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Abstract – In this paper, we analyze the dynamics of a seven-
month real-time streaming experiment, which was conducted 
between a number of unicast dialup clients, connecting to the 
Internet through access points in more than 600 major U.S. cities, 
and a backbone video server. During the experiment, the clients 
streamed low-bitrate MPEG-4 video sequences from the server 
over paths with more than 5,000 distinct Internet routers. We 
describe the methodology of the experiment and the architecture 
of our NACK-based streaming application, study end-to-end dy-
namics of 16 thousand ten-minute sessions (85 million packets), 
and analyze the behavior of the following network parameters: 
packet loss, round-trip delay, and packet reordering. We also 
study the impact of these parameters on the quality of real-time 
streaming (i.e., the number of underflow events). 

I. INTRODUCTION 
The behavior of the Internet has been the target of numerous 

studies, but nevertheless, its performance from the perspective 
of an average home user still remains relatively undocumented. 
At the same time, we believe that since end users are responsi-
ble for a large fraction of Internet traffic, the study of network 
conditions experienced by these users is an important research 
topic. This is the reason that compelled us to conduct a funda-
mentally different performance study that looks at Internet 
dynamics from the angle of an average Internet user. 

In addition, even though the end-to-end performance of the 
Internet has been extensively analyzed in the past, an over-
whelming majority of previous studies were based on TCP or 
ICMP traffic. On the other hand, real-time streaming protocols 
have not received as much attention in these studies. In fact, 
the dynamics of NACK-based UDP protocols (not necessarily 
real-time) have been the focus of only a few research studies 
(e.g., [14]).  

The Internet has been studied using TCP traffic by Paxson 
[18], Bolliger et al. [3], Caceres et al. [7], Mogul [16], and 
several others (e.g., [2]). Paxson’s study included 35 geo-
graphically distributed sites in 9 countries; Bolliger et al. em-
ployed 11 sites in 7 countries; whereas the majority of other 
researchers monitored transit TCP traffic at a single backbone 
router [2], [16] or inside several campus networks [7] for the 
duration ranging from several hours to several days. In addi-
tion, several other studies employed ICMP probes [1], [17], 
[18], UDP echo packets [5], [6], and multicast backbone 
(MBone) audio packets [25]. With the exception of the last 
study, neither the setup, nor the type of probe traffic of prior 
work represented realistic real-time streaming scenarios.  

Among the studies that specifically sent audio/video traffic 
over the Internet (e.g., [4], [8], [22], [23]), the majority of ex-
periments involved only a few Internet paths, lasted for a short 
period of time, and focused on analyzing the features of the 

proposed scheme rather than the impact of Internet conditions 
on real-time streaming. 

The methodology used in prior large-scale TCP experiments 
(e.g., [3], [18]) was similar and involved a topology where 
each participating site was paired with every other participat-
ing site for an FTP-like transfer. Although this setup approxi-
mates well the current use of TCP in the Internet, future enter-
tainment-oriented streaming services, however, are more likely 
to involve a small number of backbone video servers and a 
large number of home users.1 

We believe that in order to study the current dynamics of 
real-time streaming in the Internet, we must take the same 
steps to connect to the Internet as an average end-user2 (i.e., 
through dialup ISPs). For example, ISPs often experience con-
gestion in their own backbones, and during busy hours, V.90 
modems in certain access points are not available due to high 
user demand, none of which can be captured by studying the 
Internet from a small campus network directly connected to the 
Internet backbone. 

Furthermore, the sending rate of a TCP connection is driven 
by its congestion control, which can often cause increased 
packet loss and higher end-to-end delays in the path along 
which it operates (e.g., during slow start). In our experiment, 
we measured true end-to-end path dynamics without the bias 
of congestion control applied to slow modem links.3 Addition-
ally, our decision not to use congestion control was influenced 
by the evidence that the majority of streaming traffic in the 
current Internet employs constant-bitrate (CBR) video streams 
[20], where the user explicitly selects the desired streaming 
rate from the corresponding web page (note that the additional 
rate adaptation implemented in [20] is very rudimentary and 
could hardly be considered congestion control). 

In this paper, we present the methodology and analyze the 
results of a seven-month large-scale real-time streaming ex-
periment, which involved three nation-wide dialup ISPs, each 
with several million active subscribers in the United States. 
The topology of the experiment consisted of a backbone video 
server streaming MPEG-4 video sequences to unicast home 
users located in more than 600 major U.S. cities. The stream-
ing was performed in real-time (i.e., with a real-time decoder), 
utilized UDP for the transport of all messages, and relied on 
                                                 
1 Our work focuses on non-interactive streaming applications where the user 
can tolerate short (i.e., in the order of several seconds) startup delays (e.g., TV 
over the Internet). 
2 Recent market research reports (e.g., [9], [11]) show that in Q2 of 2001, 
approximately 87-89% of U.S. households used dialup access to connect to the 
Internet. Furthermore, it is predicted [9], [10] that even in 2005, the majority of 
U.S. households will still be using dialup modems.  
3 Without a doubt, future real-time streaming protocols will include some form 
of scalable congestion control. 
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simple NACK-based retransmission to recover lost packets 
before their decoding deadlines.  
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Even though we consider it novel and unique in many as-
pects, there is an important limitation to our study. Our ex-
periments document Internet path dynamics perceived by low-
bitrate streaming sessions. Recall that one of the goals of our 
work was to conduct a performance study of the Internet from 
the angle of a typical home Internet user, and to this extent, we 
consider our work to be both thorough and successful. In addi-
tion, by focusing on low-bitrate paths, our study shows the 
performance of real-time protocols under the most difficult 
network conditions (i.e., large end-to-end delays, relatively 
high bit-error rates, low available bandwidth, etc.) and pro-
vides a “lower bound” on the performance of future Internet 
streaming applications. 

Figure 1. Topology of the experiment. 

