAD
loses its packet-loss increase). We used a discrete event
simulation, in which flows of the same type shared a common
link under the standard assumption of immediate and synchro-
nized feedback. Furthermore, the simulated flows did not use
retransmission or other error control to recover lost packets.

Fig. 5 shows parameter (based on theactual rather than
the maximumovershoot) during the simulation as a function
of for the three types of flows. In AIMD(the curve in the
middle), packet-loss increase ratio reaches a factor of 6755,
which is equivalent to scalability of (just below predicted

). On the other hand, AIMD(the bottom curve) maintains
its quadratic packet-loss increase only until , at which
time it switches to a linear increase. AIMDreaches an increase
factor of , which is equivalent to an overall scala-
bility of . It may seem at first that the larger increase step

of AIMD is better; however, due to a larger, AIMD is
much more aggressive in searching for bandwidth and suffers
more packet loss than AIMDfor all values of . Thus, for ex-
ample, for , AIMD loses 55% of all sent packets, while
AIMD loses only 10%.

Finally, IIAD’s scalability performance is much worse than
that of either of AIMD schemes, as can be seen in the figure
(the top curve). Packet loss with 100 flows is 219 889 times
larger than packet loss with one flow. Analysis of the data

LOGUINOV AND RADHA: END-TO-END RATE-BASED CONGESTION CONTROL 573

using a least-squares fit to the curve shows that the overall scal-
ability of IIAD is approximately (again, slightly less than
predicted).

The dips in Fig. 5 occur when capacity happens to be a
multiple of for AIMD (a similar situation holds for IIAD)
and the amount of overshoot is significantly less than the av-
erage. As pointed out before and as shown in Fig. 5, theactual
increase in packet loss under nonideal (i.e., discrete) conditions
may be lower than that predicted by (37). Nevertheless, the theo-
retical result in (37) can be used as a good performance measure
in comparing the scalability of different binomial schemes.

C. Feasibility of Ideal Scalability

We next examine ideal scalability of binomial schemes and
derive its necessary conditions. We define a scheme to have
ideal scalability if is constant for all . This definition is
driven by the fact that no matter how small packet lossis,
there will be a link of sufficient capacity that will accommo-
date such large number of concurrent flowsthat will be
unacceptably high. This is especially true given the no-better-
than-quadratic scalability of binomial congestion control. Con-
sequently, the ideal situation is to have a scheme that maintains
a consistent packet-loss rate regardless of the number of flows
utilizing the scheme, i.e., for all . Furthermore, al-
though not necessary, it would be desirable to have a scheme
that maintains thesamepacket loss over links ofdifferentca-
pacity .

To show the existence of ideal scalability, we examine (37)
again and find congestion controllers that allow to remain
constant. The necessary conditions for ideal scalability are (re-
call that the second equation is needed for convergence to fair-
ness)

(38)

The condition means that if we plan to satisfy the
noncrossover conditions (19) and (24), or prevent the scheme
from reducing its rate below zero, ideal scalability requires the
knowledge of some tight upper limit on sending rate[see the
discussion following (24)]. Consequently, only by assuming that

is limited by a constant is it possible to find suchthat will
satisfy the necessary condition in (24) for
all rates . Hence, we come to our third major result:among
binary-feedback congestion control schemes, ideal scalability
is possible only when sending ratesare limited from above
by a constant, i.e., when flows have knowledge of the bottleneck
capacity.

There are two possible ways that an application can learn
the value of —by using real-time end-to-end measurements
or by asking the network to provide an explicit feedback with
the value of . In the next section, we examine the viability of
applying the former method to sampling the capacity of the bot-
tleneck link and the possibility of using such estimates in ide-
ally scalable congestion control. Even though the latter method
is similar in spirit to the explicit rate (ER) service in ATM ABR
[4], [22], [31], [39], it differs from the proposed work in its com-
plexity. Most ATM ER controllers inside the switch compute a
differential equation that is a function of the router’s queue size

(and sometimes other parameters) and feed back theavailable
bandwidth to the end flows. In our approach, the router only
needs to feed back thebottleneckbandwidth (i.e., line speed of
the outgoing link), which is a more practical approach in the
end-to-end context than the methods proposed for ATM.

