
CSCE 313-200: Computer Systems
Homework #3 (100 pts)

Due date: 4/10/25

1. Purpose
Examine performance and parallelization issues arising in disk I/O.

2. Problem Description
The goal of this project is to search for a given set of substrings in English Wikipedia,
which exists on the couse website in four versions – tiny (50 MB), small (512 MB), me-
dium (8 GB), and complete (28 GB). While Wikipedia does contain some UTF-8 charac-
ters, all target substrings in this homework are US ASCII (i.e., byte values below 128),
which means that you will not have to perform any conversion or even parse the UTF-8
encoding to find them.

Target strings are given in files keywords-X.txt, where X ranges from A to D. Each
string consumes an entire text line and may contain spaces between words. The default
line separator is \n, but your code should also handle the presence of \r. Using keywords-
A.txt, it is expected that your slow version (see below) tackle the medium Wikipedia in
30 seconds. The extra-credit (fast) version should do it in ~10 seconds.

The main issues addressed in this homework are reading the file in large chunks, correct
handling of strings that span chunk boundaries, and parallelization of the search to all
available CPUs. Even if your disk is slow, OS caching will create an illusion of a high-
performance RAID subsystem with cached I/O rates close to 1 GB/s. The only exception
to this rule will be files that cannot fit in RAM, which the OS will have to serve from
disk.

2.1. Code

The program shall accept the following command-line arguments:

wordSearch.exe keywords.txt enwiki-small.txt 24 10 <0|1> <RK|strstr>

where the first two parameters are the keyword file and the Wikipedia version. The re-
maining parameters specify the power of two for the block size B (i.e., 224 bytes), the
number of blocks to use N (i.e., 10), a binary flag that indicates whether to use non-
buffered I/O (i.e., 1 = no OS buffering, 0 = buffering), and whether to run the extra-credit
algorithm (RK) or the standard search (strstr). If the extra-credit is not implemented, the
program should print “RK is not supported” and exit immediately.

Make sure to set all search threads to idle priority, the stats and disk threads to above
normal, and fix the affinity mask of each search thread to its unique CPU. When running
at full rate, Task Manager should show all cores at 100% without any fluctuation.

 1

Several printouts are needed. First, the stats thread must produce the following every two
seconds:
69.16% ETA 5, 494.66 MB/s, 6*, found 80,334,971, CPU 100% RAM 358 MB

where this example shows that 69.16% of the file has been processed by the search
threads, the estimated time to completion is 5 seconds, the rate at which this file is being
searched (averaged over the time window since the last printout) is 494 MB/s, the num-
ber of active threads is 6, and the total number of matches up to this point is 80,334,971.
The last two values are the same as in homework #2. When the search is finished, the
program should print the total time taken and the final tally of matches found (note the
decimal commas):

Total delay 16.10 sec, total found 110,420,374

Additionally, a copy of all printouts and a final count of how many times each string oc-
curred in Wikipedia shall be saved into a separate file report.txt:

11.27% ETA 16, 483.62 MB/s, 4*, found 15,024,556, CPU 93% RAM 262 MB
24.09% ETA 13, 516.98 MB/s, 5*, found 30,428,892, CPU 94% RAM 262 MB
37.30% ETA 10, 533.56 MB/s, 5*, found 45,893,906, CPU 97% RAM 262 MB
51.29% ETA 8, 550.26 MB/s, 6*, found 61,207,405, CPU 97% RAM 262 MB
65.28% ETA 5, 560.22 MB/s, 5*, found 75,890,135, CPU 94% RAM 262 MB
79.65% ETA 3, 569.69 MB/s, 5*, found 90,311,458, CPU 95% RAM 262 MB
93.25% ETA 1, 571.69 MB/s, 6*, found 104,785,895, CPU 96% RAM 262 MB
100.00% ETA 0, 536.41 MB/s, 0*, found 110,420,374, CPU 37% RAM 5 MB

[0] individualistic = 700
[1] hello = 7,289
[2] Microsoft = 44,014
[3] Texas A&M = 6,231
[4] wassup = 34
...
[150] therm = 73,080

Total delay 16.10 sec, total found 104,516,191

See traces at the end for more examples.

As in homework #2, you are not allowed to use C++ libraries. All main I/O must be done
with CreateFile/ReadFile, while stat printouts may use fopen/fprintf.

