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ABSTRACT
To understand how high rates of churn and random depar-
ture decisions of end-users affect connectivity of P2P net-
works, this paper investigates resilience of random graphs
to lifetime-based node failure and derives the expected de-
lay before a user is forcefully isolated from the graph and the
probability that this occurs within his/her lifetime. Our re-
sults indicate that systems with heavy-tailed lifetime distri-
butions are more resilient than those with light-tailed (e.g.,
exponential) distributions and that for a given average de-
gree, k-regular graphs exhibit the highest resilience. As a
practical illustration of our results, each user in a system
with n = 100 billion peers, 30-minute average lifetime, and
1-minute node-replacement delay can stay connected to the
graph with probability 1−1/n using only 9 neighbors. This
is in contrast to 37 neighbors required under previous mod-
eling efforts. We finish the paper by showing that many P2P
networks are almost surely (i.e., with probability 1 − o(1))
connected if they have no isolated nodes and derive a sim-
ple model for the probability that a P2P system partitions
under churn.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Algorithms, Performance, Theory

Keywords
Peer-to-Peer, Pareto, Stochastic Lifetime Resilience

1. INTRODUCTION
Resilience of random graphs [6] and various types of de-

terministic networks [7], [17] has attracted significant atten-
tion in research literature. A classical problem in this line
of study is to understand failure conditions under which
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the network disconnects and/or starts to offer noticeably
lower performance (such as increased routing distance) to
its users. To this end, many existing models assume uni-
formly random edge/node failure and derive the conditions
under which each user [33], certain components [6], or the
entire graph [14] stay connected after the failure.

Current analysis of P2P networks frequently adopts the
same model of uniform, concurrent node failure and ranges
from single-node isolation [16], [33] to disconnection of the
entire graph [4], [12], [14], [25]; however, these studies rarely
discuss the scenarios under which large quantities of P2P
users may simultaneously fail or how to accurately estimate
failure probability p in practical systems such as KaZaA or
Gnutella.1 Another popular model assumes the existence
of a rogue entity that compromises arbitrary nodes in the
system [11], [30] and additional P2P studies examine such
metrics as the required rate of neighbor replacement to avoid
disconnection [22] and the delay before the system recovers
from inconsistencies [26].

It has been recently noted [5] that realistic P2P failure
models should take into account the intrinsic behavior of
Internet users, who depart from the network based on a
combination of factors often more complex than the tradi-
tional binary metric. In these networks, failure develops
when users voluntarily decide to leave the system based on
their attention span and/or browsing habits. To examine
the behavior of such systems, this paper introduces a sim-
ple node-failure model based on user lifetimes and studies
the resilience of P2P networks in which nodes stay online
for random periods of time. In this model, each arriving
user is assigned a random lifetime Li drawn from some dis-
tribution F (x), which reflects the behavior of the user and
represents the duration of his/her services (e.g., forwarding
queries, sharing files) to the P2P community.

We start our investigation with the passive lifetime model
in which failed neighbors are not continuously replaced. It is
interesting to observe that even in this case, a large fraction
of nodes are capable of staying online for their entire lifespan
without suffering an isolation. Furthermore, we show that
depending on the tail-weight of the lifetime distribution, the
probability of individual node isolation can be made ar-
bitrarily small without increasing node degree. While the
passive model certainly allows P2P networks to evolve as
long as newly arriving nodes replenish enough broken links
in the system, most practical P2P networks employ spe-
cial neighbor-recovery strategies and attempt to repair the

1In the absence of a better estimate, value p = 1/2 is often
used for illustration purposes [33].
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failed segments of the graph. We thus subsequently study
the active model where each failed neighbor is replaced with
another node after some random search delay. For this sce-
nario, we derive both the expected time to isolation E[T ]
and the probability π that this event occurs within the life-
time of a user.

In contrast to the p–percent failure model, the lifetime
framework does not require estimation of such intricate met-
rics as the exact value of p or even the shape of the lifetime
distribution. Towards the end of the paper, we show a rea-
sonably good upper bound on π that only requires the mean
user lifetime and the average node-replacement delay, both
of which are easily measurable in existing systems.

Note that throughout most of the paper, “resilience” gen-
erally refers to the ability of an arriving user i to stay con-
nected to the rest of the graph for duration Li while its
neighbors are constantly changing. This is arguably the
most transparent and relevant metric from the end-user’s
perspective; however, to complete the picture we also ad-
dress global resilience where we informally show that tightly
connected graphs (such as DHTs and many k-regular ran-
dom graphs) partition with at least one isolated node with
probability 1 − o(1) as the size of the network n → ∞.
This result demonstrates that metric π solely determines
the probability that an evolving P2P network partitions un-
der churn and that global disconnection of such graphs for
sufficiently small π almost surely involves a single node.

2. LIFETIME-BASED NODE FAILURE
In this section, we introduce our model of node failure and

explain the assumptions used later in the paper.

2.1 Lifetime Model and Paper Overview
In the discussion that follows, we consider k-regular P2P

graphs and analyze the probability that a randomly selected
node v is forced to disconnect from the system because all of
its neighbors have simultaneously departed and left it with
no way to route within the graph. For each user i in the
system, let Li be the amount of time that the user stays in
the network searching for content, browsing for information,
or providing services to other peers. It has been observed
that the distribution of user lifetimes in real P2P systems is
often heavy-tailed (i.e., Pareto) [8], [31], where most users
spend minutes per day browsing the network while a handful
of other peers exhibit server-like behavior and keep their
computers logged in for weeks at a time. To allow arbitrarily
small lifetimes, we use a shifted Pareto distribution F (x) =
1 − (1 + x/β)−α, x > 0, α > 1 to represent heavy-tailed
user lifetimes, where scale parameter β > 0 can change the
mean of the distribution without affecting its range (0,∞].
Note that the mean of this distribution E[Li] = β/(α − 1)
is finite only if α > 1, which we assume holds in the rest of
the paper. While our primary goal is the study of human-
based P2P systems, we also aim to keep our results universal
and applicable to other systems of non-human devices and
software agents where the nodes may exhibit non-Pareto
distributions of Li. Thus, throughout the paper, we allow a
variety of additional user lifetimes ranging from heavy-tailed
to exponential.

The most basic question a joining user may ask about the
resilience of lifetime-based P2P systems is what is the proba-
bility that I can outlive all of my original neighbors? We call
this model “passive” since it does not involve any neighbor

�

�
�
�
�
��
�
�
��
�
��
��
�

(a) passive model
�

�
�
�
�
��
�
�
��
�
��
��
�

(b) active model

Figure 1: Degree evolution process leading to isola-
tion under (a) passive and (b) active models.

replacement and study it in fair detail in the next section.
This model arises when the search time S to find neighbor
replacement is prohibitively high (i.e., significantly above
E[Li]) or when peers intentionally do not attempt to repair
broken links. If degree k is sufficiently large, it is intuitively
clear that a given node v is not likely to out-survive k other
peers; however, it is interesting to observe that Pareto dis-
tributions of Li make this probability significantly smaller
compared to the “baseline” exponential case.

