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Motivation
• Current Internet video streaming is often constant 

bitrate (CBR), where the rate is determined a-priori

• A user has to click on the desired rate on a web page

• Typical bitrate selections are quite coarse (i.e., 28k, 
56k, 100k, 300k)

• Rate adaptation used in current streaming:
– Drop one layer upon congestion

– Add one layer to probe for new bandwidth

• Need protocols that can scale video to any bitrate 
(such as 435 kb/s) while maintaining fairness 
properties of regular congestion control 
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Motivation (cont’d)
• Given MPEG4 FGS (Fine Granular Scalability), can 

we apply true congestion control to it?

• MPEG4 FGS:
– One low-bitrate base layer

– One high-bitrate enhancement layer

– Rescale the enhancement layer by discarding a certain 
percentage of each frame

– Rate-based streaming

• Can rate-based congestion control scale to a large 
number of concurrent flows?

• “Scalability” applies to the number of flows only
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Overview of the Talk

• Background on congestion & flow control

• Scalability of congestion control

• Study of existing methods in NACK-based protocols

• Limitations of the existing methods

• Ideally-scalable congestion control

• Simulations and experimental results

• Drawbacks

• Conclusion
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Background (Overview)
• Flow control is how application sends its packets

• Two types of flow control

• ACK-based (window-based):
– receiver acknowledges each received packet

– new packets are sent only if ACKs are being received

– average sending rate r(t) arbitrarily fluctuates

– sender does not know its average rate r(t) a-priori

• NACK-based (rate-based):
– receiver acknowledges each lost packet

– new packets are sent regardless of the NACKs

– average sending rate r(t) is known in advance
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Background (cont’d)
• ACK-based flow control is typically difficult to use in real-

time streaming:
– Server must maintain a certain streaming rate for the base layer

– Difficult to decide how to scale the enhancement-layer pictures 
since future rate r(t) is not known

 
Enhancement layer coded at 
max bitrate R. Scale to target 

rate r(t) by taking r(t)/R 
percent of each frame. 

Base layer 

Enhancement layer 
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Background (summary)
• We look at the problem of providing end-to-

end congestion control for rate-based 
applications
– NACK-based congestion control is usually 

labeled as simply “difficult”

– ATM/data-link methods exist, but they are 
inapplicable on the IP+ layers

• We assume a best-effort Internet 
environment

• QoS (Quality of Service) router support is 
not available
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Congestion Control (overview)
• Typically many flows share common links of finite

capacity
– After observing packet loss, flows must reduce their rates

• A key aspect of congestion control is convergence to 
fairness:

 

t im e

send ing ra te
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Overview (cont’d)

• Internet protocols use congestion control that:
– reacts to packet loss by decreasing the rate

– reacts to the absence of packet loss by increasing the 
rate

• Congestion control is executed on discrete 
timescales of RTT (round-trip delay) units each

• Sending rate during interval i is given by ri
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Overview (cont’d)

• Increase-decrease congestion control is summarized as 
following:
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• RI is the increase function, RD is the decrease function

• Not all functions guarantee convergence to fairness

• Easy to show that “RI , RD = constant” does not converge

• Hence the “add/drop one layer” method does not 
converge to fairness
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Overview (cont’d)

• Among linear functions RI and RD, only one method 
converges to fairness

• This method is called AIMD (Additive Increase, 
Multiplicative Decrease):

RI(r) = α, RD(r) = β·r

• AIMD is used in TCP (Transmission Control 
Protocol)
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Overview (cont’d)
• Binomial schemes are a special case of I-D 

congestion control (proposed in 2001 by Bansal et 
al.):
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• Powers (k, l) determine the shape of the increase 
and decrease curves

• Power l cannot be greater than 1 (otherwise, rates 
may become negative)

• Necessary condition for convergence is k + l > 0
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Overview (cont’d)

• A scheme is TCP-friendly, if it achieves the same 
throughput as a TCP connection over a shared link

