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Abstract. Recent work has shown that the Internet exhibits a power-
law node degree distribution and high clustering. Considering that many
existing degree-based Internet topology generators do not achieve this
level of clustering, we propose a randomized algorithm that increases the
clustering coefficients of graphs produced by these generators. Simulation
results confirm that our algorithm makes the graphs produced by existing
generators match clustering properties of the Internet topology.

1 Introduction

Many studies [5], [7], [10] examine the properties of the Internet connectivity
graph and attempt to understand its evolution. Results in [10], [19] demonstrate
that both AS-level and router-level Internet topology exhibits three important
characteristics: power-law degree distribution, small diameter, and high cluster-
ing. To satisfy these properties, many degree-based generators have been pro-
posed to model the Internet graph [5], [7], [10], [21], [33]. Although most of
them can achieve the necessary degree distributions and diameter, they are of-
ten not successful in producing high levels of clustering. As shown in [10], the
graphs produced by the existing Internet generators always exhibit much lower
clustering than the Internet graph. In order to make these graphs better match
the Internet, we propose a randomized algorithm that increases the clustering of
synthetic graphs while preserving their power-law degree distributions and small
diameters.

Considering that the algorithm spends most of its time on computing clus-
tering coefficients during each iteration, we use sampling theory and let the
method utilize approximate values instead of computing them exactly, which
reduces the time complexity of the algorithm from Θ(mn) to Θ(m), where m is
the number of edges and n is the number of nodes. This paper makes two contri-
butions. First, it proposes a new and practical method to estimate the clustering
of massive graphs by using sampling theory. Second, it offers a solution to the
low-clustering problem of existing Internet topology generators.

The remainder of the paper is organized as follows. First, we review the
important properties of the Internet topology and classify existing generators in
section 2. Then, we abstract the low clustering problem in these generators and
propose our algorithmic solution in section 3. Following that, the analysis of the
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algorithm and the corresponding simulation results are given in section 4. We
conclude the paper in section 5.

2 Background

In this section, we first review properties of the Internet topology and then
discuss existing degree-based Internet topology generators.

2.1 Internet Properties

It is important to study the properties of the Internet topology, because they
not only affect the deployment of Internet services [18], [20], but also impact the
performance of existing Internet protocols [22], [23], [30]. Past work has showed
that the Internet AS-level graph exhibits the following three properties.

The first property of the Internet is related to its degree distribution. In 1999,
Faloutsos et al. [19] observed that the CDF of node degree X (both AS-level and
router-level) follows a power-law (Pareto) distribution:

P (X ≤ d) = 1 − cd−α , (1)

where α ≈ 1.2 is the shape parameter and c is the scale parameter.
The second property of the Internet topology is its high clustering. In 2002,

Bu et al. [10] pointed out that the Internet is highly clustered. The paper showed
that the clustering coefficient [32], which is a metric of the probability that two
neighbors share a common third neighbor, of the Internet topology is much
higher than that of random graphs.

The third property is that the Internet graph has a small diameter. Bu et al.
[10] showed that the average shortest path length between each pair of nodes at
the AS-level is very small and is close to that of random graphs.

To reproduce these properties, many generators have been proposed to model
the Internet [2], [3], [4], [9], [10], [33]. As most of them seek to satisfy the first
property (the power-law degree distribution), they are also called degree-based
generators. Next, we review several widely-used generators and classify them
into two types.

2.2 Existing Internet Topology Generators

Despite the various implementations, existing degree-based Internet generators
can be categorized into two collections: evolving and non-evolving generators.

Non-evolving methods do not model the evolution of the Internet and produce
graphs with a given fixed number of nodes n. GED [14], [26] and PLRG [5] are
classical examples belonging to this collection. In GED (Given Expected Degree)
[14], [26], [27], [28], n pre-assigned weights (w1, . . . , wn) are drawn from a Pareto
distribution. Edge (i, j) exists with probability pij :

pij =
wiwj∑n
k=1 wk

. (2)
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To make pij less than or equal to 1, the pre-assigned degree sequence is
assumed to satisfy the following condition [14], [26]:

w2
max ≤

n∑

k=1

wk , (3)

where wmax = maxn
i=1{wi}.