Note thatall flows sharing a single link must receive an es-
timate of that is fairly close to the true capacity of the link.
A major drawback of employing congestion control that relies
on end-to-end estimates of is that different flows may form a
different estimate, which may lead to poor convergence and/or
scalability depending on the amount of error. Hence, our ap-
proach in this section relaxes one condition (i.e.,) but
imposes a new one—all flows must measure the bottleneck ca-
pacity with highconsistencyand reasonableaccuracy. Note that
a thorough evaluation of various bandwidth estimation methods
for ideally scalable congestion control is the topic of ongoing
research. In Section VI, we briefly show some of our prelimi-
nary results.

To be fair, we must mention another drawback of ideal scal-
ability—typically slower convergence to fairness due to its less
aggressive probing for bandwidth and nonmonotonic conver-
gence to fairness. Nevertheless, we believe that ideally scalable
controllers present an interesting dimension to congestion con-
trol. We investigated ideally scalable congestion control until
we established a working version of the algorithm, which we
present in the remainder of this paper. Note that much more
work in this area is required before we can recommend binary-
feedback congestion control other than AIMD for practical use
over the Internet.

D. Ideally Scalable Congestion Control

In this section, we introduce ideally scalable congestion con-
trol (ISCC) and show how bottleneck capacitycan be used
in ISCC to adapt values of to each end-to-end path. We
use notation ISCC(,) to refer to ideally scalable schemes de-
scribed in this section with powersand . Note that other ways
(not covered by ISCC) of selecting may be possible to
achieve the same goal of constant.

Assuming that is the current estimate of the bottleneck
capacity and that sending rate is limited by at all times
, condition in (24) can be satisfied by choosing

the following :

(39)

where and is some constant greater than or equal
to .5 It is easy to show that the decrease step of schemes with

according to (39) is no more than for any given state
. Hence, rate is guaranteed to stay positive at all times.

Furthermore, by varying constant , the scheme can adjust
its average efficiency, where larger values of mean higher
efficiency.

In addition, we must carefully select the value ofso that
the negative value of power does not cause uncontrollably
high increase steps. One way to achieve this is to select a fixed

5From now on, without losing any functionality or convergence, we allow�

to be equal to1=(lx), in which case the system maytouchthe fairness line,
but not cross it.

574 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 4, AUGUST 2003

value and then multiply it by MTU RTT as shown in
(4). However, the increase steps will still remain virtually un-
limited, because the value of MTURTT has little relationship
to the value of (which is needed to effectively limit). In
addition, different flows may use different multiplicative factors
in (4) due to the differences in the RTT or the MTU. An alterna-
tive approach is to apply a similar thinking to that used before
in selecting —choose so that the increase step is always no
more than for any given rate , where is some con-
stant greater than or equal to one. This can be written as

(40)

which is satisfied with the following choice of:

(41)

Parameter can be used to vary the aggressiveness of the
scheme in searching for new bandwidth, where larger values of

result in less aggressive behavior of the scheme. Combining
(34), (39), and (41), packet loss of ISCC schemes no longer
depends on or :

(42)

In the next section, we compare the performance of one
particular ISCC congestion control scheme in a rate-based
real-time streaming application with that of IIAD, SQRT,
AIMD, and TCP-friendly rate control (TFRC) [11].