The remainder of the paper is organized as follows. Section 
II describes the methodology of the experiment. Section III 
provides an overview of the experiment. Section IV studies 
packet loss, section V analyzes the frequency of underflow 
events, section VI looks at the behavior of the round-trip delay, 
and section VII examines the extent of packet reordering dur-
ing the experiment. Section VIII concludes the paper. 

II. METHODOLOGY 

A. Setup of the Experiment 

We started our work by attaching a Unix video server (lo-
cated at Philips Research USA) to the UUNET backbone via a 
T1 link (Figure 1). To support the client’s connectivity to the 
Internet, we selected three major nation-wide dialup ISPs 
(which we call ISPa, ISPb, and ISPc), each with at least five 
hundred V.90 (i.e., 56 kb/s) dialup numbers in the U.S., and 
designed an experiment in which hypothetical Internet users 
dialed a local access number to reach the Internet and streamed 
video sequences from the server. Although the clients were 
physically placed in our lab in the state of New York, they 
dialed long-distance phone numbers and connected to the 
Internet through ISPs’ access points located in each of the 50 
U.S. states. Our database of phone numbers included 1,813 
different V.90 access points in 1,188 major U.S. cities.  

After the phone database was in place, we designed and im-
plemented special software, which we call the dialer, that di-
aled phone numbers from the database, connected to the ISPs 
using the point-to-point protocol (PPP), and issued a parallel 
traceroute4 to the server. Upon success of the traceroute, the 
dialer started the video client with the instructions to stream a 
ten-minute video sequence from the server.  

In our analysis of the data, we attempted to isolate clearly 
modem-related pathologies (such as packet loss caused by a 
poor connection over the modem link and large RTTs due to 
data-link retransmission) from those caused by congested 
routers of the Internet. Thus, connections that were unable to 
complete a traceroute to the server, connections with high bit-
error rates (BER), and connections during which the modem 
could not sustain our streaming rates were all considered use-
less for our study and were excluded from the analysis in this 
paper. 

                                                 

                                                

4 The ICMP traceroute probes were sent in parallel instead of sequentially to 
facilitate a quicker discovery of intermediate routers. 

In order to make the experiment reasonably short, we con-
sidered all phone numbers from the same state to be equiva-
lent, and consequently, we assumed that a successful streaming 
attempt through any phone number of a state indicated a suc-
cessful coverage of the state regardless of which phone number 
was used. Furthermore, we divided each 7-day week into 56 
three-hour timeslots (i.e., 8 timeslots per day) and designed the 
dialer to select phone numbers from the database in such order 
so that each state would be successfully covered within each of 
the 56 timeslots at least once. In other words, each ISP needed 
to sustain exactly 50⋅56 = 2,800 successful sessions before the 
experiment was allowed to end.  

B. Real-time Streaming 

For the purpose of the experiment, we used an MPEG-4 en-
coder to create two ten-minute QCIF (176x144) video streams. 
The first stream, which we call S1, was coded at the video bi-
trate of 14 kb/s (size 1.05 MBytes), and the second stream, 
which we call S2, was coded at 25 kb/s (size 1.87 MBytes). The 
experiment with stream S1 lasted during November – Decem-
ber 1999 and the one with stream S2 was an immediate follow-
up during January – May 2000.  

During the transmission of each video stream, the server 
split it into 576-byte IP packets. Stream S1 consisted of 4,188 
packets, and stream S2 consisted of 5,016 packets. Video 
frames always started on a packet boundary, and consequently, 
the last packet in each frame was allowed to be smaller than 
others (in fact, many P (prediction-coded) frames were smaller 
than the maximum payload size and were carried in a single 
UDP packet). As a consequence of the packetization overhead, 
the IP bitrates (i.e., including IP, UDP, and our special 8-byte 
headers) for streams S1 and S2 were 16.0 and 27.4 kb/s, respec-
tively. 

In our streaming experiment, the term real-time refers to the 
fact that the video decoder was running in real-time. Recall 
that each compressed video frame has a specific decoding 
deadline, which is usually based on the time of the frame’s 
encoding. If a compressed video frame is not fully received by 
the decoder buffer at the time of its deadline, the video frame is 
discarded and an underflow event is registered.  

In order to compensate for one-way delay jitter and allow re-
transmissions, many real-time streaming protocols pre-buffer 
video data before starting the decoding process [8], [20]. The 
duration of such pre-buffering is called the startup delay5 of a 
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5 Note that many video coding schemes require that an additional startup delay 
be applied to the decoder buffer. This additional delay is called the ideal 
startup delay and is derived from the encoder buffer model [19], [21]. To 
avoid confusion, we entirely avoid the discussion of the ideal startup delay in 
this paper. 
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Figure 2. Success of streaming attempts during the day. 
Figure 3. The number of cities per state that participated in either D1 or D2. 

session. In all our experiments, we used a startup delay equal 
to 2,700 ms, which was manually selected based on prelimi-
nary testing. 

We tested the software and the concept of a wide-scale ex-
periment of this sort for nine months before we felt comfort-
able with the setup, the reliability of the software, and the ex-
haustiveness of the collected statistics. In addition to extensive 
testing of the prototype for nine months, we monitored various 
statistics reported by the clients in real-time (i.e., on the screen) 
during the experiments for sanity and consistency with previ-
ous tests.  

C. Client-Server Architecture 

For the purpose of our experiment, we implemented a client-
server architecture for MPEG-4 streaming over the Internet. 
The server was fully multithreaded to ensure that the transmis-
sion of packetized video was performed at the target IP bitrate 
of each streaming session and to provide quick response to 
clients’ NACK requests. The streaming was implemented in 
bursts of packets (with the burst duration Db varying between 
340 and 500 ms depending on the bitrate) for the purposes of 
making the server as low-overhead as possible (for example, 
RealAudio servers use Db = 1,800 ms [15]). Although we agree 
that in many cases the desired way of sending constant bitrate 
(CBR) traffic is to equally space packets during transmission, 
there are practical limitations (such as OS scheduling and inter-
process switching delays) that often do not allow us to follow 
this model. 