• AIMD is TCP-friendly

• Binomial schemes with k+l = 1 are TCP-friendly

• Two such TCP-friendly schemes were introduced in 2001:
• IIAD (Inverse Increase, Additive Decrease) with l = 0, k = 1

• SQRT (Square Root) with l = k = 0.5

• Even though two schemes may have the same 
throughput, they may differ in other characteristics

• One important characteristic is called scalability
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Scalability of Congestion Control
• Scalability aspects of congestion control have not 

been extensively studied before or even quantified

• We created a new measure of scalability and use it 
to compare various congestion control schemes

• We define scalability of a scheme as “the increase 
in packet loss as a function of the number of flows n
that use the scheme over a shared bottleneck”

• Suppose pn is packet loss when n flows use a 
scheme

• Hence, scalability is described by the packet loss 
increase factor sn = pn / p1
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Scalability (cont’d)
• How does scalability matter?

• NACK-based protocols are very sensitive to the scalability 
aspects of a scheme, much more so than ACK-based 
protocols

• In ACK-based protocols, upon loss of communication, the 
sender simply stops, hence increasing stability of the 
network

• In the absence of feedback, congestion control in NACK-
based protocols becomes “open-loop,” or simply CBR:
– If the communication from the receiver is delayed, the sender 

continues stressing the network at the same rate

– Congestion control in NACK protocols is considered very difficult
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Scalability (cont’d)
• To investigate the scalability of binomial algorithms, we use 

steady-state analysis and continuous fluid approximation

• We compute n-flow packet loss pn:
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• C is the capacity of the bottleneck link

• Packet loss increase factor sn = pn / p1 (describing the 
scalability of a particular scheme) is given by:
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Scalability (cont’d)

• This formula can be used to compare the scalability of 
different schemes

• Schemes with the lowest scalability power l+2k+1 are 
best

• AIMD is O(n2)

• IIAD is O(n3)

• SQRT is O(n2.5)

• In practice, scalability is typically proportional to nl+2k, 
but worse-case scalability nl+2k+1 does happen in 
certain scenarios
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Scalability Examples
• Discrete event simulation below shows three flows under 

different conditions – AIMD1 ∝ n1.91(red), AIMD2 ∝
n1.27(purple), and IIAD ∝ n2.67(blue):
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Scalability Examples (cont’d)
• Such high loss increases mean that these 

schemes will not be able to provide 
adequate performance once deployed 
globally
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Scalability Limitations

• Among TCP-friendly schemes (i.e., k+l = 1), 
parameter sn grows as O(n3–l)

• Hence, among all TCP-friendly schemes, the one 
with the largest l scales best

• Recall the restriction on binomial schemes that 
prevents the scheme from assuming negative rates 
is: l ≤ 1
– Example l = 2: new rate r – σ ·r 2 cannot be guaranteed to 

be positive for all r > 0, no matter how we select constant σ

– This is due to the fact that r is considered “unlimited” (i.e., 
upper limit is not known a-priori)
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Scalability Limitations (cont’d)
• Notice that among all TCP-friendly schemes, AIMD 

has the largest l equal to 1

• Hence, AIMD scales best among TCP-friendly 
schemes

• The only way to improve scalability beyond O(n2) is 
to somehow find a tight upper bound on sending rate 
r(t)

• One such upper bound is the bottleneck capacity of 
an end-to-end path

• The bottleneck capacity (or bottleneck bandwidth) is 
the speed of the slowest link of an end-to-end path
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Scalability Limitations (cont’d)
• No prior work considered the bottleneck bandwidth 

in conjunction with congestion control

• Not only do we aim to improve the scalability of 
AIMD (i.e., O(n2)), we also attempt to achieve 
“ideal-scalability” as explained below

• “Ideal scalability” is such choice of increase-
decrease powers that ensures constant packet 
loss

• In other words, under ideal scalability, pn = p1 for 
all n
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Ideal Scalability
• Recall that packet loss increases as O(nl+2k+1)