In a later part of the paper, we allow users to randomly
(with respect to the lifetime of other peers) search the sys-
tem for new neighbors once the failure of an existing neigh-
bor is detected. We call this model “active” to contrast
the actions of each user with those in the passive model.
Defining W (t) to be the degree of v at time t, the difference
between the passive and active models is demonstrated in
Figure 1, which shows the evolution of W (t) and the isola-
tion time T for both models.

2.2 Modeling Assumptions
To keep the derivations tractable, we impose the following

restrictions on the system. We first assume that v joins a
network that has evolved sufficiently long so as to overcome
any transient effects and allow asymptotic results from re-
newal process theory to hold. This assumption is usually
satisfied in practice since P2P systems continuously evolve
for hundreds of days or weeks before being restarted (if ever)
and the average lifetime E[Li] is negligible compared to the
age of the whole system when any given node joins it.

Our second modeling assumption requires certain station-
arity of lifetime Li. This means that users joining the system
at different times of the day or month have their lifetimes
drawn from the same distribution F (x). While it may be
argued that users joining late at night browse the network
longer (or shorter) than those joining in the morning, our
results below can be easily extended to non-stationary en-
vironments and used to derive upper/lower bounds on the
performance of such systems.

Finally, we should note that these stationarity assump-
tions do not apply to the number of nodes n, which we
allow to vary with time according to any arrival/departure
process as long as n À 1 stays sufficiently large. We also al-
low arbitrary routing changes in the graph over time and are
not concerned with the routing topology or algorithms used
to forward queries. Thus, our analysis is applicable to both
structured (i.e., DHTs) and unstructured P2P systems.
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Figure 2: (a) A neighbor’s lifetime Li = di − ai and
its residual life Ri = di − tv. (b) Location of tv is
uniformly random with respect to the lives of all
neighbors.

3. PASSIVE LIFETIME MODEL
We start by studying the resilience of dynamic P2P sys-

tems under the assumption that users do not attempt to
replace the failed neighbors. As we show below, this analy-
sis can be reduced to basic renewal process theory; however,
its application to P2P networks is novel. Due to limited
space, we omit the proofs of certain straightforward lemmas
and refer the reader to the technical report [20].

3.1 Model Basics
We first examine the probability that a node v can outlive

k randomly selected nodes if all of them joined the system at
the same time. While the answer to this question is trivial,
it provides a lower-bound performance of the system and
helps us explain the more advanced results that follow.

Lemma 1. The probability that node v has a larger life-
time than k randomly selected nodes is 1/(k + 1).

Consider an example of Chord [33] with neighbor table
size equal to log2 n, where n is the total number of nodes in
the P2P network. Thus, in a system with 1 million nodes,
the probability that a randomly selected node outlives log2 n
other peers is approximately 4.8%. This implies that with
probability 95.2%, a user v does not have to replace any of
its neighbors to remain online for the desired duration Lv.

Note, however, that in current P2P networks, it is neither
desirable nor possible for a new node v to pick its neighbors
such that their arrival times are exactly the same as v’s.
Thus, when v joins a P2P system, it typically must randomly
select its k neighbors from the nodes already present in the
network. These nodes have each been alive for some random
amount of time before v’s arrival, which may or may not
affect the remainder of their online presence. In fact, the
tail-weight of the distribution of Li will determine whether
v’s neighbors are likely to exhibit longer or shorter remaining
lives than v itself.

Throughout the paper, we assume that neighbor selection
during join and replacement is independent of 1) neighbors’
lifetimes Li or 2) their current ages Ai. The first assumption
clearly holds in most systems since the nodes themselves do
not know how long the user plans to browse the network.
Thus, the value of Li is generally hard to correlate with any
other metric (even under adversarial selection). The sec-
ond assumption holds in most current DHTs [16], [27], [29],
[33] and unstructured graphs [9], [13], [32] since neighbor
selection depends on a variety of factors (such as a uniform
hashing function of the DHT space [33], random walks [13],
interest similarity [32], etc.), none of which are correlated
with node age.

The above assumptions allow one to model the time when
v selects each of its k neighbors to be uniformly random
within each neighbor’s interval of online presence. This is
illustrated in Figure 2(a), where tv is the join time of node v,
and ai and di are the arrival and departure times of neighbor
i, respectively. Since the system has evolved for sufficiently
long before v joined, the probability that v finds neighbor i
at any point within the interval [ai, di] can be modeled as
equally likely. This is schematically shown in Figure 2(b) for
four neighbors of v, whose intervals [ai, di] are independent
of each other or the value of tv.

Next, we formalize the notion of residual lifetimes and
examine under what conditions the neighbors are more likely
to outlive each joining node v. Define Ri = di− tv to be the
remaining lifetime of neighbor i when v joined the system.
As before, let F (x) be the CDF of lifetime Li. Assuming
that n is large and the system has reached stationarity, the
CDF of residual lifetimes is given by [28]:

FR(x) = P (Ri < x) =
1

E[Li]

x∫

0

(1− F (z))dz. (1)

For exponential lifetimes, the residuals are trivially expo-
nential using the memoryless property of F (x): FR(x) =
1− e−λx; however, the next result shows that the residuals
of Pareto distributions with shape α are more heavy-tailed
and exhibit shape parameter α− 1.

Lemma 2. The CDF of residuals for Pareto lifetimes with
F (x) = 1− (1 + x/β)−α, α > 1 is given by:

FR(x) = 1−
(
1 +

x

β

)1−α

. (2)

This outcome is not surprising as it is well-known that
heavy-tailed distributions exhibit “memory,” which means
that users who survived in the system for some time t > 0
are likely to remain online for longer periods of time than the
arriving users. In fact, the larger the current age of a peer,
the longer he/she is expected to remain online. The occur-
rence of this “heavy-tailed” phenomenon in P2P systems is
supported by experimental observations [8] and can also be
explained on the intuitive level. If a user v has already spent
10 hours in the system, it is generally unlikely that he/she
will leave the network in the next 5 minutes; however, the
same probability for newly arriving peers is substantially
higher as some of them depart almost immediately [31].

Since the rest of the derivations in the paper rely on (1), it
is important to verify that asymptotic approximations from
renewal process theory actually hold in practice. We created
a hypothetical system with n = 1000 users and degree k =
10, in which each node lived for a random duration Li and
then departed from the system. To prevent the network size
from depleting to zero, each failed node was immediately
replaced by a fresh node with another random lifetime Lj

(the exact arrival process was not essential and had no effect
on the results). For each new arrival v into the system,
we recorded the residual lifetimes of the neighbors that v
randomly selected from the pool of n− 1 online peers.