Our traces consist of six datasets, each collected by a differ-
ent machine. Throughout this paper, we will use notation Dn

x 
to refer to the dataset collected by the client assigned to ISPx (x 
= a, b, c) during the experiment with stream Sn (n = 1, 2). Fur-
thermore, we will use notation Dn to refer to the combined set 
{Dn

a ∪ Dn
b ∪ Dn

c}. 

III. EXPERIMENT OVERVIEW 
In dataset D1, the three clients performed 16,783 long-

distance connections to the ISPs’ remote modems and success-
fully completed 8,429 streaming sessions.8 In D2, the clients 
performed 17,465 modem connections and sustained 8,423 
successful sessions. Analysis of the above numbers suggests 
that in order to receive real-time streaming material with a 
minimum quality at 16 to 27.4 kb/s, an average U.S. end-user, 
equipped with a V.90 modem, needs to make approximately 
two dialing attempts to the ISPs’ phone numbers within the 
state where the user resides. The success rate of streaming ses-
sions during different times of the day is illustrated in Figure 2. 
Note the dip by a factor of two between the best and the worst 
times of the day. 

The second and the more involved part of our architecture, 
the client, was designed to recover lost packets through 
NACK-based retransmission and collect extensive statistics 
about each received packet and each decoded frame. Further-
more, as it is often done in NACK-based protocols, the client 
was in charge of collecting round-trip delay (RTT) samples.6 
The measurement of the RTT involved the following two 
methods. In the first method, each successfully recovered 
packet provided a sample of the RTT (i.e., the RTT was the 
duration between sending a NACK and receiving the corre-
sponding retransmission). In our experiment, in order to avoid 
the ambiguity of which retransmission of the same packet ac-
tually returned to the client, the header of each NACK request 
and each retransmitted packet contained an extra field specify-
ing the retransmission attempt of the packet.  

Furthermore, in dataset D1, the clients traced the arrival of 
37.7 million packets, and in D2, the arrival of additional 47.3 
million (for a total of 85 million). In terms of bytes, the first 
experiment transported 9.4 GBytes of video data and the sec-
ond one transported another 17.7 GBytes (for a total of 27.1 
GBytes).  The second method of measuring the RTT was used by the 

client to obtain additional samples of the round-trip delay in 
cases when network packet loss was too low. The method in-
volved periodically sending simulated retransmission requests 
to the server if packet loss was below a certain threshold. In 
response to these simulated NACKs, the server included the 
usual overhead7 of fetching the needed packets from the stor-
age and sending them to the client. In our experiment, the cli-
ent activated simulated NACKs, spaced 30 seconds apart, if 
packet loss was below 1%. 

Recall that each experiment lasted for as long as it was nec-
essary to cover the entire United States. Depending on the suc-
cess rate within each state, the access points used in the ex-
periment comprised a subset of our database. In D1, the ex-
periment covered 962 dialup points in 637 U.S. cities, and in 
D2, it covered 880 dialup points in 575 U.S. cities. Figure 3 
shows the combined (i.e., including both datasets D1 and D2) 
number of distinct cities in each state covered by our experi-
ment (1,003 access points in 653 cities). 

                                                 
                                                 
8 Typical reasons for failing a session were PPP-layer connection problems, 
inability to reach the server (i.e., failed traceroute), high bit-error rates, low 
(14.4-19.2 kb/s) connection rates, and insufficient bandwidth. 

6 The resolution of the timestamps was 100 microseconds. 
7 The server overhead was below 10 ms for all retransmitted packets. 
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During the experiment, each session was preceded by a par-
allel traceroute, which recorded the IP addresses of all discov-
ered routers (DNS and WHOIS9 lookups were done off-line 
after the experiments were over). Dataset D1 recorded 3,822 
distinct Internet routers, D2 recorded 4,449 distinct routers, and 
both experiments combined produced the IP addresses of 5,266 
unique routers. The majority of the discovered routers be-
longed to the ISPs’ networks (51%) and UUNET (45%), which 
confirmed our intuition that all three ISPs had direct peering 
connections with UUNET. Moreover, our traces recorded ap-
proximately 200 routers that belonged to five additional 
Autonomous Systems (AS).  
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Figure 6. Average per-state packet loss rates. 

The average end-to-end hop count was 11.3 in D1 (6 mini-
mum and 17 maximum) and 11.9 in D2 (6 minimum and 22 
maximum). Figure 4 shows the distribution of the number of 
hops in the encountered end-to-end paths in each of D1 and D2. 
As the figure shows, the majority of paths (75% in D1 and 65% 
in D2) contained between 10 and 13 hops.  

In dataset D1p, the average recorded packet loss rate was 
0.53% and in D2p, it was 0.58%. Even though these rates are 
much lower10 than those traditionally reported by Internet re-
searchers during the last decade, they are still somewhat higher 
than those reported by backbone ISPs [24]. Furthermore, 38% 
of the sessions in {D1p∪D2p} did not experience any packet 
loss, 75% experienced loss rates below 0.3%, and 91% experi-
enced loss rates below 2%. On the other hand, 2% of the ses-
sions suffered packet loss rates 6% or higher.  

Throughout the rest of the paper, we restrict ourselves to 
studying only successful (as defined in section II.A) sessions in 
both D1 and D2. We call these new purged datasets (with only 
successful sessions) D1p and D2p, respectively (purged datasets 
Dnp

x are defined similarly for n = 1, 2 and x = a, b, c). Recall 
that {D1p∪D2p} contains 16,852 successful sessions, which are 
responsible for 90% of the bytes and packets, 73% of the 
routers, and 74% of the U.S. cities recorded in {D1∪D2}.  

In addition, as we expected, average packet loss rates exhib-
ited a wide variation during the day. Figure 5 shows the evolu-
tion of loss rates as a function of the timeslot (i.e., the time of 
day), where each point represents the average of approximately 
1,000 sessions. As the figure shows, the variation in loss rates 
between the best (3-6 am) and the worst (3-6 pm) times of the 
day was almost by a factor of four. 

