
1

IncreaseIncrease--Decrease Decrease
Congestion Control for Congestion Control for
RealReal--time Streaming: time Streaming:
ScalabilityScalability

Dmitri LoguinovDmitri Loguinov
City University of New YorkCity University of New York

Hayder RadhaHayder Radha
Michigan State UniversityMichigan State University

2

Motivation
• Current Internet video streaming is often constant

bitrate (CBR), where the rate is determined a-priori

• A user has to click on the desired rate on a web page

• Typical bitrate selections are quite coarse (i.e., 28k,
56k, 100k, 300k)

• Rate adaptation used in current streaming:
– Drop one layer upon congestion

– Add one layer to probe for new bandwidth

• Need protocols that can scale video to any bitrate
(such as 435 kb/s) while maintaining fairness
properties of regular congestion control

3

Motivation (cont’d)
• Given MPEG4 FGS (Fine Granular Scalability), can

we apply true congestion control to it?

• MPEG4 FGS:
– One low-bitrate base layer

– One high-bitrate enhancement layer

– Rescale the enhancement layer by discarding a certain
percentage of each frame

– Rate-based streaming

• Can rate-based congestion control scale to a large
number of concurrent flows?

• “Scalability” applies to the number of flows only

4

Overview of the Talk

• Background on congestion & flow control

• Scalability of congestion control

• Study of existing methods in NACK-based protocols

• Limitations of the existing methods

• Ideally-scalable congestion control

• Simulations and experimental results

• Drawbacks

• Conclusion

5

Background (Overview)
• Flow control is how application sends its packets

• Two types of flow control

• ACK-based (window-based):
– receiver acknowledges each received packet

– new packets are sent only if ACKs are being received

– average sending rate r(t) arbitrarily fluctuates

– sender does not know its average rate r(t) a-priori

• NACK-based (rate-based):
– receiver acknowledges each lost packet

– new packets are sent regardless of the NACKs

– average sending rate r(t) is known in advance

6

Background (cont’d)
• ACK-based flow control is typically difficult to use in real-

time streaming:
– Server must maintain a certain streaming rate for the base layer

– Difficult to decide how to scale the enhancement-layer pictures
since future rate r(t) is not known

Enhancement layer coded at
max bitrate R. Scale to target

rate r(t) by taking r(t)/R
percent of each frame.

Base layer

Enhancement layer

7

Background (summary)
• We look at the problem of providing end-to-

end congestion control for rate-based
applications
– NACK-based congestion control is usually

labeled as simply “difficult”

– ATM/data-link methods exist, but they are
inapplicable on the IP+ layers

• We assume a best-effort Internet
environment

• QoS (Quality of Service) router support is
not available

8

Congestion Control (overview)
• Typically many flows share common links of finite

capacity
– After observing packet loss, flows must reduce their rates

• A key aspect of congestion control is convergence to
fairness:

t im e

send ing ra te

9

Overview (cont’d)

• Internet protocols use congestion control that:
– reacts to packet loss by decreasing the rate

– reacts to the absence of packet loss by increasing the
rate

• Congestion control is executed on discrete
timescales of RTT (round-trip delay) units each

• Sending rate during interval i is given by ri

10

Overview (cont’d)

• Increase-decrease congestion control is summarized as
following:

−
+

=+ lossrRr
lossnorRr

r
iDi

iIi
i),(

),(
1

• RI is the increase function, RD is the decrease function

• Not all functions guarantee convergence to fairness

• Easy to show that “RI , RD = constant” does not converge

• Hence the “add/drop one layer” method does not
converge to fairness

11

Overview (cont’d)

• Among linear functions RI and RD, only one method
converges to fairness

• This method is called AIMD (Additive Increase,
Multiplicative Decrease):

RI(r) = α, RD(r) = β·r

• AIMD is used in TCP (Transmission Control
Protocol)

12

Overview (cont’d)
• Binomial schemes are a special case of I-D

congestion control (proposed in 2001 by Bansal et
al.):

≤=

≥= −

1,)(

0,)(

lrrR

krrR
l

D

k
I

σ

λ

• Powers (k, l) determine the shape of the increase
and decrease curves

• Power l cannot be greater than 1 (otherwise, rates
may become negative)

• Necessary condition for convergence is k + l > 0

13

Overview (cont’d)

• A scheme is TCP-friendly, if it achieves the same
throughput as a TCP connection over a shared link

• AIMD is TCP-friendly

• Binomial schemes with k+l = 1 are TCP-friendly

• Two such TCP-friendly schemes were introduced in 2001:
• IIAD (Inverse Increase, Additive Decrease) with l = 0, k = 1

• SQRT (Square Root) with l = k = 0.5

• Even though two schemes may have the same
throughput, they may differ in other characteristics

• One important characteristic is called scalability

14

Scalability of Congestion Control
• Scalability aspects of congestion control have not

been extensively studied before or even quantified

• We created a new measure of scalability and use it
to compare various congestion control schemes

• We define scalability of a scheme as “the increase
in packet loss as a function of the number of flows n
that use the scheme over a shared bottleneck”

• Suppose pn is packet loss when n flows use a
scheme

• Hence, scalability is described by the packet loss
increase factor sn = pn / p1

15

Scalability (cont’d)
• How does scalability matter?