Results of two typical simulations are plotted in Figure
3 for the exponential and Pareto lifetimes. As we often do
throughout the paper, parameters α and λ are selected so
that E[Li] is 0.5 hours for both distributions and the scaling
parameter β is set to 1 in the Pareto F (x). As the figure
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(b) Pareto with α = 3, β = 1

Figure 3: Residual lifetimes in simulation.

shows, the residual exponential distribution remains expo-
nential, while the Pareto case becomes more heavy-tailed
and indeed exhibits shape parameter α − 1 = 2. Further
notice in the figure that the exponential Ri are limited by 4
hours, while the Pareto Ri stretch to as high as 61 hours.

While it is clear that node arrival instants tv are uncorre-
lated with lifespans [ai, di] of other nodes, the same observa-
tion holds for random points τi at which the i-th neighbor of
v fails. We extensively experimented with the active model,
in which additional node selection occurred at instants τi,
and found that all Ri obtained in this process also followed
(1) very well (not shown for brevity).

3.2 Resilience Analysis
Throughout the paper, we study resilience of P2P systems

using two main metrics – the time before all neighbors of v
are simultaneously in the failed state and the probability
of this occurring before v decides to leave the system. We
call the former metric isolation time T and the latter prob-
ability of isolation π. Recall that the passive model follows
a simple pure-death degree evolution process illustrated in
Figure 1(a). In this environment, a node is considered iso-
lated after its last surviving neighbor fails. Thus, T is equal
to the maximum residual lifetime among all neighbors and
its expectation can be written as (using the fact that T is a
non-negative random variable) [36]:

E[T ] =

∞∫

0

[
1− 1

E[Li]k

( x∫

0

(1− F (z))dz

)k
]
dx, (3)

which leads to the following two results after straightforward
integration.

Theorem 1. Assume a passive k-regular graph. Then,
for exponential lifetimes:

E[T ] =
1

λ

k∑
i=1

(
k

i

)
(−1)i+1

i
(4)

and for Pareto lifetimes with α > 2:

E[T ] = −β

[
1 +

Γ
(

1
1−α

)
k!

(α− 1)Γ
(
k + 2− α

α−1

)
]
. (5)

Note that the gamma function in the numerator of (5) is
negative due to α > 1, which explains the −β term outside
the brackets. Simulation results of (4)-(5) are shown in Fig-
ure 4(a) for the average lifetime E[Li] equal to 0.5 hours.
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Figure 4: Comparison of models (4)-(5) and (7)-(8)
with simulation results .

Note that in the figure, simulations are plotted as isolated
points and the two models as continuous lines. As the figure
shows, simulation results for both exponential and Pareto
distributions match the corresponding model very well. We
also observe that for the same degree and average lifetime,
Pareto nodes exhibit longer average times to isolation. For
k = 10, E[T ] is 1.46 hours given exponential lifetimes and
4.68 hours given Pareto lifetimes. This difference was ex-
pected since T is determined by the residual lives of the
neighbors, who in the Pareto case have large Ri and stay
online longer than newly arriving peers.

We next focus on the probability that isolation occurs
within the lifespan of a given user. Consider a node v with
lifetime Lv. This node is forced to disconnect from the
system only if Lv is greater than T , which happens with
probability π = P (T < Lv) =

∫∞
0

FT (x)f(x)dx, where

FT (x) = FR(x)k is the CDF of time T and f(x) is the PDF
of user lifetimes. This leads to:

π =
1

E[Li]k

∞∫

0

( x∫

0

(1− F (z))dz

)k

f(x)dx. (6)

Next, we study two distributions F (x) and demonstrate the
effect of tail-weight on the local resilience of the system.

Theorem 2. Assume a passive k-regular graph. Then,
for exponential lifetimes:

π =
1

k + 1
(7)

and for Pareto lifetimes with α > 1:

π =
Γ
(
1 + α

α−1

)
k!

Γ
(
k + 1 + α

α−1

) . (8)

The exponential part of this lemma was expected from
the memoryless property of exponential distributions [28],
[36]. Hence, when a new node v joins a P2P system with
exponentially distributed lifetimes Li, it will be forced to
disconnect if and only if it can outlive k other random nodes
that started at the same time tv. From Lemma 1, we already
know that this happens with probability 1/(k + 1).

The accuracy of (7)-(8) is shown in Figure 4(b), which
plots π obtained in simulations together with that predicted
by the models. The simulation again uses a hypothetical
P2P system with n = 1000 nodes and E[Li] = 0.5. As the
figure shows, simulations agree with predicted results well.
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Figure 5: Impact of tail weight on the average time
to isolation and probability π for k = 10 and Pareto
lifetimes.

3.3 Discussion
Notice from Figure 4(b) that the Pareto π decays quicker

and always stays lower than the exponential π. To better
understand the effect of α on the isolation probability in
the rather cryptic expression (8), we first show that for all
choices of α, Pareto systems are more resilient than expo-
nential. We then show that as α →∞, (8) approaches from
below its upper bound (7).

Setting c = Γ(1+ α
α−1

), re-write (8) expanding the gamma
function in the denominator:

π =
ck!(

k + α
α−1

)
!
≈ c

(
k + 1 +

1

2(α− 1)

)−α/(α−1)

(9)

and notice that (9) always provides a faster decay to zero as
a function of k than (7). For the Pareto example of α = 3
shown in Figure 4(b), π follows the curve (k + 1.25)−1.5,
which decays faster than the exponential model by a factor
of
√

k. This difference is even more pronounced for distri-
butions with heavier tails. For example, (8) tends to zero
as (k + 1.5)−2 for α = 2 and as (k + 6)−11 for α = 1.1.
The effect of tail-weight on isolation dynamics is shown in
Figure 5 where small values of α indeed provide large E[T ]
and small π. Figure 5(b) also demonstrates that as shape
α becomes large, the Pareto distribution no longer exhibits
its “heavy-tailed” advantages and is essentially reduced to
the exponential model. This can also be seen in (9), which
tends to 1/(k + 1) for α →∞.

Given the above discussion, it becomes apparent that it
is possible to make π arbitrarily small with very heavy-
tailed distributions (e.g., α = 1.05 and k = 20 produce
π = 3.7 × 10−12). While these results may be generally
encouraging for networks of non-human devices with con-
trollable characteristics, most current peer-to-peer systems
are not likely to be satisfied with the performance of the
passive model since selection of α is not possible in the de-
sign of a typical P2P network and isolation probabilities in
(8) are unacceptably high for α > 1.5. The second problem
with the passive framework is that its application to real sys-
tems requires accurate knowledge of the shape parameter α,
which may not be available in practice.

We overcome both problems in the next two section, where
we show that active node replacement significantly increases
resilience and that all Pareto distributions have a reasonably
tight upper bound on π that does not depend on α.
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Figure 6: On/off processes {Yi(t)}k
i=1 depicting

neighbor failure and replacement.