IV. PACKET LOSS 
A. Overview 

The apparent discontinuity in Figure 5 between timeslots 7 
(21:00-0:00) and 0 (0:00-3:00) is due to the coarse timescale 
used in the figure. On finer timescales (e.g., minutes), loss 
rates converge to a common value near midnight. A similar 
discontinuity in packet loss rates was reported by Paxson [18] 
for North American sites, where packet loss during timeslot 7 
was approximately twice as high as that during timeslot 0.  

Numerous researchers have studied Internet packet loss, and 
due to the enormous diversity of the Internet, only few studies 
agree on the average packet loss rate and the average loss burst 
length (i.e., the number of packets lost in a row). Among nu-
merous studies, the average Internet packet loss was reported 
to vary between 11% and 23% by Bolot [5] depending on the 
inter-transmission spacing between packets, between 0.36% 
and 3.54% by Borella et al. [6] depending on the studied path, 
between 1.38% and 11% by Yajnik et al. [25] depending on 
the location of the MBone receiver, and between 2.7% and 
5.2% by Paxson [18] depending on the year of the experiment. 
In addition, 0.49% average packet loss rate was recently re-
ported by Balakrishnan et al. [2], who analyzed the dynamics 
of a large number of TCP web sessions at a busy Internet 
server. 

                                                 

                                                

The variation in the average per-state packet loss (as shown 
in Figure 6) was quite substantial (from 0.2% in Idaho to 1.4% 
in Oklahoma), but virtually did not depend on the state’s aver-
age number of end-to-end hops (correlation coefficient ρ was 
only –0.04) or the state’s average RTT (correlation –0.16). 
However, as we will see later, the average per-state RTT and 

 
10 Note that during the experiment, simply dialing a different access number in 
most cases fixed the problem of high packet loss. This fact shows that the 
majority of failed sessions documented pathologies created by the modem (or 
the access point) rather than the actual packet loss in the Internet. Since an 
end-user can always re-dial a bad connection searching for better network 
conditions, we believe that the bias created by removing failed sessions reflects 
the actions of a typical Internet user. 

9 The WHOIS database was used to discover the Autonomous System (AS) of 
each router. 
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the number of end-to-end hops were in fact positively corre-
lated. 

B. Loss Burst Lengths 

We next attempt to answer the question of how bursty Inter-
net packet loss was during the experiment. Figure 7 shows the 
distribution (both the PDF and the CDF) of loss burst lengths 
in {D1p∪D2p} (without loss of generality, the figure stops at 
burst length 20, covering more than 99% of the bursts). Even 
though the upper tail of the distribution had very few samples, 
it was fairly long and reached burst lengths of over 100 pack-
ets. 

Figure 7 is based on 207,384 loss bursts and 431,501 lost 
packets. The prevalence of single packet losses, given the fact 
that packets in our experiment were injected into the Internet in 
bursts at the T1 speed11, leads us to speculate that either router 
queues sampled in our experiment overflowed on timescales 
smaller than the time needed to transmit a single IP packet over 
a T1 link (i.e., 3 ms for the largest packets and 1.3 ms for the 
average-size packets), or that backbone routers employed Ran-
dom Early Detection (RED) for preventing congestion. How-
ever, a second look at the situation reveals that server’s possi-
ble interleaving of packets from different sessions could have 
expanded each flow’s inter-packet transmission distance. Fur-
thermore, before each lost packet reached the corresponding 
congested router, packets from other Internet flows could have 
queued immediately behind the lost packet, effectively expand-
ing the inter-packet distance even further. Therefore, our initial 
speculation about the duration of buffer overflows during the 
experiment may not hold in all cases. 

On the other hand, to investigate the presence of RED in the 
Internet, we contacted several backbone and dialup ISPs whose 
routers were recorded in our trace data and asked them to 
comment on the deployment of RED in their backbones. 
Among the ISPs that responded to our request, the majority 
had purposely disabled RED and the rest were running RED 
only for select customers at border routers, but not on the pub-
lic backbone. Consequently, we conclude that even though the 
analysis of our datasets points towards transient (i.e., 1-3 ms) 
buffer overflows in the Internet routers sampled by our ex-
periment, we cannot reliably determine the exact duration of 
these events. 

As previously pointed out by many researchers [25], the up-
per tail of loss burst lengths usually contains a substantial per-

centage of all lost packets. In each of D1p and D2p, single-
packet bursts contained only 36% of all lost packets, bursts two 
packets or shorter contained 49%, bursts 10 packets or shorter 
contained 68%, and bursts 30 packets or shorter contained 
82%. At the same time, 13% of all lost packets were dropped 
in bursts at least 50 packets long. 

Traditionally, the burstiness of packet loss is measured by 
the average loss burst length. In the first dataset (D1p), the av-
erage burst length was 2.04 packets. In the second dataset 
(D2p), the average burst length was slightly higher (2.10), but 
not high enough to conclude that the higher bitrate of stream S2 
was clearly responsible for burstier packet loss. Furthermore, 
the conditional probability of packet loss, given that the previ-
ous packet was also lost, was 51% in D1p and 53% in D2p. 
These numbers are consistent with those previously reported in 
the literature. Bolot [5] observed the conditional probability of 
packet loss to range from 18% to 60% depending on inter-
packet spacing during transmission, Borella et al. [6] from 
10% to 35% depending on the time of day, and Paxson [18] 
reported 50% conditional probability for loaded (i.e., queued 
behind the previous) TCP packets and 25% for unloaded pack-
ets. Using Paxson’s terminology, the majority of our packets 
were loaded since the server sent packets in bursts at a rate 
higher than the bottleneck link’s capacity. 