2.2. Report Requirements

As before, 25% of the grade is allocated to the report. There is no need to use class serv-
ers for the experiments unless you aim to verify you can match the speed shown later in
this document, which by itself isn’t that difficult.

1. (5pts) Document the number of found matches and the runtime using keywords-
B.txt on various Wikipedia sizes. You can use the final cumulative total in the
report and store the actual distribution of counts in files, which will be submitted
with the code. Discuss any interesting issues you faced and the overall design of
the program.

2. (5pts) Disable the search, but keep the main functionality of passing buffers to
search threads. Now examine the speed at which the data arrives to your search

 2

function for two cases: 1) using the OS cache; and 2) using direct transfer from
the hard drive. To measure the former, read the file once to seed the cache and
then scan it again. Make sure the file fits in RAM and has meaningful size (i.e., 8
GB is recommended if your RAM is at least 12 GB). To measure the latter, dis-
able OS buffering in CreateFile using FILE_FLAG_NO_BUFFERING. Note that for
non-cached I/O with FILE_FLAG_NO_BUFFERING you must align the read buffer
pointer and the request length to sector size (see below for more).

3. (10 pts) Plot the search speed (y-axis) as a function of the number of strings in the
keyword file (x-axis). You can do this by loading keywords-B.txt and retaining
the first x strings for each of the runs. Use a log-scale for both axes and go at ex-
ponentially increasing intervals along the x axis (i.e., x = 1, 2, 4, 8, …, 128, 151).
To make the experiment quicker, use a cached copy of the file and operate with 1-
MB buffers, which should give you an accurate estimate of the speed almost right
away. Comment on the reason for the deviation of this curve from the inverse lin-
ear model (i.e., 1/x) for small x. Obtain a curve fit to the tail (i.e., points x = 16,
32, 64, 128, 151) and extrapolate the time needed to search the large Wikipedia
using the dictionary of 213,496 words.

4. (5pts) Plot the physical disk read speed (i.e., with FILE_FLAG_NO_BUFFERING) vs
the buffer size used in calls to ReadFile. Vary the buffer size from 512 bytes to 16
MB. Recommend the best setting for the specific hard drive you’re using.

It is advisable to make an extra effort the check that your numbers are sane.

2.3. Extra Credit (20%)

Enable faster search by implementing the Rabin-Karp (RK) algorithm:

http://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_string_search_algorithm

Assemble the hash out of every 3 bytes and keep a table with all 224 possible values.
Moving by 1 byte forward is accomplished using a bitshift left by 8 bits, addition of the
next byte, and masking with ((1<<24) – 1).

A sample execution of RK is shown at the end of this document.

3. Details
3.1. Main Architecture

In this project, there is no need to start more search threads than there are cores in the
system. The suggested layout follows Figure 1, the left side of which shows that the ap-
plication maintains an I/O buffer buf of N slots, each of size B bytes. Note that N is re-
quested by the user in the command prompt. The disk thread issues read requests into
these slots, treating them as elements of an array. Once a slot is ready, the disk thread
pushes a special struct describing the available data (e.g., pointer to the slot, its size, off-
set on disk, slot number, etc.) into the Qfull queue (right side of the figure). Search

 3

http://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_string_search_algorithm

threads read from Qfull, obtain pointers to these slots, and perform the actual search. By
splitting functionality across multiple CPUs, a significant speed-up is possible.

Disk read
thread

B B B B

Search
thread #1

Search
thread #K

Qempty

Qfull

buf

I/O buffer

N slots

Figure 1. Architecture.

To prevent the disk thread from overwriting slots that are still being searched, it must
wait for an explicit notification from the search threads about which buffers are no longer
needed. To accommodate different work speed (e.g., some slots may contain more
matches and may take longer than others), the disk thread must be able to handle out-of-
order slot releases from the search threads. To accomplish this, another queue (called
Qempty in the figure) stores the IDs of slots that are no longer needed.

Notice that both Qfull and Qempty implement a classical bounded producer-consumer
(PC). Since we know ahead of time that the size of these queues cannot exceed N, each
queue does not need to grow and can be preallocated at the beginning. Since Qfull and
Qempty take objects of different types, it is recommended that you write a general pro-
ducer-consumer class PC that can operate on data of any type. One approach is to explic-
itly specify item size in the PC constructor and utilize memcpy during produce/consume
operations. The example below applies this technique, but you can also use templates if
desired.