VI. SIMULATION AND EXPERIMENTS

A. Choice of Powers Functions

We start with an observation that ifbecomes much larger
than 1.0 in an ISCC scheme and sending rateis much smaller
than capacity (e.g., when is large), such congestion control
becomes less responsive to packet loss. Being less responsive
usually results in very small rate reductions that often cannot
alleviate congestion in a single step. Thus, schemes with large

usually need multiple back-to-back decrease steps to move
the system below the efficiency line in Fig. 2. Our assumptions
above do not model this behavior. The actual resulting packet
loss in these schemes turns out to be higher than predicted by
(37) and the convergence time is sometimes substantially in-
creased. Hence, from this perspective, larger values ofare not
desirable.

The only value of that guarantees ideal scalability among
TCP-friendly schemes (i.e., and) is
quite high and equals 3. In practice, this scheme converges very
slowly and may not be a feasible solution for the real Internet.
Among non-TCP-friendly schemes, values ofclose to 1.0 force

to come close to 1.0 (because must still remain
zero), which also results in slower convergence to fairness as
sum approaches zero.6

6Values ofk+ l close to zero mean that the system makes very small (if any)
steps toward the fairness line and, thus, converges very slowly.

Fig. 6. Setup of the experiment.

Among an infinite number of ISCC schemes, we arbitrarily
selected a scheme with which achieves a
reasonable compromise between packet loss and convergence,
and we show its performance in this paper. Note that this par-
ticular scheme is somewhat less aggressive that AIMD and typ-
ically yields bandwidth to AIMD (however, this effect becomes
noticeable only when the number of flowsis large). Hence,
practical application of this ISCC scheme in the Internet re-
quires the use of new QoS methods in routers (i.e., DiffServ)
as discussed in Section I.

For , the analytical result in (38) suggests a value of
equal to 1.5. However, in simulation, we found that

was sufficient to maintain constant packet loss. In fact,
appeared to be “too successful” in controlling the

combined packet loss of all flows and resulted in a slowlyde-
cayingfunction (i.e., the more flows, the lower packet loss

). Whether this observation holds in a real network is the topic
of our investigation below.

B. Real-Time Bandwidth Estimation

In this section, we briefly examine the accuracy of real-time
bandwidth estimation in rate-based streaming applications. In
the next section, we show the performance of two ISCC schemes
that rely on these real-time estimates for computing the values
of and .

We used a Cisco network, depicted in Fig. 6, for all real-life
experiments in this paper. The server and the client were
connected to Catalyst switches via two 100-Mb/s Ethernets.
The switches in turn were connected to Cisco 3620 routers via
10-Mb/s Ethernets. The 3620 routers connected to each other
via T1 links passing through an additional Cisco 3660 router.
During the experiment, we disabled weighted random early
detection (WRED) and weighted fair queueing (WFQ) on all
T1 interfaces to reflect the current setup of backbone routers.

The server supplied the client with real-time bandwidth-scal-
able MPEG-4 video, which included an fine-granular scalable
(FGS) enhancement layer [42] and a regular base layer. At any
time , the server was able to adapt its streaming rate to the rate
requested by the client, as long as it was no less than the rate of
the base layer and no more than the combined rate of both
layers.

We used a 10-min MPEG-4 video sequence with the base
layer coded at kb/s and the enhancement layer coded
up to the maximum rate kb/s. Note that two
concurrent flows were needed to fully load the bottleneck link.
Hence, our experiments below do not cover the case of ,
and is defined as the ratio of to .

During the experiment, the client applied a simple
packet-bunch estimation technique [5], [41] to the server’s
video packets. To simplify the estimation of the bottleneck

LOGUINOV AND RADHA: END-TO-END RATE-BASED CONGESTION CONTROL 575

(a) (b)

Fig. 7. The histogram of bandwidth estimates with (a) 2 and (b) 32 AIMD(1,
1/2) flows over a shared T1 link.

bandwidth, the server sent its packets in bursts of a predefined
length. A bandwidth sample was derived from each burst that
contained at least three packets.