4. ACTIVE LIFETIME MODEL:
STATIONARY ANALYSIS

To reduce the rate of isolation and repair broken routes in
P2P networks, previous studies have suggested distributed
recovery algorithms in which failed neighbors are dynami-
cally replaced with nodes that are still alive. In this section,
we offer a model for this strategy, derive the expected value
of T using stationary techniques in renewal process theory,
and analyze performance gains of this framework compared
to the passive case. In the next section, we apply the the-
ory of rare events for mixing processes to W (t) and derive
a reasonably good upper bound on π.

It is natural to assume that node failure in P2P networks
can be detected through some keep-alive mechanism, which
includes periodic probing of each neighbor, retransmission of
lost messages, and timeout-based decisions to search for a re-
placement. We do not dwell on the details of this framework
and assume that each peer v is capable of detecting neighbor
failure through some transport-layer protocol. The second
step after node failure is detected is to repair the “failed”
zone of the DHT and restructure certain links to maintain
consistency and efficiency of routing (non-DHT systems may
utilize a variety of random neighbor-replacement strategies
[9], [13], [32]). We are not concerned with the details of this
step either and generically combine both failure detection
and repair into a random variable called Si, which is the
total “search” time for the i-th replacement in the system.

4.1 Preliminaries
In the active model, each neighbor i (1 ≤ i ≤ k) of

node v is either alive at any time t or its replacement is
being sought from among the remaining nodes in the graph.
Thus, neighbor i can be considered in the on state at time
t if it is alive or in the off state otherwise. This neighbor
failure/replacement procedure can be modeled as an on/off
process Yi(t):

Yi(t) =

{
1 neighbor i alive at t

0 otherwise
. (10)

This framework is illustrated in Figure 6, which shows
the evolution of k neighbor processes Y1(t), . . . , Yk(t). Using
this notation, the degree of node v at time t is equal to
W (t) =

∑k
i=1 Yi(t). Similar to our definition in Section 2.1,

a node is isolated at such time T when all of its neighbors
are simultaneously in the off state (see Figure 1(b)). Thus,
the maximum time a node can spend in the system before it
is forced to disconnect can be formalized as the first hitting
time of process W (t) on level 0:

T = inf(t > 0 : W (t) = 0|W (0) = k). (11)

Notice that under proper selection of the tail-weight of the
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Figure 7: On/off regenerative model of process W (t).

lifetime distribution (i.e., the length of on periods), W (t) be-
comes a super-position of heavy-tailed on/off processes and
may exhibit self-similarity for sufficiently large k [15], [18],
[35]. Due to limited space, we omit log-log variance plots
that confirm this effect, but note that to our knowledge, the
fact that node degree in P2P networks may become self-
similar has not been documented before.

4.2 Expected Time to Isolation
In what follows in the rest of this section, we apply the

theory of regenerative processes to W (t) and derive a closed-
form expression for E[T ]. We start with a simple lemma.

Lemma 3. The steady-state probability of finding a neigh-
bor in the on state is given by:

p = lim
t→∞

P (Yi(t) = 1) =
E[Ri]

E[Si] + E[Ri]
, (12)

where E[Si] is the mean node-replacement delay and E[Ri]
is the expected residual lifetime.

This result immediately leads to the probability of finding
stationary process W (t) in any of its k + 1 states.

Corollary 1. The steady-state distribution of W (t) is
binomial with parameters k and p:

lim
t→∞

P (W (t) = m) =

(
k

m

)
pm(1− p)k−m. (13)

Both (12)-(13) match simulation results very well (not
shown for brevity) and do not depend on the distribution of
search delays or user lifetimes. Next, notice that it is con-
venient to also view W (t) as an alternating on/off process,
where each on period corresponds to W (t) > 0 and each off
period to W (t) = 0. This is illustrated in Figure 7, where
Uj is the duration of the j-th off cycle and Tj is the length
of the j-th on cycle. Then we have the following result.

Theorem 3. Assuming asymptotically small search de-
lays with E[Si] ¿ E[Ri], the expected time a node can stay
in the system before isolation is:

E [T ] ≈ E [Si]

k

[(
1 +

E [Ri]

E [Si]

)k

− 1

]
, (14)

where E[Si] is the mean search time and E[Ri] is the ex-
pected residual lifetime.

Proof. Our goal is to determine the expected duration
of the first cycle (i.e., E[T1]) shown in Figure 7. The proof
consists of two parts: we first argue that the length of cycle
T1 is similar to that of the remaining cycles Tj , j ≥ 2, and
then apply Smith’s theorem to W (t) to derive E[Tj ], j ≥ 2.

First, notice that cycle T1 is different from the other on
periods since it always starts from W (t) = k, while the other
on cycles start from W (t) = 1. However, since we already
assumed that the search times are sufficiently small, W (t) at
the beginning of each on period almost immediately “shoots
back” to W (t) = k. This can be shown using arguments
from large-deviations theory [34], which derives bounds on
the return time of the system from very rare states back to
its “most likely” state. This generally makes cycles T1 and
Tj (j ≥ 2) different by a value that is negligible compared
to E[T ] in real-life situations (see examples after the proof).

We next derive the expected length of Tj , j ≥ 2. Approxi-
mating points τj when W (t) goes into the j-th off state (i.e.,
makes a transition from 1 to 0) as regenerative instances
and applying Smith’s theorem to W (t) [28], the probability
of finding the process in the off state at any random time t
is given by:

lim
t→∞

P (W (t) = 0) ≈ E[Uj ]

E[Tj ] + E[Uj ]
. (15)

Notice that (15) can also be expressed from (13):

lim
t→∞

P (W (t) = 0) =

(
E[Si]

E[Si] + E[Ri]

)k

. (16)

Equating (15) and (16) and solving for E [Tj ], we get:

E [Tj ] ≈ E [Uj ]

[(
E [Ri] + E [Si]

E [Si]

)k

− 1

]
. (17)

Next, we compute E [Uj ]. As before, suppose that the
first instant of the j-th off cycle of W (t) starts at time τj .
At this time, there are k − 1 already-failed neighbors still
“searching” for their replacement and one neighbor that just
failed at time τj . Thus, Uj is the minimum time needed to
find a replacement for the last neighbor or for one of the
on-going searches to complete.