To relax this assumption, the PLRG model [5] is proposed. In PLRG, a
power-law weight sequence {wi} is first pre-assigned to n nodes. After that, wi

virtual copies of node i are produced and are randomly selected to form links
with equal probability. Because of their simplicity, PLRG and GED are good
theoretical models for complex networks and many analytical results [5], [14],
[15], [26] are based on them. However, they exhibit much lower clustering than
the real Internet.

Unlike non-evolving generators, evolving methods focus on modelling the
evolution of the Internet topology. In 1999, Barabasi et al. [7] proposed the BA
model, in which the graph evolves by adding new nodes that attach to existing
nodes with a so-called linear preferential probability

∏
(di):

∏
(di) =

di(t)∑
j dj(t)

, (4)

where di is the degree of node i at time t. As shown in [7], the BA model is scale-
free and generates graphs with a power-law degree distribution. However, the
shape parameter of the power-law function does not match that of the Internet.
Moreover, the clustering of a BA-generated graph is much smaller than that of
the Internet, which limits the model’s usefulness in simulating the Internet.

In order to make the BA model match the Internet more accurately, many
BA-like models [1], [6], [10], [31], [33] have been proposed. One of the most
successful methods is GLP, which extends the BA model by using a Generalized
Linear Preference probability:

∏
(di) =

di(t) − β
∑

j(dj(t) − β)
, (5)

where β ∈ (−∞, 1] is a tunable parameter. Simulation results in [10] show that
GLP not only improves the power-law distribution of BA, but also has clustering
as high as 0.35. However, compared with the value of 0.45 in the Internet, GLP
also needs to increase its clustering [10].

3 Clustering Problem and Algorithmic Solution

Recall that the Internet structure exhibits high clustering, but most existing
Internet generators fail to imitate this property. To confirm the clustering incon-
sistency between the Internet and its generators, we next compare the clustering
evolution of the Internet topology with that of its generators.
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3.1 Clustering Evolution

To obtain the clustering evolution of the Internet graph, we examined AS (au-
tonomous system) BGP logs from the National Laboratory for Applied Network
Research (NLANR) [29], which has been recording a snapshot of the Internet topol-
ogy every day since 1997. Obvious errors (i.e., duplicate links between some nodes
and disconnected components) in a few graphs indicate that part of the data is
unreliable and must be removed before the analysis. The assumption on which we
filter the data is that the Internet topology must be a connected, simple graph
and the number of ASes should increase over time. Based on this assumption, we
removed self-loops, merged duplicate links, and discarded graphs that were discon-
nected or had much fewer ASes than in previously recorded graphs. After prepro-
cessing the data in this manner, we obtained 253 snapshots of the Internet that cor-
respond to the AS-level Internet topology from November 1997 to January 2000.

The clustering coefficients of the obtained graphs are plotted in Figure 1
(left), where γ increases from 0.34 in 1997 to 0.42 in 2000 at a slow, but steady
rate. At the same time, the number of nodes in the system also grows as shown
on the right side of the figure.

To compare the clustering evolution of the Internet with that of its gener-
ators, we simulate the clustering evolutions of GED, PLRG, BA and GLP in
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Fig. 1. Evolution of clustering (left) and the number of nodes (right) in the Internet
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Fig. 2. Clustering evolution of GED with α = 1.2 (left) and α = 3 (right)
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Figures 2, 3, 4 and 5. In the simulations, the number of nodes n increases
while other parameters in these models are fixed. Comparing Figure 1(left) with
Figures 2, 3, 4 and 5, we conclude that the graphs produced by those generators
should be altered to exhibit clustering as high as that of the Internet. Consid-
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Fig. 3. Clustering evolution of PLRG with α = 1.2 (left) and α = 3 (right)
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Fig. 4. Clustering evolution of BA with m = 2 (left) and m = 3 (right)
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Fig. 5. Clustering evolution of GLP with m = 2, p = 0.5, β = 0 (left) and m = 2, p =
0.5, β = 0.5 (right)
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ering that the power-law degree sequence and low diameter are also necessary
properties in these graphs, we need to keep these properties unchanged while
increasing clustering of the graph. The details of the problem can be described
as follows.