To establish a baseline performance, Fig. 7(a) plots the
histograms of IP bandwidth estimates obtained by two
AIMD(1, 1/2) flows over the topology in Fig. 6 (both flows
used a fixed value of MTU RTT equal to 30 kb/s).
As the figure shows, the flows measured the IP bottleneck
bandwidth to be 1510 kb/s, which is very close to the actual
T1 rate of 1544 kb/s (the discrepancy is easily explained by the
data-link/physical layer overhead on the T1 line). Furthermore,
both flows were in perfect agreement, and 99.5% of estimates
of each flow were between 1500 and 1520 kb/s.

Fig. 7(b) shows the histograms of bandwidth estimates
obtained by 32 simultaneous AIMD(1, 1/2) flows running over
the same topology and with the same value of MTURTT. This
time, the majority of estimates lie in the proximity of 1490 kb/s,
and 95.5% of estimates are contained between 1400 and
1620 kb/s (i.e., within 7% of 1510 kb/s). The lower accuracy
of bandwidth estimation in the second case is explained by the
lower average sending rate of each flow (i.e., 36 kb/s compared
to 559 kb/s in the first case) and higher overall packet loss.

C. Scalability Results

In our rate-based streaming application, all flows used slow
start at the beginning of each transfer; however, the results below
exclude the behavior of the network during the transient phase
and focus on the steady-state performance of the schemes in
the interval starting 10 s after the last flow finished its slow
start and ending when the first flow terminated.7 This interval
was 520–600 s long (depending on the number of flows) and
included a combined transfer of approximately 60 000 packets.

During the experiment, we tried to select the parameters of the
schemes so that the average packet loss of two competing flows
using each scheme was between 0.3% and 0.6%. Using a fixed
value of MTU RTT equal to 100 kb/s, this constraint re-
sulted in selecting the following parameters: AIMD(0.19, 1/2),
SQRT(0.18, 1/2), and IIAD(0.10, 1/2). The value of theMTU
variable in TFRC’s equation [11] was selected to be 180 bytes,
whereas the actual packet size used during the experiment was

7Flows were started with a 1.5-s delay.

Fig. 8. Packet-loss increase factors for the Cisco experiment.

1500 bytes for all schemes. Note that TFRC was the only pro-
tocol that used real-time measurements of the RTT in its com-
putation of the rate.

The efficiency and aggressiveness parameters of the ISCC
schemes were set with the same goal in mind to maintain low
initial packet loss : and . These parameters
guaranteed that each flow did not decrease its rate by more than
1/2 and did not probe for new bandwidth more aggressively than
by 5% (i.e., 1/20) of the current sending rate.

The results of the experiment are summarized in Fig. 8,
which shows packet-loss increase factor for six different
schemes and values ofbetween 2 and 50. The results of the
experiment show that all nonscalable schemes maintained a
steady packet-loss increase to well over 15%. For example,
IIAD reached %, SQRT 28%, AIMD 25%, and TFRC
21%.

Recall that our simulation suggested that was ade-
quate for the schemes. In practice, however, the value of

turned out to be insufficient to balance out the large
positive value of in the scalability power , as shown in
Fig. 8. Contrary to simulation results, ISCC(1.2,2) maintained
a steady packet-loss increase for all values ofand reached a
reasonably high loss rate %. The overall scalability
of the scheme using a least-squares fit of a power function was
found to be .

On the other hand, packet loss of ISCC(1.5,2) climbed only
to 2.3% over the same range of flows. A least-squares fit sug-
gests that the increase in packet loss was slow but noticeable.
Even though ISCC(1.5,2) was not able to achieve constant
packet loss in practice, it did show a substantially better per-
formance than any other scheme. The discrepancy between the
continuous fluid model for ISCC studied earlier in this paper
and experimental results is easily explained by delayed and lost
feedback, nonuniform packet loss, and errors in measuring the
value of .

As expected, high packet loss during the experiment resulted
in a large number of underflow events, which are produced when
a frame is missing from the decoder buffer at the time of its de-
coding. Recall that underflow events in the base layer are most
severe, because each one of them results in a “freeze-frame”

576 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 4, AUGUST 2003

TABLE I
SUMMARY OF EXPERIMENTAL RESULTS

effect. If an enhancement frame is not received, or is received
partially by the time of its decoding, such underflow events
are not severe, because the base layer can be played without
the enhancement layer or even with partially received enhance-
ment-layer pictures.