More formally, suppose that V1, . . . , Vk−1 represent the
remaining replacement delays of the k − 1 already-failed
neighbors and Sk is the replacement time of the last neigh-
bor.2 Then duration Uj of the current off cycle is Uj =
min{V1, . . . , Vk−1, Sk}. Assuming that FS(x) is the CDF of
search times Si, the distribution of V = min{V1, . . . , Vk−1}
is given by [36]:

FV (x) = 1−

1− 1

E [Si]

x∫

0

(1− FS(z))dz




k−1

. (18)

Notice that Uj can also be written as Uj = min{V, Sk}
and its expectation is:

E[Uj ] =

∞∫

0

(1− FS (x)) (1− FV (x)) dx. (19)

2Strictly speaking, V1, . . . , Vk−1 may have different distribu-
tions that depend on the difference between the time of each
neighbor’s failure and τj ; however, for very small E[Si], this
distinction does not have a noticeable impact on (14).
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(a) uniform Si
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(b) binomial Si
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(c) exponential Si
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(d) Pareto Si with α = 3

Figure 8: Comparison of model (14) to simulation results with E[Li] = 0.5 and k = 10.

Substituting (18) into (19), we get:

E[Uj ] =

∞∫

0

(1− FS (x))

(
1−

∫ x

0
(1− FS(z))dz

E [Si]

)k−1

dx.

(20)
Setting y =

∫ x

0
(1− FS(z))dz in (20), we have:

E[Uj ] =

E[Si]∫

0

(
1− y

E [Si]

)k−1

dy =
E [Si]

k
, (21)

which leads to (14).

Note that for small search delays this result does not gen-
erally depend on the distribution of residual lifetimes Ri or
search times Si, but only on their expected values. Figure
8 shows E[T ] obtained in simulations in a system with 1000
nodes, k = 10, and four different distributions of search
delay. In each part (a)-(d) of the figure, the two curves cor-
respond to exponential and Pareto lifetimes with mean 30
minutes (as before, the models are plotted as solid lines and
simulations are drawn using isolated points). Notice in all
four subfigures that the model tracks simulation results for
over 7 orders of magnitude and that the expected isolation
time is in fact not sensitive to the distribution of Si.

As in the passive model, the exponential distribution of
lifetimes provides a lower bound on the performance of any
Pareto system (since exponential E[Ri] is always smaller
than the corresponding Pareto E[Ri]). Further observe that
the main factor that determines E[T ] is the ratio of E[Ri] to
E[Si] and not their individual values. Using this insight and
Figure 8, we can conclude that in systems with 10 neighbors
and expected search delay at least 5 times smaller than the
mean lifetime, E[T ] is at least one million times larger than
the mean session length of an average user. Furthermore,
this result holds for exponential as well as Pareto distribu-
tions with arbitrary α. This is a significant improvement
over the results of the passive model in Section 3.

4.3 Chord Example
We now phrase the above framework in more practical

terms and study the resilience of Chord as a function of
node degree k. For the sake of this example, suppose that
each node relies on a keep-alive protocol with timeout δ.
Then, the distribution of failure-detection delays is uniform
in [0, δ] depending on when the neighbor died with respect
to the nearest ping message. The actual search time to find

Timeout δ k = 20 k = 10 k = 5

20 sec 1041 years 1017 years 188, 034 years

2 min 1028 years 1011 years 282 years

45 min 404, 779 years 680 days 49 hours

Table 1: Expected time E[T ] for E[Ri] = 1 hour.

a replacement may be determined by the average number
of application-layer hops between each pair of users and the
average Internet delay d between the overlay nodes in the
system. Using the notation above, we have the following
re-statement of the previous theorem.

Corollary 2. Assuming that δ is the keep-alive timeout
and d is the average Internet delay between the P2P nodes,
the expected isolation time in Chord is given by:

E [T ] =
δ + d log2 n

2k

(
1 +

2E [Ri]

δ + d log2 n

)k

. (22)

Consider a Chord system with the average inter-peer de-
lay d = 200 ms, n = 1 million nodes (average distance 10
hops), and E[Ri] = 1 hour. Table 1 shows the expected
time to isolation for several values of timeout δ and degree
k. For small keep-alive delays (2 minutes or less), even k = 5
provides longer expected times to isolation than the lifetime
of any human being. Also notice that for δ = 2 minutes,
Chord’s default degree k = 20 provides more years before
expected isolation than there are molecules in a glass of wa-
ter [2].

Since routing delay d in the overlay network is generally
much smaller than keep-alive timeout δ, the diameter of the
graph does not usually contribute to the resilience of the
system. In other cases when d log n is comparable to δ, P2P
graphs with smaller diameter may exhibit higher resilience
as can be observed in (22).

4.4 Real P2P Networks
Finally, we address the practicality of the examples shown

in the paper so far. It may appear that E[Ri] = 1 hour is
rather large for current P2P systems since common experi-
ence suggests that many users leave within several minutes
of their arrival into the system. This is consistent with our
Pareto model in which the majority of users have very small
online lifetimes, while a handful of users that stay connected
for weeks contribute to the long tails of the distribution. For
Pareto lifetimes with α = 3 and E[Ri] = 1 hour, the mean

7



Timeout δ k = 10 k = 5 k = 2

20 sec 1029 years 1011 years 4.7 years

2 min 1023 years 108 years 336 days

45 min 1011 years 1, 619 years 16 days

Table 2: Expected time E[T ] for Pareto lifetimes
with α = 2.06 (E[Li] = 0.93 hours, E[Ri] = 16.6 hours).

online stay is only 30 minutes and 25% of the users de-
part within 6 minutes of their arrival. In fact, this rate of
turnaround is quite aggressive and exceeds that observed in
real P2P systems by a factor of two [31].

We should also address the results shown in [8], which
suggest that the empirical distribution of user lifetimes in
real P2P networks follows a Pareto distribution with shape
parameter α = 1.06. Such heavy-tailed distributions result
in E[Ri] = E[T ] = ∞ and do not lead to much interesting
discussion. At the same time, notice that while it is hypo-
thetically possible to construct a P2P system with α = 1.06,
it can also be argued that the measurement study in [8]
sampled the residuals rather than the actual lifetimes of the
users. This is a consequence of the “snapshots” taken every
20 minutes, which missed all peers with Li < 20 minutes
and shortened the lifespans of the remaining users by ran-
dom amounts of time. As such, these results point toward
α = 2.06, which is a much more realistic shape parameter
even though it still produces enormous E[T ] for all feasible
values of E[Si]. This is demonstrated for Chord’s model (22)
in Table 2 where the expected lifetime of each user is only
double that in Table 1, but E[T ] is 5-12 orders of magnitude
larger. This is a result of E[Ri] rising from 1 hour in the
former case to 16.6 hours in the latter scenario.

5. ACTIVE LIFETIME MODEL:
TRANSIENT ANALYSIS

Given the examples in the previous section, it may at first
appear that π must automatically be very small since E[T ]
is so “huge” under all practical conditions. However, in prin-
ciple, there is a possibility that a large mass of T is concen-
trated on very small values and that a handful of extremely
large values skew the mean of T to its present location. We
additionally are interested in more than just knowing that
π is “small” – we specifically aim to understand the order
of this value for different E[Si].