3.2 Clustering Problem

Given a connected graph G and a target clustering value γT , rewire G’s edges
and produce a new graph G′ satisfying the following four conditions:

1. G′ is connected.
2. The degree sequence in G is the same as that in G′.
3. G′ has low diameter.
4. Clustering of G′ is larger than or equal to γT , which means γ(G′) ≥ γT .

3.3 Clustering and Triangles

To better understand this problem, we next review the concept of clustering and
reveal how it relates to triangles.

The clustering coefficient of a graph G(V, E), denoted by γ(G), is the average
clustering coefficient of each node with degree larger than 1:

γ(G) =
∑

v∈V −V (1) γv

|V | − |V (1)| , (6)

where V (1) is the set of degree-1 nodes in G, γv is the clustering coefficient of
node v and |V | is the number of nodes in G. Here, γv characterizes the probability
that the neighbors of node v are adjacent to each other. More precisely,

γv =
Nv

dv(dv − 1)/2
, (7)

where Nv is the number of edges among the neighbors of node v and dv is its
degree. An example of computing clustering is shown in Figure 6, where graph G
contains five nodes A, B, C, D, and E. According to the definition, the clustering
coefficient of each node is:

γA =
1

2(2 − 1)/2
= 1 , γB =

1
2(2 − 1)/2

= 1 ,
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Fig. 6. Clustering in graph G
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γC =
2

3(3 − 1)/2
=

2
3

, γD =
2

4(4 − 1)/2
=

1
3

.

And the clustering coefficient of graph G is

γ(G) =
γA + γB + γC + γD

4
=

3
4

. (8)

Note that Nv in (7) is essentially the number of triangles containing node v.
For example, in Figure 6, NA = 1 because it is in one triangle (DAC); NC = 2
because it is contained by two triangles (DCB) and (DCA). Therefore, for any
node with fixed degree d, the more triangles it includes, the higher clustering
it has. Also note that the clustering of a graph is the average of each node’s
clustering. Intuitively, increasing the number of triangles is a promising way to
increase the clustering of a graph.

3.4 Our Algorithm

The key idea of our algorithm is to increase the number of triangles for each
node. According to condition 2 in the clustering problem, the degree of each
node v should not be changed, which indicates that increasing Nv in (7) will
increase the clustering of node v. Therefore, rewiring the links in G to produce
more triangles for each node will increase the clustering of the whole graph.

To better describe our algorithm, we first give the definition of unsatisfied
and satisfied nodes as follows.

Definition 1. A node v′ ∈ G′ is unsatisfied if dv > d′
v, v ∈ G. Otherwise, v′ is

satisfied.

For example, in Figure 6, if we remove edge (A, C) from the graph, nodes
A and C are unsatisfied because their degree decreases. This simple definition
facilitates the explanation of our algorithm, which can be separated into four
steps. The first step finds all triangles in G and marks the corresponding links
in these triangles. Then, it randomly picks a node w and searches for k-length
(k ≥ 4) loops starting from node w. At each time when such a loop is found, our
algorithm randomly breaks an unmarked link (u, v) from that loop and marks
nodes u, v unsatisfied. In the third step, the algorithm adds links between any
pair of unsatisfied nodes so that at least one new triangle is generated. This
step is repeated until the clustering of current graph is larger than γT or there
are no unsatisfied nodes remaining. Finally, if the current clustering γc(G) is
larger than γT , the algorithm randomly adds links between unsatisfied nodes
and outputs G′. Otherwise, the method loops back to step two.

In step four, the time complexity of computing current clustering γc(G) is
Θ(nm), while step 1 to step 3 will only cost Θ(m). Obviously, reducing the time
complexity of computing γc(G) will improve the performance of our algorithm.
Therefore, in step four we randomly sample s nodes and approximate the clus-
tering of the whole graph by the average clustering of the sampled nodes. By
applying this randomized sampling technique, the time complexity of step four
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Input: a connected, power-law graph G and target clustering γT .
Output: a connected, power-law graph G′, such that γ(G′) ≥ γT .