C. Loss Burst Durations 

To a large degree, the average loss burst length depends on 
how closely the packets are spaced during transmission. As-
suming that bursty packet loss comes from buffer overflow 
events in drop-tail queues rather than from consecutive hits by 
RED or from bit-level corruption, it is clear that all packets of 
a flow passing through an overflown router queue will be 
dropped for the duration of the instantaneous congestion. 
Hence, the closer together the flow’s packets arrive to the 
router, the more packets will be dropped during each queue 
overflow. This fact was clearly demonstrated in Bolot’s ex-
periments [5], where UDP packets spaced 8 ms apart suffered 
larger loss burst lengths (mean 2.5 packets) than packets 
spaced 500 ms apart (mean 1.1 packets). Yajnik et al. [25] re-
ported a similar correlation between loss burst lengths and the 
distance between packets. Consequently, instead of analyzing 
burst lengths, one might consider analyzing burst durations 
since the latter does not depend on inter-packet spacing during 
transmission. 

Using our traces, we can only infer an approximate duration 
of each loss burst, because we do not know the exact time 
when the lost packets were supposed to arrive to the client (the 
exact arrival time depends on the end-to-end delay jitter suf-

                                                 
11 The server was only involved in low-bitrate streaming for our clients and did 
not have a problem blasting bursts of packets at the full speed of the adjacent 
link (i.e., 10 mb/s). The spacing between packets was further expanded by the 
T1 link to UUNET. 
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fered by each lost packet). Hence, for each loss event, we de-
fine the loss burst duration as the time elapsed between the 
receipt of the packet immediately preceding the loss burst and 
the packet immediately following the loss burst. Figure 8 
shows the distribution (CDF) of loss burst durations in sec-
onds. Although the distribution tail is quite long (up to 36 sec-
onds), the majority (more than 98%) of loss burst durations in 
both datasets D1p and D2p fall under 1 second. Paxson’s study 
[18] also observed large loss burst durations (up to 50 sec-
onds), however, only 60% of the loss bursts studied by Paxson 
were contained below 1 second. In addition, our traces showed 
that the average distance between lost packets in the experi-
ment was 172-188 good packets, or 21-27 seconds, depending 
on the streaming rate. 

D. Heavy Tails 

In conclusion of this section, it is important to note that 
packet losses sometimes cannot be modeled as independent 
events due to buffer overflows that last long enough to affect 
multiple adjacent packets. Consequently, future real-time pro-
tocols should expect to deal with bursty packet losses (Figure 
7) and possibly heavy-tailed distributions of loss burst lengths 
(see below).  

Several researchers reported a heavy-tailed nature of loss 
burst lengths, and the shape parameter α of the Pareto distribu-
tion fitted to the length (or duration) of loss bursts was re-
corded to range from 1.06 (Paxson [18]) to 2.75 (Borella et al. 
[6]). On the other hand, Yajnik et al. [25] partitioned the col-
lected data into stationary segments and reported that loss burst 
lengths could be modeled as exponential (i.e., not heavy-tailed) 
within each stationary segment. In addition, Zhang et al. [26] 
reported that packet loss along some Internet paths was sta-
tionary and could be modeled as exponential, whereas other 
paths were found to be non-stationary and not easy to model. 

Using intuition, it is clear that packet loss and RTT random 
processes in both D1p and D2p are expected to be non-
stationary. For example, the non-stationarity can be attributed 
to the time of day or the location of the client. In either case, 
we see three approaches to modeling such non-stationary data. 
In the first approach, we would have to analyze 16,852 PDF 
functions (one for each session) for stationarity and heavy tails. 
Unfortunately, an average session contained only 24 loss 
bursts, which is insufficient to build a good distribution func-
tion for a statistical analysis. 

The second approach would be to combine all sessions into 
groups, which are intuitively perceived to be stationary (e.g., 
according to the access point or the timeslot), and then perform 

similar tests for stationarity and heavy tails within each group. 
We might consider this direction for future work.  
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The third approach is to do what the majority has done in the 
past – assume that all data samples belong to a stationary proc-
ess and are drawn from a single distribution. Using this last 
approach, Figure 9 shows a log-log plot of the complementary 
CDF function from Figure 7 with a least-squares fit of a 
straight line representing a hyperbolic (i.e., heavy-tailed) dis-
tribution (the dotted curve is the exponential distribution fitted 
to the data). The fit of a straight line is excellent (with correla-
tion  = 0.99) and provides a strong indication that the distri-
bution of loss burst lengths in the combined dataset {D1p∪D2p} 
is 

ρ

heavy-tailed. Furthermore, as expected, we notice that the 
exponential distribution in Figure 9 decays too quickly to even 
remotely fit the data. 

Figure 9. The complimentary CDF of loss burst lengths in {D1p∪D2p} on a 
log-log scale fitted with hyperbolic (straight line) and exponential (dotted 
curve) distributions. 

Finally, consider a Pareto distribution with CDF F(x) = 1–
(β/x)α and PDF f(x) = αβαx-α-1, where α is the shape parameter 
and β is the location parameter. Using Figure 9, we establish 
that a Pareto distribution with α = 1.34 (finite mean, but infi-
nite variance) and β = 0.65 fits our data very well. 

V. UNDERFLOW EVENTS 
The impact of packet losses on real-time applications is un-

derstood fairly well. Each lost packet that is not recovered be-
fore its deadline causes an underflow event. In addition to 
packet loss, real-time applications suffer from large end-to-end 
delays. However, not all types of delay are equally important 
to real-time applications. As we will show below, one-way 
delay jitter was responsible for 90 times more underflow 
events in our experiment than packet loss combined with large 
RTTs.  

Delays are important for two reasons. First, large round-trip 
delays make retransmissions late for their decoding deadlines. 
However, the RTT is important only to the extent of recovering 
lost packets and, in the worst case, can cause only lost packets 
to be late for decoding. On the other hand, the second kind of 
delay, delay jitter (i.e., one-way delay variation), can poten-
tially cause each data (i.e., non-retransmitted) packet to be late 
for decoding. 