Under the worst conditions (i.e.,), our data show
that the nonscalable protocols maintained a “frozen” picture be-
tween 13% and 68% of the corresponding session. These results
indicate that high packet loss is very harmful to video appli-
cations even in the presence of low RTTs (50–200 ms), large
startup delays (3 s in our case), and an efficient packet-loss
recovery mechanism (our retransmission scheme was able to
recover all base-layer packets before their deadlines until loss
rates exceeded approximately 15%).

On the other hand, ISCC(1.2,2) recovered all base-layer
frames before their deadlines, but had some missing enhance-
ment-layer frames. ISCC(1.5,2) recovered all base-layer and
all enhancement-layer pictures before their decoding deadlines,
representing an ideal streaming situation for the end user.

Table I summarizes our observations during the experiment
and further shows that both ISCC schemes maintained a rea-
sonably high average efficiency (for the comparison to be mean-
ingful, we selected the value of when all flows achieved ap-
proximately the same packet loss, i.e.,). The table shows
that ISCC’s efficiency was in fact better than that of both AIMD
and IIAD.

We further experimented with random early detection (RED)
and studied the effect it had on the performance of rate-based
binomial controllers. In a separate set of experiments over the
same topology, we enabled Cisco’s WRED on all T1 interfaces
and used the default parameters suggested by Cisco Internet-
work Operating System (IOS). Interestingly, RED did not have
any major impact on packet-loss increase curves in Fig. 8 or the
average efficiency. However, we did notice a slight improvement
in fairness between the individual flows. Little overall effect of
Cisco’s WRED on congestion control and/or link utilization has
also been noticed in [8] and [34].

In this section, we found that traditional schemes (including
AIMD, IIAD, SQRT, and TFRC) are poorly suited for rate-
based protocols that do not utilize self-clocking. Furthermore,
we observed that ideally scalable schemes promise to provide a
constant packet-loss scalability not only in simulation but also
in practice. Nevertheless, further study is required in this area
to understand the tradeoffs between the different values ofand

, as well as establish whether slower convergence to fairness
found in simulation has any strong implications in large net-
works (i.e., in the real Internet).

VII. CONCLUSION

In this paper, we studied the binary-feedback class of rate-
based congestion control and derived very simple conditions on
increase and decrease functions that guarantee monotonic con-
vergence to fairness (i.e., asymptotic stability of the fairness
point). Interestingly, our derivations show that AIMD is the only
binomial controller with monotonic convergence to fairness. We
also showed that all binomial controls with a nonmultiplicative
decrease function suffered from reduced link utilization as the
number of flows increased.

In the second half of this paper, we studied the origin of sig-
nificant packet-loss increase in rate-based binomial schemes as
the number of flows becomes large. This phenomenon is caused
by the reduction of the fair-share bandwidth allocated to each
flow by a factor of and unchanged (or even greater) overshoot
of this fair bandwidth during the increase phase. One implica-
tion of this result for ISPs is that they should scale their band-
width proportionally to the number of users (flows) that their
networks support.

To overcome rapid packet-loss increase, we developed and
studied a new class of ideally scalable controllers (ISCC), which
keep the amount of overshoot proportional to the amount of data
sent by a flow during each oscillation cycle. Even though ISCC
offers much better packet-loss characteristics under a variety of
simulation and real-life scenarios, its requirement for end flows
to measure the bottleneck bandwidth and slower convergence
for large leave room for future research.