Copy graph G to graph G′.
Use BFS to find all triangles in G′ and mark all corresponding edges in the triangles.
Randomly sample s nodes and compute γs(G′), which is the average clustering coeffi-
cient of the s nodes.
While γs(G′) < γT do

Randomly pick a node w in G′.
Start from w and apply BFS to find all k-cycles (k ≥ 4) in the graph.
If there are no such cycles, output Fail.
Else For each k-cycle l, randomly break its unmarked edge (u, v).
While there exist at least two unsatisfied nodes do

If there exist unsatisfied nodes s and t such that edge (s, t) �∈ G′

AND connecting s and t creates at least one triangle do
Connect s and t

Else if there exist unsatisfied nodes u, v, and w such that there are no edges
among them and du − d′

u ≥ 2, dv − d′
v ≥ 2, and dw − d′

w ≥ 2;
AND connecting nodes u, v and w creates one new triangle

connects links (u, v), (u, w) and (v, w).
Else

break the while loop;
Endif

EndWhile;
Randomly sample s nodes and compute γs(G′), the average clustering of the s nodes.

EndWhile;
Randomly connect unsatisfied nodes and output G′.

Fig. 7. Algorithm to increase clustering coefficients of random graphs

is reduced to Θ(sm) = Θ(m). A detailed description of the algorithm is shown
in Figure 7.

4 Analysis of the Algorithm

There are two issues that must be explored in order to show that our algorithm is
effective. We first study through simulations the effect of running our algorithm
on random graphs created by several of the methods mentioned before. Since
an approximation of clustering in the graph is used in the algorithm, we then
analytically determine how accurate these approximations can become.

To show that our algorithm indeed increases the clustering in a wide range of
random graphs, we ran sample graphs created by BA, GED, and PLRG through
the algorithm. The results are displayed in Fig. 8 and Fig. 9. In each case the
graph contains 1000 nodes. For the graph generated by BA, m = 2. In the
case of both PLRG and GED, α = 1.5. Note that duplicate links and self-loops
were removed from these graphs before we ran the algorithm. As shown in the
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Fig. 8. Increase in clustering for BA graph of 1000 nodes with m = 2 (left) and for a
GED graph of 1000 nodes with α = 1.5 (right)
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Fig. 9. Increase in clustering for a PLRG generated graph of 1000 nodes with α = 1.5

figures, there is a marked increase in clustering for each example graph in few
iterations.

We next determine the validity and accuracy of using an approximate value
for the clustering of a graph instead of requiring that the exact value be know.
There is obviously some error between the approximate and actual values, but
according to sampling theory, increasing the sample size s will reduce this error.
However, when the s exceeds a certain threshold, further increasing it does not
significantly decrease the error. To determine a proper sample size, we provide
the following lemma.

Lemma 1. When the sample size s = Z2
ρ
2
/(2E)2, the error between the approx-

imate and actual clustering does not exceed E with probability at least 1 − ρ.

Proof. Denote by σ2 the variance of node clustering in the graph, γs the sampled
clustering of s nodes in the graph, and γa the actual clustering of the graph.
According to sampling theory [24], when the sample size is:
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s =
Z2

ρ
2
σ2

E2 , (9)

error |γs − γa| does not exceed error margin E with probability 1 − ρ, where
ρ ∈ (0, 1) is a significance level and zρ/2 is the positive z value that is at the
vertical boundary for the area of ρ/2 in the right tail of the standard normal
distribution.

Note that the clustering of each node is between 0 and 1. When half of the
total nodes have clustering 0 and the other half have clustering 1, the variance
of node clustering reaches its maximum point, where the clustering of the graph
is 0.5. Therefore:

σ2 ≤
∑n

i=1 0.52

n
= 0.52 . (10)

Using (9) and (10), we conclude that when sample size:

s =
Z2

ρ
2

(2E)2
, (11)

|γs − γa| does not exceed E with probability at least 1 − ρ.

Thus by Lemma 1, we can determine the sample size s based on an error
margin E and significance level ρ. For the error margin E = 0.1 and ρ = 0.05,
we only need to sample s = 1.962/0.22 ≈ 97 nodes to contain the absolute error
within 0.1 of the correct value with probability at least 0.95. This result shows
that we are indeed able to approximate the clustering of a graph with very few
samples, which justifies its inclusion in our algorithm.

5 Conclusion

In this paper, we offer an algorithmic solution to the clustering problem and show
that we can frequently improve this metric in graphs produced by existing degree-
based generators to values well over 0.5. This in turn allows those generators to
better simulate the AS-level Internet topology.
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