Consider the following. In {D1p∪D2p}, packet loss affected 
431,501 packets, out of which 159,713 (37%) were discovered 
to be missing after their decoding deadlines had passed, and 
consequently, NACKs were not sent for these packets. Out of 
271,788 remaining lost packets, 257,065 (94.6%) were recov-
ered before their deadlines, 9,013 (3.3%) arrived late, and 
5,710 (2.1%) were never recovered (even after multiple re-
transmission attempts). The fact that more than 94% of “recov-
erable” lost packets were actually received before their dead-
lines indicates that retransmission is a very efficient method of 
overcoming packet loss in non-interactive real-time applica-
tions. Clearly, the success rate will be even higher in networks 
with smaller end-to-end delays. 

Before we study underflow events caused by delay jitter, let 
us introduce two types of late retransmissions. The first type 
consists of packets that arrived after the decoding deadline of 
the last frame of the corresponding group of pictures (GOP). 
These packets were completely useless and were discarded. 
The second type of late packets, which we call partially late, 
consists of those packets that missed their own decoding dead-
line, but arrived before the deadline of the last frame of the 
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same GOP. Since the video decoder in our experiment could 
decompress frames at a substantially higher rate than the target 
fps, the client was able to use partially late packets for motion-
compensated reconstruction of the remaining frames from the 
same GOP before their corresponding decoding deadlines. Out 
of 9,013 late retransmissions, 4,042 (49%) were partially late. 
Using each partially late packet, the client was able to save on 
average 4.98 frames from the same GOP12 in D1p and 4.89 
frames in D2p by employing the above-described catch-up de-
coding technique (for more discussion, see [22]).  

The second type of delay, one-way delay jitter, caused 
1,167,979 data (i.e., non-retransmitted) packets to miss their 
decoding deadlines. Hence, the total number of underflow (i.e., 
missing at the time of decoding) packets was 159,713 + 9,013 
+ 5,710 + 1,167,979 = 1,342,415 (1.7% of the number of sent 
packets), which means that 98.9% of underflow packets were 
created by large one-way delay jitter, rather than by pure 
packet loss. Even if the clients had not attempted to recover 
any lost packets, still 73% of the missing packets at the time of 
decoding would have been caused by large delay jitter. Fur-
thermore, these 1.3 million underflow packets caused a 
“freeze-frame” effect for the average duration of 10.5 seconds 
per ten-minute session in D1p and 8.6 seconds in D2p, which 
can be considered excellent given the relatively small startup 
delay used in the experiments. 

To further understand the phenomenon of late packets, we 
plotted in Figure 10 the CDFs of the amount of time by which 
late packets missed their deadlines (i.e., the additional startup 
delay necessary to avoid a certain percentage of underflow 
events) for both late retransmissions and late data packets. As 
the figure shows, 25% of late retransmissions missed their 
deadlines by more than 2.6 seconds, 10% by more than 5 sec-
onds, and 1% by more than 10 seconds (the tail of the CDF 
extends up to 98 seconds). At the same time, one-way delay 
jitter had a more adverse impact on data packets – 25% of late 
data packets missed their deadlines by more than 7 seconds, 
10% by more than 13 seconds, and 1% by more than 27 sec-
onds (the CDF tail extends up to 56 seconds). 

The only way to reduce the number of late packets caused 
by both large RTTs and delay jitter is to apply a larger startup 
delay at the beginning of a session (in addition to freezing the 
display and adding extra startup delays during the session, 
which was not acceptable in our model). Hence, for example, 
Internet applications utilizing a 13-second startup delay (which 
corresponds to 10.3 seconds of additional delay in Figure 10) 

would be able to “rescue” 99% of late retransmissions and 
84% of late data packets in similar streaming conditions. 

Figure 10. CDF functions of the amount of time by which retransmitted and 
data packets were late for decoding. 

Figure 11. PDF functions of the RTT samples in each of D1p and D2p. 

VI. ROUND-TRIP DELAY 
A. Overview 

We should first mention that circuit-switched long-distance 
links through PSTN between our clients and remote access 
points did not significantly influence the measured end-to-end 
delays, because the additional delay on each long-distance link 
was essentially the propagation delay between New York and 
the location of the access point (which is determined by the 
speed of light and the geographical distance, i.e., 16 ms coast 
to coast). Clearly, this delay was negligible compared to the 
queuing and transmission delays experienced by each packet 
along the entire end-to-end path. 

Figure 11 shows the PDF functions of the round-trip delay 
in each of D1p and D2p (660,439 RTT samples in both datasets). 
Although the tail of the combined distribution reached the 
enormous values of 126 seconds for simulated and 102 seconds 
for real retransmissions, the majority (75%) of the samples 
were below 600 ms, 90% below 1 second, and 99.5% below 10 
seconds. The average RTT was 698 ms in D1p and 839 ms in 
D2p. The minimum RTT was 119 and 172 ms, respectively. 
Although very rare, extremely high RTTs were found in all six 
datasets D1p

a – D2p
c (as a reminder, dataset Dnp

x consists of 
successful sessions involving stream Sn and recorded through 
ISPx). Furthermore, out of more than 660 thousand RTT sam-
ples in {D1p∪D2p}, 437 were at least 30 seconds, 32 at least 50 
seconds, and 20 at least 75 seconds.  

Although pathologically high RTTs may seem puzzling at 
first, there is a simple explanation. Modem error correction 
protocols (i.e., the commonly used V.42) implement retrans-
mission for corrupted blocks of data on the physical layer.13 
Error correction is often necessary, if modems negotiate data 
compression (i.e., V.42bis) over the link, and is desirable, if 
PPP Compression Control Protocol (CCP) is enabled on the 
data-link layer. In all our experiments, both types of compres-
sion were enabled, imitating the typical setup of a home user. 
Therefore, if a client established a connection to a remote mo-
dem at a low bitrate (which was sometimes accompanied by a 
significant amount of noise in the phone line), each retransmis-
sion on the physical layer took a large time to complete before 
the data was delivered to the upper layers. In addition, large IP-
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13 Since the telephone network beyond the local loop in the U.S. is mostly 
digital, we believe that dialing long-distance (rather than local) numbers had 
no significant effect on the number of bit errors during the experiment.  12 We used 10-frame GOPs in both sequences. 
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Figure 12. Log-log plot of the upper tails of the distribution of the RTT 
(PDF). The straight line is fitted to the PDF from D2p. 