As in previous sections, let Lv denote the lifetime of v and
T the random time before v’s neighbors force an isolation.
Notice that π = P (T < Lv) =

∫∞
0

FT (t)f(t)dt is an integral
of the CDF function FT (t) = P (T < t) of the first hitting
time of process W (t) on level 0. The exact distribution of
T is difficult to develop in closed-form since it depends on
transient properties of a complex process W (t). To tackle
this problem, we first study the asymptotic case of E[Si] ¿
E[Ri] and apply results from the theory of rare events for
Markov jump processes [3], [34] to derive a very accurate
formula for π assuming exponential lifetimes. We then use
this result to upper-bound the Pareto version of this metric.

5.1 Exponential Lifetimes
We start with exponential lifetimes and assume reason-

ably small search times. For E[Si] larger than E[Ri], ac-

curate isolation probabilities are available from the passive
model in Section 3.

Theorem 4. For exponential lifetimes Li and asymptoti-
cally small search delays with E[Si] ¿ E[Ri], the probability
of isolation converges to:

π ≈ E[Li]

E[T ]
. (23)

Proof. We again proceed in several steps. We first as-
sume exponential search times and construct a Markov chain
based on W (t). We then bind FT (t) = P (T < t) using in-
equalities for rare events in Markov chains and complete
the proof by extending this result to asymptotically small
non-exponential search times.

Given exponential Si, notice that W (t) can be viewed as
a continuous-time Markov chain, where the time spent in
each state j before making a transition to state j − 1 is
the minimum of exactly j exponential variables (i.e., the
time to the next failure). Assume that the CDF of Ri is
FR(x) = 1 − e−λx, where λ = 1/E[Li]. Then the CDF of
min{R1, . . . , Rj} is 1 − (1 − FR(x))j = 1 − e−λjx, which
is another exponential variable with rate λj. Next notice
that the delays before W (t) makes a transition from state j
to j + 1 (i.e., upon recovering a neighbor) are given by the
minimum of k−j residual search times, which is yet another
exponential random variable with rate (k − j)µ, where µ =
1/E[Si].

To bound the CDF of T , one approach is to utilize clas-
sical analysis from Markov chains that relies on numerical
exponentiation of transition (or rate) matrices; however, it
does not lead to a closed-form solution for P (T < Lv). In-
stead, we apply a result for rare events in Markov chains
due to Aldous et al. [3], which shows that T asymptotically
behaves as an exponential random variable with mean E[T ]:

|P (T > t)− e−t/E[T ]| ≤ τ

E[T ]
, (24)

where E[T ] is the expected time between the visits to the
rare state 0 and τ is the relaxation time of the chain. Re-
writing (24) in terms of FT (t) = P (T < t) and applying

Taylor expansion to e−t/E[T ]:

t− τ

E[T ]
≤ FT (t) ≤ t + τ

E[T ]
. (25)

Next, recall that relaxation time τ is the inverse of the
second largest eigenvalue of −Q, where Q is the rate matrix
of the chain. For birth-death chains, matrix Q is tri-diagonal
with Q(i, i) = −∑

j 6=i Q(i, j):

Q =




−kλ kλ · · · 0

µ −µ− (k − 1)λ (k − 1)λ

0 · · · · · · λ

0 · · · kµ −kµ


 . (26)

We treat state W (t) = 0 as non-absorbing and allow the
chain to return back to state 1 at the rate kµ. Then, the
second largest eigenvalue of this matrix is available in closed-
form (e.g., [19]) and equals the sum of individual rates: λ2 =
1/τ = λ + µ. Noticing that:

τ =
1

λ + µ
=

1

1/E[Li] + 1/E[Si]
≈ E[Si], (27)
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(a) exponential Si
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(b) constant Si
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(c) uniform Si
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(d) Pareto Si with α = 3

Figure 9: Comparison of model (23) to simulation results for exponential lifetimes with E[Li] = 0.5 and k = 10.

we conclude that τ is on the order of E[Si] and is generally
very small. Writing τ ≈ E[Si] and integrating the upper
bound of (25) over all possible values of lifetime t, we get:

π ≤
∞∫

0

(t + τ)f(t)dt

E[T ]
=

E[Li] + E[Si]

E[T ]
. (28)

We similarly obtain a lower bound on π, which is equal to
(E[Li]− E[Si])/E[T ]. Neglecting small E[Si], observe that
both bounds reduce to (23).

Our final remark is that for non-exponential, but asymp-
totically small search delays, W (t) can usually be approxi-
mated by an equivalent, but quickly-mixing process and that
bounds similar to (25) are reasonably accurate regardless of
the distribution of Si [1].

Simulation results of π are shown in Figure 9 using four
distributions of search time – exponential with rate λ =
1/E[Si], constant equal to E[Si], uniform in [0, 2E[Si]], and
Pareto with α = 3. As shown in the figure, all four cases con-
verge with acceptable accuracy to the asymptotic formula
(23) and achieve isolation probability π ≈ 3.8× 10−9 when
the expected search time reduces to 3 minutes. Also note
that for large E[Si], model (23) provides an upper bound on
the actual π for all four cases.

5.2 Heavy-Tailed Lifetimes
Although it would be nice to obtain a similar result π ≈

E[Li]/E[T ] for the Pareto case, unfortunately the situation
with a superposition of heavy-tailed on/off processes is dif-
ferent since W (t) is slowly mixing and the same bounds no
longer apply. Intuitively, it is clear that large values of E[T ]
in the Pareto case are caused by a handful of users with
enormous isolation delays, while the majority of remaining
peers acquire neighbors with short lifetimes and suffer isola-
tion almost as quickly as in the exponential case. Consider
an example that illustrates this effect and shows that huge
values of E[T ] in Pareto systems have little impact on π.
For 10 neighbors, α = 3 and λ = 2 (E[Li] = 30 minutes),
and constant search time s = 6 minutes, the Pareto E[T ] is
larger than the exponential E[T ] by a factor of 865. How-
ever, the ratio of their isolation probabilities is only 5.7. For
α = 2.5 and λ = 1.5 (E[Li] = 40 minutes), the expected
times to isolation differ by a factor of 8.1 × 105, but the
ratio of their π is only 7.5.

It may be possible to derive an accurate approximation
for Pareto π; however, one may also argue that the useful-

π Uniform Lifetime Mean search time E[Si]

p = 1/2 P2P 6 min 2 min 20 sec

10−6 20 Bound (29) 10 7 5

Simulations 9 6 4

10−9 30 Bound (29) 14 9 6

Simulations 13 8 6

10−12 40 Bound (29) 18 12 8

Simulations 17 11 7

Table 3: Minimum degree needed to achieve a cer-
tain π for Pareto lifetimes with α = 2.06 and E[Li] =
0.5 hours.

ness of such a result is limited given that shape parameter
α and the distribution of user lifetimes (lognormal, Pareto,
etc.) are often not known accurately. We leave the explo-
ration of this problem for future work and instead utilize the
exponential metric (23) as an upper bound on π in systems
with sufficiently heavy-tailed lifetime distributions. The re-
sult below follows from the fact that heavy-tailed Li imply
stochastically larger residual lifetimes Ri and a straightfor-
ward expansion of E[T ] in (23).