• NACK-based protocols are very sensitive to the scalability
aspects of a scheme, much more so than ACK-based
protocols

• In ACK-based protocols, upon loss of communication, the
sender simply stops, hence increasing stability of the
network

• In the absence of feedback, congestion control in NACK-
based protocols becomes “open-loop,” or simply CBR:
– If the communication from the receiver is delayed, the sender

continues stressing the network at the same rate

– Congestion control in NACK protocols is considered very difficult

16

Scalability (cont’d)
• To investigate the scalability of binomial algorithms, we use

steady-state analysis and continuous fluid approximation

• We compute n-flow packet loss pn:

()()

 −−

+
≈

+−+

+

2122

222

/11

)2(
klk

k

n
nCC

nkp
σ

λ

• C is the capacity of the bottleneck link

• Packet loss increase factor sn = pn / p1 (describing the
scalability of a particular scheme) is given by:

()).(
)/()1(2

)1(2 12
1

112
++

−

−++

=
+−

+−
≈ kl

l

lkl

n nO
nCk
Ckns

σ
σ

17

Scalability (cont’d)

• This formula can be used to compare the scalability of
different schemes

• Schemes with the lowest scalability power l+2k+1 are
best

• AIMD is O(n2)

• IIAD is O(n3)

• SQRT is O(n2.5)

• In practice, scalability is typically proportional to nl+2k,
but worse-case scalability nl+2k+1 does happen in
certain scenarios

18

Scalability Examples
• Discrete event simulation below shows three flows under

different conditions – AIMD1 ∝ n1.91(red), AIMD2 ∝
n1.27(purple), and IIAD ∝ n2.67(blue):

1.E+00

1.E+02

1.E+04

1.E+06

0 20 40 60 80 100

number of flows n

sc
al

ab
il

it
y
s n

AIMD1 AIMD2 IIAD

19

Scalability Examples (cont’d)
• Such high loss increases mean that these

schemes will not be able to provide
adequate performance once deployed
globally

20

Scalability Limitations

• Among TCP-friendly schemes (i.e., k+l = 1),
parameter sn grows as O(n3–l)

• Hence, among all TCP-friendly schemes, the one
with the largest l scales best

• Recall the restriction on binomial schemes that
prevents the scheme from assuming negative rates
is: l ≤ 1
– Example l = 2: new rate r – σ ·r 2 cannot be guaranteed to

be positive for all r > 0, no matter how we select constant σ

– This is due to the fact that r is considered “unlimited” (i.e.,
upper limit is not known a-priori)

21

Scalability Limitations (cont’d)
• Notice that among all TCP-friendly schemes, AIMD

has the largest l equal to 1

• Hence, AIMD scales best among TCP-friendly
schemes

• The only way to improve scalability beyond O(n2) is
to somehow find a tight upper bound on sending rate
r(t)

• One such upper bound is the bottleneck capacity of
an end-to-end path

• The bottleneck capacity (or bottleneck bandwidth) is
the speed of the slowest link of an end-to-end path

22

Scalability Limitations (cont’d)
• No prior work considered the bottleneck bandwidth

in conjunction with congestion control

• Not only do we aim to improve the scalability of
AIMD (i.e., O(n2)), we also attempt to achieve
“ideal-scalability” as explained below

• “Ideal scalability” is such choice of increase-
decrease powers that ensures constant packet
loss

• In other words, under ideal scalability, pn = p1 for
all n

23

Ideal Scalability
• Recall that packet loss increases as O(nl+2k+1)

• For ideal scalability we want the power to be zero:

l+2k+1 = 0

• To maintain convergence to fairness, we need:

k+l > 0

• Combining both conditions above, we find that the
necessary conditions of ideal stability are:

l > 1 and k < –1

• Hence, we have the same restriction on l that can only be
lifted with the knowledge of bottleneck capacity C

24

Ideal Scalability (cont’d)
• Assume that we know bottleneck capacity C

• Rate r is limited by a constant: 0 < r ≤ C

• We introduce a new class of ideally-scalable
congestion control (ISCC) that maintains
convergence while l+2k+1 equals zero