Among non-ISCC binomial schemes, our conclusion is that
linear controls of AIMD offer the most robust behavior across
a wide range of paths, lowest packet loss, and fastest conver-
gence to fairness under a variety of conditions. Non-AIMD bi-
nomial schemes may possess a certain level of appeal (such as
smoother rates); however, their use in rate-based applications
leads to rapid packet-loss increase, which may turn out to be a
serious drawback in practical implementations.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
providing excellent suggestions and comments.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” IETF,
RFC 2581, Apr. 1999.

[2] D. Bansal and H. Balakrishnan, “Binomial congestion control algo-
rithms,” in Proc. IEEE INFOCOM, Apr. 2001, pp. 631–640.

[3] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, “Dynamic be-
havior of slowly-responsive congestion control algorithms,” inProc.
ACM SIGCOMM, Aug. 2001, pp. 263–274.

[4] L. Benmohamed and S. M. Meerkov, “Feedback control of congestion
in packet switching networks: The case of a single congested node,”
IEEE/ACM Trans. Networking, vol. 1, pp. 693–708, Dec. 1993.

[5] R. L. Carter and M. E. Crovella, “Measuring bottleneck link speed in
packet switched networks,”Int. J. Perform. Eval., pp. 27–28, 1996.

[6] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks,”Comput. Net-
works ISDN Syst., vol. 17, pp. 1–14, 1989.

[7] S. Chong, S. Lee, and S. Kang, “A simple, scalable, and stable explicit
rate allocation algorithm for max–min flow control with minimum rate
guarantee,”IEEE/ACM Trans. Networking, vol. 9, pp. 322–335, June
2001.

[8] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, “Tuning RED for
web traffic,” in Proc. ACM SIGCOMM, Aug. 2000, pp. 139–150.

LOGUINOV AND RADHA: END-TO-END RATE-BASED CONGESTION CONTROL 577

[9] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet disper-
sion techniques measure?,” inProc. IEEE INFOCOM, Apr. 2001, pp.
905–914.

[10] K. W. Fendick, M. A. Rodriguez, and A. Weiss, “Analysis of a rate-based
feedback control strategy for long haul data transport,”Perform. Eval.,
vol. 16, pp. 67–84, 1992.

[11] S. Floyd, M. Handley, and J. Padhye, “Equation-based congestion con-
trol for unicast applications,” inProc. ACM SIGCOMM, Sept. 2000, pp.
43–56.

[12] S. Floyd, M. Handley, and J. Padhye. (2000, May) A comparison of
equation-based and AIMD congestion control. [Online]. Available:
http://www.aciri.org/tfrc/aimd.pdf

[13] C. Fulton, S. Q. Li, and C. S. Lim, “An ABR feedback control scheme
with tracking,” inProc. IEEE INFOCOM, Apr. 1997, pp. 805–814.

[14] O. C. Imer, S. Compans, T. Basar, and R. Srikant, “ABR congestion
control in ATM networks,”IEEE Control Syst. Mag., vol. 21, pp. 38–56,
2001.

[15] V. Jacobson, “Congestion avoidance and control,” inProc. ACM SIG-
COMM, 1988, pp. 314–329.

[16] R. Johari and D. Tan, “End-to-end congestion control for the Internet:
Delays and stability,” IEEE/ACM Trans. Networking, vol. 9, pp.
818–832, Dec. 2001.

[17] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore,
“The ERICA switch algorithm for ABR traffic management in ATM
networks,”IEEE/ACM Trans. Networking, vol. 8, pp. 87–98, Feb. 2000.

[18] K. Kar, S. Sarkar, and L. Tassiulas, “A simple rate control algorithm
for maximizing total user utility,” inProc. IEEE INFOCOM, 2001, pp.
133–141.

[19] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: Shadow prices, proportional fairness and stability,”J. Oper.
Res. Soc., vol. 49, pp. 237–252, 1998.

[20] S. Keshav, “A control-theoretic approach to flow control,” inProc. ACM
SIGCOMM, 1991, pp. 3–15.