• For ideal scalability we want the power to be zero:

l+2k+1 = 0

• To maintain convergence to fairness, we need:

k+l > 0

• Combining both conditions above, we find that the 
necessary conditions of ideal stability are:

l > 1 and k < –1

• Hence, we have the same restriction on l that can only be 
lifted with the knowledge of bottleneck capacity C
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Ideal Scalability (cont’d)
• Assume that we know bottleneck capacity C

• Rate r is limited by a constant: 0 < r ≤ C

• We introduce a new class of ideally-scalable 
congestion control (ISCC) that maintains 
convergence while l+2k+1 equals zero
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ISCC
• Knowing C, we can adjust constants (λ,σ) to each path so 

that rate r(t) is never reduced below zero

• At the same time, we want to be able to “tune” the scheme 
to achieve different levels of packet loss and efficiency

• One such selection is given by the following:
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• Constant mD is the efficiency factor, where higher values of mD
result in higher efficiency (i.e., higher link utilization)

• Constant mI is the aggressiveness factor, where higher values of 
mI result in less aggressive behavior (i.e., less packet loss)
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Experiments
• Implemented NACK-based congestion control and 

binomial algorithms in our streaming software

• Special module controls the choice of congestion 
control (IIAD, SQRT, TFRC, ISCC, etc.)

• Tested between a Unix server and a Windows 2000 
client, with the number of flows between 2 and 50

• 10 minute video sequence coded with MPEG-4 FGS:
– 14 kb/s base layer

– 1,190 kb/s FGS enhancement layer

• Each flow maintained a rate between 14 and 1,204 kb/s 
during the experiment
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Experiments (cont’d)
• Setup including two high-speed ethernets on each side of 

the bottleneck T1 links (see below)

• WFQ and WRED (QoS features of routers) were disabled 
to reflect the current setup of Internet routers
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Scalability Results
• The following figure shows packet loss pn for all schemes 

as a function of n
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Scalability Results (cont’d)
• All non-scalable schemes suffered from high packet loss 

rates:
– as high as 45% in IIAD (p2 = 0.29%, s50 = 151)
– 32% in SQRT (p2 = 0.10%, s50 = 268)
– 27% in TFRC (p2 = 0.27%, s50 = 74)
– 22% in AIMD (p2 = 0.38%, s50 = 59)

• ISCC maintained virtually constant loss at 3% (p2 = 
0.57%, s50 = 5.6)

• In non-scalable schemes, underflow events in the base 
layer were frequent, even given a large startup delay (3 
seconds):
– IIAD and SQRT maintained no picture for up to 66% of the time
– AIMD and TFRC between 11 and 40% of the time
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Scalability Results (cont’d)
• The ISCC scheme recovered all base-layer and 

FGS-layer frames before their deadlines

• This in fact represents an “ideal” performance for 
the end-user
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Drawbacks
• However, ideal performance comes at a price:

– All flows must acquire consistent estimates of the bandwidth

– Ideally-scalable schemes are too TCP-friendly

– In fact, ISCC will yield bandwidth to TCP due to its less-
aggressive behavior

– Differentiated Services (DiffServ) is required in the network

– Efficiency is similar to that of AIMD, but convergence is slower

• The Internet is moving toward DiffServ

• Hence it is possible that UDP and TCP traffic will end up 
in different router queues

• ISCC is possible in DiffServ-enabled Internet
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Congestion Control Conclusion

• Applications with rate-based flow control are very 
sensitive to what kind of congestion control is employed 

• Hence, traditional schemes designed for ACK-based 
protocols are not well suited for NACK-based protocols

• At the same time, ACK-based flow control is poorly 
suited for real-time streaming

• Consequently, future real-time streaming protocols 
should only use congestion control that scales well in the 
presence of a large number of concurrent flows

• One such class of scalable schemes was developed in 
our work and is called ISCC
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