Figure 13. Average RTT as a function of the time of day. 
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level buffers on either side of the modem link further delayed 
packets arriving to or originating from the client host.  

Note that the purpose of classifying sessions into failed and 
successful in section II.A was to avoid reporting pathological 
conditions caused by the modem links. Since only a handful 
(less than 0.5%) of RTTs in {D1p∪D2p} were seriously effected 
by modem-level retransmission and bit errors (we consider 
sessions with RTTs higher than 10 seconds to be caused by 
modem-related problems14), we conclude that our heuristic was 
successful in filtering out the majority of pathological connec-
tions and that future application-layer protocols, running over a 
modem link, should be prepared to experience RTTs in the 
order of several seconds. 

Figure 14. Average RTT and average hop count in each of the states in 
{D1p∪D2p}. 

Furthermore, the removal of sessions with RTTs higher than 
10 seconds does not change any of the results below and, at the 
same time, prohibits us from showing the extent of variation in 
the network parameters experienced by a home Internet user. 
Therefore, since all sessions in {D1p∪D2p} were able to suc-
cessfully complete, we consider the removal of sessions based 
on their large RTT to be unwarranted. 

B. Heavy Tails 

Mukherjee [17] reported that the distribution of the RTT 
along certain Internet paths could be modeled as a shifted 
gamma distribution. Even though the shape of the PDF in 
Figure 11 resembles that of a gamma function, the distribution 
tails in the figure decay much slower than those of an exponen-
tial distribution (see below).  

Using our approach from section IV.D (i.e., assuming that 
each studied Internet random process is stationary), we ex-
tracted the upper tails of the PDF functions in Figure 11 and 
plotted the results on a log-log scale in Figure 12. The figure 
shows that a straight line (without loss of generality fitted to 
the PDF of D2p in the figure) provides a good fit to the data 
(correlation 0.96) and allows us to model the upper tails of the 
PDF functions in Figure 12 as a Pareto distribution with PDF 
f(x) = αβαx-α-1, where shape parameter α equals 1.16 in dataset 
D1p and 1.58 in D2p (as before, the distributions have a finite 
mean, but an infinite variance). 

C. Variation of the RTT 

We conclude the discussion of the RTT by showing that the 
round-trip delay exhibited a variation during the day similar to 

that of packet loss (previously shown in Figure 5) and that the 
average RTT was positively correlated with the length of the 
end-to-end path. Figure 13 shows the average round-trip delay 
during each of the eight timeslots of the day (as before, each 
point in the figure represents the average of approximately 
1,000 sessions). The figure confirms that the worst time for 
sending traffic over the Internet is between 9 am and 6 pm 
EDT and shows that the increase in the delay during the peak 
hours was relatively small (i.e., by only 30-40%). 

Figure 14 shows the average RTT sampled by the clients in 
each of the 50 U.S. states. The average round-trip delay was 
consistently high (above 1 second) for three states – Alaska, 
New Mexico, and Hawaii. On the other hand, the RTT was 
consistently low (below 600 ms) also for three states – Maine, 
New Hampshire, and Minnesota. These results (except Minne-
sota) can be directly correlated with the distance from New 
York; however, in general, we find that the geographical dis-
tance of the access point from the East Coast had little correla-
tion with the average RTT. Thus, for example, some states in 
the Midwest had small (600-800 ms) average round-trip delays 
and some states on the East Coast had large (800-1000 ms) 
average RTTs. A more substantial link can be established be-
tween the number of end-to-end hops and the average RTT as 
shown in Figure 14. Even though the average RTT of many 
states did not exhibit a clear dependency on the average length 
of the path, the correlation between the RTT and the number of 
hops in Figure 14 was reasonably high with ρ = 0.52. This re-
sult was intuitively expected since the RTT is essentially the 
sum of queuing and transmission delays at intermediate 
routers. 

VII. PACKET REORDERING 
                                                 A. Overview 14 For example, one of the authors uses a modem access point at home with IP-
level buffering on the ISP side equivalent to 6.7 seconds. Consequently, delays 
as high as 5-10 seconds may often be caused by non-pathological conditions. 

Real-time protocols often rely on the assumption that packet 
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Figure 15. The PDF of reordering delay Dr in {D1p∪D2p}. Figure 16. The PDF of reordering distance dr in {D1p∪D2p}. 

reordering in the Internet is a rare and an insignificant event for 
all practical purposes (e.g., [8]). Although this assumption 
simplifies the design of a protocol, it also makes the protocol 
poorly suited for the use over the Internet. Certainly, there are 
Internet paths along which reordering is either non-existent or 
extremely low. At the same time, there are paths that are domi-
nated by multipath routing effects and often experience reor-
dering (e.g., Paxson [18] reported a session with 36% of pack-
ets arriving out of order).  

Unfortunately, there is not much data documenting reorder-
ing rates experienced by IP traffic over modem links. Using 
intuition, we expected reordering in our experiments to be ex-
tremely rare given the low bitrates of streams S1 and S2. How-
ever, we were surprised to find out that certain paths experi-
enced consistent reordering with a relatively large number of 
packets arriving our of order, although the average reordering 
rates in our experiments were substantially lower than those 
reported by Paxson [18]. 

For example, in dataset D1p
a, we observed that out of every 

three missing15 packets one was reordered. Hence, if users of 
ISPa employed a streaming protocol, which used a gap-based 
detection of lost packets [8] (i.e., the first out-of-order packet 
triggers a NACK), 33% of NACKs would be flat-out redun-
dant and a large number of retransmissions would be unneces-
sary, causing a noticeable fraction of ISP’s bandwidth to be 
wasted. 