[21] T. Kim, S. Lu, and V. Bharghavan. (1999, July) Loss propor-
tional decrease based congestion control in the future Internet.
Tech. Rep. Univ. Illinois, Chicago, IL. [Online]. Available:
http://timely.crhc.uiuc.edu/Drafts/tech.lipd.ps.gz

[22] A. Kolarov and G. Ramamurthy, “A control theoretic approach to the
design of closed loop rate based flow control for high speed ATM net-
works,” in Proc. IEEE INFOCOM, Apr. 1997, pp. 293–301.

[23] L. Kulkarni and S. Q. Li, “Performance analysis of rate based feedback
control for ATM networks,”IEEE/ACM Trans. Networking, vol. 6, pp.
797–810, Dec. 1998.

[24] H. T. Kung, T. Blackwell, and A. Chapman, “Credit-based flow con-
trol for ATM networks: Credit update protocol, adaptive credit alloca-
tion, and statistical multiplexing,” inProc. ACM SIGCOMM, 1994, pp.
101–114.

[25] S. Kunniyur and R. Srikant, “End-to-end congestion control schemes:
Utility functions, random losses and ECN marks,” inProc. IEEE IN-
FOCOM, Mar. 2000, pp. 1323–1332.

[26] T. V. Lakshman, P. P. Mishra, and K. K. Ramakrishnan, “Transporting
compressed video over ATM networks with explicit rate feedback con-
trol,” in Proc. IEEE INFOCOM, Apr. 1997, pp. 38–47.

[27] K.-W. Lee, T. Kim, and V. Bharghavan. (2000) A comparison of
end-to-end congestion control algorithms: The case of AIMD and
AIPD. Tech. Rep. Univ. Illinois, Chicago, IL. [Online]. Available:
http://timely.crhc.uiuc.edu/~kwlee/ psfiles/infocom2001.ps.gz

[28] K.-W. Lee, R. Puri, T. Kim, K. Ramchandran, and V. Bharghavan, “An
integrated source coding and congestion control framework for video
streaming in the Internet,” inProc. IEEE INFOCOM, Mar. 2000, pp.
747–756.

[29] A. Legout and E. W. Biersack, “PLM: Fast convergence for cumulative
layered multicast transmission schemes,” inProc. ACM SIGMETRICS,
2000, pp. 13–22.

[30] S. Low, F. Paganini, J. Wang, S. Adlakha, and J. C. Doyle, “Dynamics
of TCP/RED and a scalable control,” inProc. IEEE INFOCOM, June
2002, pp. 239–248.

[31] S. Mascolo, D. Cavendish, and M. Gerla, “ATM rate based congestion
control using a Smith predictor: An EPRCA implementation,” inProc.
IEEE INFOCOM, Mar. 1996, pp. 569–576.

[32] L. Massoulié, “Stability of distributed congestion control with hetero-
geneous feedback delays,”IEEE Trans. Automat. Contr., vol. 47, pp.
895–902, June 2002.

[33] L. Massoulié and J. Roberts, “Bandwidth sharing: Objectives and algo-
rithms,” in Proc. IEEE INFOCOM, Mar. 1999, pp. 1395–1403.

[34] M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to deploy RED,”
in Proc. IEEE/IFIP IWQoS, June 1999, pp. 260–262.

[35] A. Mena and J. Heidemann, “An empirical study of real audio traffic,”
in Proc. IEEE INFOCOM, Mar. 2000, pp. 101–110.

[36] Microsoft Corp. Windows Media Player. [Online]. Available:
http://www.microsoft. com/windows/mediaplayer/

[37] P. Mishra and H. Kanakia, “A hop by hop rate-based congestion control
scheme,” inProc. ACM SIGCOMM, 1992, pp. 112–123.

[38] T. Nandagopal, K.-W. Lee, J. R. Li, and V. Bharghavan, “Scalable ser-
vice differentiation using purely end-to-end mechanisms: Features and
limitations,” in Proc. IFIP/IEEE IWQoS, June 2000, pp. 31–41.