Corollary 3. For an arbitrary distribution of search de-
lays and any lifetime distribution F (x) with an exponential
or heavier tail, which includes Pareto, lognormal, Weibull,
and Cauchy distributions, the following upper bound holds:

π ≤ kE[Li]E[Si]
k−1

(E[Li] + E[Si])k − E[Si]k
≈ kE[Li]E[Si]

k−1

(E[Li] + E[Si])k
. (29)

For example, using 30-minute average lifetimes, 9 neigh-
bors per node, and 1-minute average node replacement de-
lay, the upper bound in (29) equals 1.02× 10−11, which al-
lows the joining users in a 100-billion node network to stay
connected to the graph for their entire lifespans with proba-
bility 1−1/n. Using the uniform failure model of prior work
and p = 1/2, each user required 37 neighbors to achieve the
same π regardless of the actual dynamics of the system.

Even though exponential π is often several times larger
than the Pareto π (the exact ratio depends on shape α),
it turns out that the difference in node degree needed to
achieve a certain level of resilience is usually negligible. To
illustrate this result, Table 3 shows the minimum degree k
that ensures a given π for different values of search time
E[Si] and Pareto lifetimes with α = 2.06 (to maintain the
mean lifetime 30 minutes, the distribution is scaled using
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β = 0.53). The column “uniform p = 1/2” contains degree
k that can be deduced from the p–percent failure model (for
p = 1/2) discussed in previous studies [33]. Observe in the
table that the exponential case in fact provides a tight upper
bound on the actual minimum degree and that the difference
between the two cases is at most 1 neighbor.

5.3 Irregular Graphs
The final issue addressed in this section is whether P2P

networks can become more resilient if node degree is allowed
to vary from node to node. It is sometimes argued [10], [31]
that graphs with a heavy-tailed degree distribution exhibit
highly resilient characteristics and are robust to node fail-
ure. Another question raised in the literature is whether
DHTs are more resilient than their unstructured counter-
parts such as Gnutella. In this section, we prove that, given
the assumptions used so far in the paper, k-regular graphs
offer the highest local resilience among all systems with a
given average degree. This translates into “optimality” of
DHTs as long as they can balance their zone-sizes and dis-
tribute degree evenly among the peers.

Consider a P2P system in which node degrees k1, . . . , kn

are drawn from an arbitrary distribution with mean E[ki].
Using Jensen’s inequality for convex functions and the upper
bound in (29), the following result follows immediately.

Theorem 5. Assuming that lifetimes are independent of
node degree and are not used in the neighbor-selection pro-
cess, regular graphs are the most resilient for a given average
degree E[ki].

To demonstrate the effect of node degree on isolation prob-
ability in irregular graphs, we examine three systems with
1000 nodes: 1) Chord with a random distribution of out-
degree, which is a consequence of imbalance in zone sizes;
2) a G(n, p) graph with binomial degree for p = 0.5; and
3) a heavy-tailed graph with Pareto degree for α = 2.5 and
β = 15. We selected these parameters so that each of the
graphs had a mean degree E[ki] equal to 10. The distri-
bution of degree in these graphs is shown in Figure 10(a).
Notice that Chord has the lowest variance and its probabil-
ity mass concentration around the mean is the best of the
three systems. The binomial case is slightly worse, while the
heavy-tailed graph is the worst. According to Theorem 5,
all of these systems should have larger isolation probabilities
than those of 10-regular graphs and should exhibit perfor-
mance inverse proportional to the variance of their degree.

Simulation results of π are shown in Figure 10(b) for
Pareto lifetimes with α = 3 and E[Li] = 0.5 hours (search
times are constant). Observe in the figure that the k-regular
system is in fact better than the irregular graphs and that
the performance of the latter deteriorates as V ar[ki] in-
creases. For s = 0.1 (6 minutes), the k-regular graph offers
π lower than Chord’s by a factor of 10 and lower than that
in G(n, p) by a factor of 190. Furthermore, the heavy-tailed
P2P system in the figure exhibits the same poor performance
regardless of the search time s and allows users to become
isolated 102 − 106 times more frequently than in the opti-
mal case, all of which is caused by 37% of the users having
degree 3 or less.

Thus, in cases when degree is independent of user life-
times, we find no evidence to suggest that unstructured P2P
systems with a heavy-tailed (or otherwise irregular) degree
can provide better resilience than k-regular DHTs.
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Figure 10: (a) Degree distribution in irregular
graphs. (b) User isolation probability π of irregu-
lar graphs (average degree E[ki] = 10, lifetimes are
Pareto with E[Li] = 0.5 hours).

6. GLOBAL RESILIENCE
We finish the paper by analyzing the probability of net-

work partitioning under uniform node failure and showing
that this metric has a simple expression for a certain family
of graphs, which includes many proposed P2P networks. We
then apply this insight to lifetime-based systems and utilize
the earlier derived metric π to characterize the evolution of
P2P networks under churn.

6.1 Classical Result
One may wonder how local resilience (i.e., absence of iso-

lated vertices) of P2P graphs translates into their global
resilience (i.e., connectivity of the entire network). While
this topic has not received much attention in the P2P com-
munity, it has been extensively researched in random graph
theory and interconnection networks. Existing results for
classical random graphs have roots in the work of Erdös
and Rényi in the 1960s and demonstrate that almost every
(i.e., with probability 1 − o(1) as n → ∞) random graph
including G(n, p), G(n, M), and G(n, kout) is connected if
and only if it has no isolated vertices [6], i.e.,

P (G is connected) = P (X = 0) as n →∞, (30)

where X is the number of isolated nodes after the failure.
After some manipulation, this result can be translated to ap-
ply to unstructured P2P networks, where each joining user
draws some number of random out-degree neighbors from
among the existing nodes (see below for simulations that
confirm this).

For deterministic networks, connectivity of a graph G af-
ter node/edge failure has also received a fair amount of at-
tention (e.g., [7], [21]). In interconnection networks, exact
formulas for the connectivity of deterministic graphs ex-
ist [21]; however, they require computation of NP-complete
metrics and no closed-form solution is available even for the
basic hypercube. However, from the perspective of random
graph theory, it has been shown [6], [7] that hypercubes with
faulty elements asymptotically behave as random graphs
and thus almost surely disconnect with isolated nodes as
n becomes large.