Since each missing packet is potentially reordered, the true 
frequency of reordering can be captured by computing the per-
centage of reordered packets relative to the total number of 
missing packets. The average reordering rate in our experiment 
was 6.5% of the number of missing packets, or 0.04% of the 
number of sent packets. These numbers show that our reorder-
ing rates were at least by a factor of 10 lower than those re-
ported by Paxson [18], whose average reordering rates varied 
between 0.3% and 2% of number of sent packets depending on 
the dataset. This difference can be explained by the fact that 
our experiment was conducted at substantially lower end-to-
end bitrates, as well as by the fact that Paxson’s experiment 
involved several paths with extremely high reordering rates. 

Out of 16,852 sessions in {D1p∪D2p}, 1,599 (9.5%) experi-
enced at least one reordering. Interestingly, the average session 
reordering rates in our datasets were very close to those in Pax-
son’s 1995 data [18] (12% sessions with at least one reorder-
ing), despite the fundamental differences in sending rates. The 
highest reordering rate per ISP in our experiment occurred in 
D1p

a, where 35% of the number of missing packets (0.2% of 

the number of sent packets) turned out to be reordered. In the 
same D1p

a, almost half of the sessions (47%) experienced at 
least one reordering event. Furthermore, the maximum number 
of reordered packets in a single session occurred in D1p

b and 
was 315 packets (7.5% of the number of sent packets).  

Interestingly, the reordering probability did not show any 
dependence on the time of day (i.e., the timeslot), and was vir-
tually the same for all states. 

B. Reordering Delay 

To further study packet reordering, we define two metrics 
that allow us to measure the extent of packet reordering. First, 
let packet reordering delay Dr be the delay from the time when 
a reordered packet was declared as missing to the time when 
the reordered packet arrived to the client. Second, let packet 
reordering distance dr be the number of packets (including the 
very first out-of-sequence packet, but not the reordered packet 
itself) received by the client during reordering delay Dr.  

Figure 15 shows the PDF of reordering delay Dr in 
{D1p∪D2p}. The largest reordering distance dr in the combined 
dataset was 10 packets, and the largest reordering delay Dr was 
20 seconds (however, in the latter case, dr was only 1 packet). 
Although quite large, the maximum value of Dr is consistent 
with previously reported numbers (e.g., 12 seconds in Paxson’s 
data [18]). The majority (90%) of samples in Figure 15 are 
below 150 ms, 97% below 300 ms, and 99% below 500 ms. 

C. Reordering Distance 

We next analyze the suitability of TCP’s triple-ACK scheme 
in helping NACK-based protocols detect reordering. TCP’s 
fast retransmit relies on three consecutive duplicate ACKs 
(hence the name “triple-ACK”) from the receiver to detect 
packet loss and avoid unnecessary retransmissions. Therefore, 
if reordering distance dr is either 1 or 2, the triple-ACK scheme 
successfully avoids duplicate packets, and if dr is greater than 
or equal to 3, it generates a duplicate packet.  

Figure 16 shows the PDF of reordering distance dr in both 
datasets. Using the figure, we can infer that TCP’s triple-ACK 
would be successful for 91.1% of the reordering events in our 
experiment, double-ACK for 84.6%, and quadruple-ACK for 
95.7%. Note that Paxson’s TCP-based data [18] show similar, 
but slightly better detection rates, specifically 95.5% for triple-
ACK, 86.5% for double-ACK, and 98.2% for quadruple-ACK.  

VIII. CONCLUSION 
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Our study showed that approximately half of all phone calls 
were unsuccessful and that typical U.S. users needed to re-dial 
connections on average once within the same state in order to                                                  

15 Missing packets are defined as gaps in sequence numbers. 
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sustain the minimum quality of service (QoS) that allowed 
them to receive low-bitrate Internet video. Our study found 
that an overwhelming majority of failures experienced by an 
end-user were caused by modem-to-modem pathologies, which 
included physical-layer connectivity problems (including failed 
negotiations and 14.4-19.2 kb/s negotiated bitrates), unrespon-
sive modems that did not pick up the phone, busy phone lines, 
failed PPP negotiation (including failed user authentication, 
PPP timeouts, port disconnects by the remote modem, and 
various other PPP errors), failed traceroute to the server, and 
various IP-level problems that prevented UDP packets from 
bypassing the first-hop router inside the ISP network. 

Interestingly, we found that large end-to-end delays did not 
pose much impediment to real-time retransmission during the 
experiment. The majority (94%) of “recoverable” lost packets 
returned to the client before their decoding deadlines. We also 
found that approximately 95% of all recovered packets were 
recovered using a single retransmission attempt (i.e., a single 
NACK). Nevertheless, we find that the current end-to-end de-
lays in the dialup Internet are prohibitively high to support 
interactive real-time applications (such as video conferencing 
or telephony). For non-interactive applications, startup delays 
in the order of 10-15 seconds are recommended given a ran-
dom access point used in streaming; however, startup delays as 
low as one second were found to be acceptable over certain 
paths during the night. Even using forward error correction 
(FEC) coding instead of retransmission to overcome packet 
loss does not allow us to substantially lower the startup delay, 
because one-way delay jitter in the dialup Internet is often very 
large. 

We speculate that end-to-end delays under 100 ms will be 
required to support interactive streaming, which seems to be 
currently possible with DSL and certain cable modems. Fur-
thermore, we believe that with broadband access at home, the 
performance of real-time streaming will largely depend on the 
end-to-end congestion control employed in the streaming pro-
tocol, rather than on the backbone Internet packet-loss rates, a 
particular retransmission scheme, or delay jitter (all of which 
are significantly less relevant given low end-to-end delays). 
Hence, in the future, it is extremely important to develop con-
gestion control suitable for real-time multimedia flows that 
scales to a large number of concurrent users and can be em-
ployed incrementally with the existing TCP flows (i.e., it 
should possess some form of TCP-friendliness). 

ACK-based congestion control [12] for TCP-like flows is 
understood fairly well, but it is still not clear whether ACK-
based flow control is suitable for real-time flows. On the other 
hand, even though NACK-based flow control is great for rate-
based applications, its “open-loop” operation makes it much 
more unstable and less scalable [13]. We believe that future 
research should first address these congestion control issues 
before real-time streaming becomes widely available in the 
Internet. 
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