[39] H. Ohsaki, M. Murata, H. Suzuki, C. Ikeda, and H. Miyahara,
“Rate-based congestion control for ATM networks,”ACM SIGCOMM
Comput. Commun. Rev., vol. 25, no. 2, pp. 60–72, Apr. 1995.

[40] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” inProc.
ACM SIGCOMM, Sept. 1998, pp. 303–314.

[41] V. Paxson, “Measurements and analysis of end-to-end Internet dy-
namics,” Ph.D. dissertation, Comput. Sci. Dept., Univ. California,
Berkeley, 1997.

[42] H. Radha, Y. Chen, K. Parthasarathy, and R. Cohen, “Scalable Internet
video using MPEG-4,”Signal Processing: Image Commun., vol. 15, pp.
95–126, Jan. 1999.

[43] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end rate-based
congestion control mechanism for real-time streams in the Internet,” in
Proc. IEEE INFOCOM, Mar. 1999, pp. 1337–1345.

[44] Real Networks. RealPlayer. [Online]. Available: http://www.real.com
[45] I. Rhee, V. Ozdemir, and Y. Yi, “TEAR: TCP emulation at re-

ceivers—Flow control for multimedia streaming,” North Carolina State
Univ., Raleigh, Tech. Rep., Apr. 2000.

[46] M. Ritter, “The effect of bottleneck service rate variations on the perfor-
mance of ABR flow control,” inProc. IEEE INFOCOM, Apr. 1997, pp.
815–822.

[47] S. Shakkottai and S. Srikant, “How good are deterministic fluid models
of Internet congestion control?,” inProc. IEEE INFOCOM, June 2002,
pp. 497–505.

[48] Y. R. Yang, M. S. Kim, and S. S. Lam, “Transient behaviors of TCP-
friendly congestion control protocols,” inProc. IEEE INFOCOM, Apr.
2001, pp. 1716–1725.

[49] Y. R. Yang and S. S. Lam, “General AIMD congestion control,” Univ.
Texas, Austin, TX, Tech. Rep., May 2000.

[50] Y. Zhao, S. Q. Li, and S. Sigarto, “A linear dynamic model for design of
stable explicit-rate ABR control schemes,” inProc. IEEE INFOCOM,
Apr. 1997, pp. 283–292.

Dmitri Loguinov (S’99–M’03) received the B.S. de-
gree (with honors) in computer science from Moscow
State University, Moscow, Russia, in 1995 and the
Ph.D. degree in computer science from the City Uni-
versity of New York, New York, in 2002.

Since September 2002, he has been an Assistant
Professor of computer science with Texas A&M
University, College Station. His research interests
include Internet video streaming, congestion
control, image and video coding, Internet traffic
measurement and modeling, scalable overlay and

peer-to-peer networks, and emerging quality-of-service architectures.

Hayder Radha(M’92–SM’01) received the B.S. de-
gree (with honors) from Michigan State University
(MSU), East Lansing, in 1984, the M.S. degree from
Purdue University, West Lafayette, IN, in 1986, and
the Ph.M. and Ph.D. degrees from Columbia Univer-
sity, New York, in 1991 and 1993, respectively, all in
electrical engineering.

He joined MSU in 2000 as an Associate Professor
in the Department of Electrical and Computer En-
gineering. From 1996 to 2000, he was with Philips
Research USA, where he initiated the Internet Video

project and led a team of researchers working on scalable video coding and
streaming algorithms. Prior to joining Philips, he was a Distinguished Member
of Technical Staff with Bell Labs, where he worked from 1986 to 1996 in the
areas of digital communications, signal/image processing, and broad-band mul-
timedia. His research interests include image and video coding, wireless tech-
nology, multimedia communications, and networking. He holds more than 20
patents in these areas. He served as Co-Chair and Editor of the ATM and LAN
Video Coding Experts Group of the ITU-T during 1994–1996.

Dr. Radha is a Philips Research Fellow.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