Even though the necessary condition for a deterministic G
to satisfy (30) is unknown at this time, sufficient conditions
can be extrapolated from the proofs of this relationship for
the hypercube [6]. The general requirement on G is that its
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p P (G is weakly connected) P (G has no isolated nodes) P (G disconnects with isolated nodes)

Chord Symphony Gnutella Chord Symphony Gnutella Chord Symphony Gnutella

0.5 0.99996 0.99768 0.86257 0.99996 0.99768 0.86260 1 1 0.999782

0.55 0.99918 0.98750 0.58042 0.99918 0.98750 0.58064 1 1 0.999476

0.6 0.99354 0.93914 0.17081 0.99354 0.93917 0.17148 1 0.99958 0.999192

0.65 0.95001 0.75520 0.00547 0.95004 0.75527 0.00560 0.99946 0.99971 0.999869

0.7 0.72619 0.31153 0 0.72650 0.31205 0 0.99980 0.99922 1

0.8 0.00040 0 0 0.00043 0 0 0.99997 1 1

Table 4: Global resilience for n = 16, 384 and out-degree k = 14.

expansion (strength of the various cuts) must be no worse
than that of the hypercube.3 Due to limited space and wide
variety of deterministic P2P constructs, we do not provide
a rigorous re-derivation of this fact, but instead note that
Chord [33], Pastry [29], and CAN with the number of di-
mensions d = Θ(log n) [27] can be directly reduced to hy-
percubes; de Bruijn graphs [16] exhibit better connectivity
than hypercubes [23]; and hybrid networks (such as Sym-
phony [24], Randomized Chord [24], and [4]) generally have
connectivity no worse than G(n, kout).

We next show simulation results that confirm the appli-
cation of classical result (30) to two types of DHTs and one
unstructured Gnutella-like network (all three are directed
graphs). Table 4 shows simulations of Chord, Symphony,
and a k-regular Gnutella network under uniform p–percent
node failure using 100, 000 failure patterns. Note that for
directed graphs, (30) applies only to the definition of weak
connectivity, which means that G is disconnected if and only
if its undirected version G′ is and a node v ∈ G is isolated
if and only if it is isolated in G′. Since the total degree
(which is the sum of out-degree and in-degree) at each node
is different between the graphs in the table, their respective
disconnection probabilities are different.

As the table shows, (30) holds with high accuracy and a
vast majority of disconnections contain at least one isolated
node (the last column of the table). Additional simulations
show that (30) applies to Pastry, CAN, de Bruijn graphs,
Randomized Chord, and degree-irregular Gnutella. We omit
these results for brevity.

6.2 Lifetime-Based Extension
It is not difficult to see that (30) holds for lifetime-based

P2P graphs and that dynamic P2P networks are also much
more likely to develop disconnections around single nodes
rather than along boundaries of larger sets S. However,
instead of having a single node-failure metric p, we have a
probability of isolation π associated with each joining user i.
Thus, one may ask a question what is the probability that the
system survives N user joins and stays connected the entire
time? The answer is very simple: assuming Y is a geometric
random variable measuring the number of user joins before
the first disconnection of the network, we have for almost
every sufficiently large graph:

P (Y > N) = (1− π)N . (31)

Simulation results of (31) are shown in Table 5 using
N = 1 million joins and 10, 000 iterations per search time,
3For each set S in the original graph G, its node boundary
must satisfy a certain inequality that is an increasing func-
tion of |S| [7]. Graphs that do not fulfill this requirement
include trees, cycles, and other weakly connected structures.

Fixed search Actual Model q(G) r(G)

time (min) P (Y > N) (31)

6 0.9732 0.9728 1 1

7.5 0.8118 0.8124 1 1

8.5 0.5669 0.5659 1 1

9 0.4065 0.4028 1 1

9.5 0.2613 0.2645 1 1

10.5 0.0482 0.0471 1 1

Table 5: Comparison of P (Y > 106) in k-regular
CAN (exponential lifetimes with mean 30 minutes)
to model (31). The graph has d = 6 dimensions,
degree k = 12, and n = 4096 nodes.

where metric q(G) = P (X > 0|G is disconnected) is the
probability that the graph partitions with at least one iso-
lated node and r(G) is the probability that the largest con-
nected component after the disconnection contains exactly
n − 1 nodes. As the table shows, simulations match the
model very well and also confirm that the most likely discon-
nection pattern of lifetime-based systems includes at least
one isolated node (i.e., q(G) = 1). In fact, the table shows
an even stronger result – for reasonably small search delays,
network partitioning almost surely affects only one node in
the system (i.e., r(G) = 1). The same conclusion holds for
other P2P graphs, Pareto lifetimes, and random search de-
lays. We omit these results for brevity.

Model (31) suggests that when search delays become very
small, the system may evolve for many months or years be-
fore disconnection. Consider a 12-regular CAN system with
1-minute search delays and 30-minute average lifetimes. As-
suming that n = 106 and each user diligently joins the
system once per day, the probability that the network can
evolve for 2, 700 years (N = 1013 joins) before disconnecting
for the first time is 0.9956. The mean delay before the first
disconnection is E[Y ] = 1/π user joins, or 5.9 million years.

7. FUTURE WORK
The discussion at the end of Section 5 suggests that ir-

regular graphs cannot be beneficial, unless node degree is
correlated with user lifetimes. Notice that users v who stay
online longer have a larger probability of disconnection π =
P (T < Lv) ≈ Lv/E[T ] (see the proof of Theorem 4). Thus,
to achieve resilience higher than that of k-regular graphs,
one must assign smaller degree to nodes that have smaller
lifetimes, and vice versa. To better understand this con-
cept, which we call Dynamic Degree Scaling (DDS), notice
that peers with very small Li do not require 20 neighbors
to stay connected for their entire lifespans. In fact, these

11



nodes often leave even before their first neighbor fails. As
the age of a peer increases, it becomes more likely to outlive
its original neighbors and suffer an isolation, which clearly
warrants an increase in its degree over time. In future work,
we plan to understand how DDS allows unstructured P2P
systems to evolve into graphs where users that stay online
longer are responsible for larger parts of the graph and ex-
amine whether these evolution models can be implemented
in practice and/or combined with other methods, in which
degree depends on unequal peer characteristics (e.g., [9]).

Finally, note that while DDS allows degree ki to depend
on users’ lifetime Li, the actual links between the nodes can
be formed randomly and without the knowledge of the other
peers’ lifetimes or their current age. An alternative strategy
is to allow each node to prefer connections to peers that have
the largest age metric at current time t [8], which requires
a different model and possibly has its own optimal strategy.
We plan to investigate this direction in future work as well.

8. CONCLUSION
This paper examined two aspects of resilience in dynamic

P2P systems – ability of each user to stay connected to the
system in the presence of frequent node departure and par-
titioning behavior of the network as n →∞. We found that
under all practical search times, k-regular graphs were much
more resilient than traditionally implied [16], [22], [33] and
further showed that dynamic P2P networks could almost
surely remain connected as long as no user suffered simulta-
neous neighbor failure. We also demonstrated that varying
node degree from peer to peer can have a positive impact on
resilience only when such decisions are correlated with the
users’ lifetimes.
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