25

ISCC
• Knowing C, we can adjust constants (λ,σ) to each path so

that rate r(t) is never reduced below zero

• At the same time, we want to be able to “tune” the scheme
to achieve different levels of packet loss and efficiency

• One such selection is given by the following:

1,
1

≥=
+

I
I

k

m
m
Cλlm

Cm Dl
D

≥= − ,1
1σ

• Constant mD is the efficiency factor, where higher values of mD
result in higher efficiency (i.e., higher link utilization)

• Constant mI is the aggressiveness factor, where higher values of
mI result in less aggressive behavior (i.e., less packet loss)

26

Experiments
• Implemented NACK-based congestion control and

binomial algorithms in our streaming software

• Special module controls the choice of congestion
control (IIAD, SQRT, TFRC, ISCC, etc.)

• Tested between a Unix server and a Windows 2000
client, with the number of flows between 2 and 50

• 10 minute video sequence coded with MPEG-4 FGS:
– 14 kb/s base layer

– 1,190 kb/s FGS enhancement layer

• Each flow maintained a rate between 14 and 1,204 kb/s
during the experiment

27

Experiments (cont’d)
• Setup including two high-speed ethernets on each side of

the bottleneck T1 links (see below)

• WFQ and WRED (QoS features of routers) were disabled
to reflect the current setup of Internet routers

Cisco
3620

Cisco
3620

Cisco
3660 Catalyst

2912

Client Server

Catalyst
2912

T1 T1
10 mb/s 10 mb/s

100 mb/s100 mb/s

28

Scalability Results
• The following figure shows packet loss pn for all schemes

as a function of n

0%

15%

30%

45%

2 6 10 14 18 22 26 30 34 38 42 46 50

number of flows n

p
ac

ke
t

lo
ss

p
n

AIMD IIAD TFRC ISCC SQRT

29

Scalability Results (cont’d)
• All non-scalable schemes suffered from high packet loss

rates:
– as high as 45% in IIAD (p2 = 0.29%, s50 = 151)
– 32% in SQRT (p2 = 0.10%, s50 = 268)
– 27% in TFRC (p2 = 0.27%, s50 = 74)
– 22% in AIMD (p2 = 0.38%, s50 = 59)

• ISCC maintained virtually constant loss at 3% (p2 =
0.57%, s50 = 5.6)

• In non-scalable schemes, underflow events in the base
layer were frequent, even given a large startup delay (3
seconds):
– IIAD and SQRT maintained no picture for up to 66% of the time
– AIMD and TFRC between 11 and 40% of the time

30

Scalability Results (cont’d)
• The ISCC scheme recovered all base-layer and

FGS-layer frames before their deadlines

• This in fact represents an “ideal” performance for
the end-user

31

Drawbacks
• However, ideal performance comes at a price:

– All flows must acquire consistent estimates of the bandwidth

– Ideally-scalable schemes are too TCP-friendly

– In fact, ISCC will yield bandwidth to TCP due to its less-
aggressive behavior

– Differentiated Services (DiffServ) is required in the network

– Efficiency is similar to that of AIMD, but convergence is slower

• The Internet is moving toward DiffServ

• Hence it is possible that UDP and TCP traffic will end up
in different router queues

• ISCC is possible in DiffServ-enabled Internet

32

Congestion Control Conclusion

• Applications with rate-based flow control are very
sensitive to what kind of congestion control is employed

• Hence, traditional schemes designed for ACK-based
protocols are not well suited for NACK-based protocols

• At the same time, ACK-based flow control is poorly
suited for real-time streaming

• Consequently, future real-time streaming protocols
should only use congestion control that scales well in the
presence of a large number of concurrent flows

• One such class of scalable schemes was developed in
our work and is called ISCC

	Increase-Decrease Congestion Control for Real-time Streaming: Scalability
	Motivation
	Motivation (cont’d)
	Overview of the Talk
	Background (Overview)
	Background (cont’d)
	Background (summary)
	Congestion Control (overview)
	Overview (cont’d)
	Overview (cont’d)
	Overview (cont’d)
	Overview (cont’d)
	Overview (cont’d)
	Scalability of Congestion Control
	Scalability (cont’d)
	Scalability (cont’d)
	Scalability (cont’d)
	Scalability Examples
	Scalability Examples (cont’d)
	Scalability Limitations
	Scalability Limitations (cont’d)
	Scalability Limitations (cont’d)
	Ideal Scalability
	Ideal Scalability (cont’d)
	ISCC
	Experiments
	Experiments (cont’d)
	Scalability Results
	Scalability Results (cont’d)
	Scalability Results (cont’d)
	Drawbacks
	Congestion Control Conclusion