The disk thread follows this high-level algorithm:
// a pointer to this class gets pushed into Qfull
class MyBuf {
 char *ptr; // pointer to buffer to search
 int size; // buffer size
 int slotID; // ID of the slot to return back
};

// eventQuit prevents deadlocks in PC; N is the fixed size of each queue
PC pcEmpty (eventQuit, N, sizeof (int)); // contains slotIDs
PC pcFull (eventQuit, N, sizeof (MyBuf)); // contains MyBufs

// initially push all N slots into PCempty
for (int i = 0; i < N; i++)
 PCEmpty.Push (&i);

// now the main loop
while (!eof)

 4

{
 int slotID;
 // get the ID of the next empty buffer unless someone has set eventQuit
 if (pcEmpty.Pop (&slotID) == QUIT)
 return;

 int bytes = ReadFile (...); // read into buf [slotID]

 MyBuf mb;
 mb.ptr = ... // fill in the values
 pcFull.Push (&mb); // does a memcpy on the object
}

// now collect all pending slots
for (int i = 0; i < N; i++)
 PCEmpty.Pop (&slotID);
SetEvent(eventQuit); // notify search threads to quit

The main loop in search threads is similar. They first consume a MyBuf object from
PCfull, perform the search, and deposit the corresponding slotID into PCempty.

3.2. Producer-Consumer Issues

The approach for synchronization here is to follow the PC 2.0 technique from the slides.
While PC 3.4 was the fastest when the production/consumption rates were several mil-
lion/sec and the queues were never empty, this is not the case here. Recall that once PC
3.4 encounters an empty queue, it will sleep for 100 ms, which may lead to unnecessary
wakeup delays in this homework.

The second problem to consider is the quit condition, which must break PC::Pop from its
wait on the semaphore. The suggested approach is to pass eventQuit’s handle to the con-
structor of PC and use WaitForMultipleObjects on both the event and the semaphore in
PC::Pop. This is the same logic as in hw #1.

3.3. Buffer Boundaries

Strings that span the boundary between two slots X and Y require special accommoda-
tions, which we’ll call shadow buffers. For correctness, a string must be present in its en-
tirety in exactly one of the two slots. A simple solution that achieves this is to make a
copy of the last few bytes of X and place them at the start of Y, while properly restricting
the scope of search in X. The number of bytes copied is equal to the maximum search
string length L, which you can determine dynamically after loading the keyword file.

Consider the example in Figure 2. In part a), string “furniture” is split across two buffers
and is sent to two different threads, which makes them both miss it. In part b), a special
shadow buffer is allocated immediately before each slot and the last L=9 bytes (i.e., size
of the longest word in this example) of slot X are copied into the shadow buffer of slot Y.
It should be noted that for all slots except the last one of the file, X can register a match if
and only if the string starts no later than offset B–L-1 (i.e., letter “d” in “decent”), which
ensures that short strings (e.g., “fur” in the figure) are not counted twice. Similarly, for all
slots except the first one, Y is searched starting from the shadow buffer (i.e., “e” in
“ecent”).

In part c), a second shadow buffer is shown to hold the NULL terminator for each slot.
Allocating an entire shadow buffer to hold just one byte seems inefficient; however, it is
necessary when reading files with unbuffered I/O, where both size B and the pointer to

 5

the slot passed to ReadFile must be a multiple of sector size. If these conditions are vio-
lated, ReadFile fails with error 87 (invalid parameter).

ecent fur

NULL

niture store

ecent fur

NULL

this is a
decent fur

c)

b)

a)

Y X

one shadow buffer

this is a
decent fur

niture store

X Y

B

“furniture” is missed niture storethis is a
decent fur

two shadow buffers

X Y

Figure 2. Word “furniture” split across buffers.

These observations and the need to align buf to a sector boundary lead to the following:
GetDiskFreeSpace (NULL, NULL, §orSize, NULL, NULL);
// align max string length to sector size, which gives us the first shadow buffer length;
// the second shadow buffer only holds a NULL and can be limited to just sectorSize
int shadowSize = (L / sectorSize + 1) * sectorSize;
int nSlots = N; // how many slots to maintain
int padding = shadowSize + sectorSize; // both shadow buffers
int B = 1 << 20; // 1MB in each slot
int slotSize = B + padding; // full slot with padding
// VirtualAlloc guarantees page-aligned addresses, while the heap does not
char *buf = (char*) VirtualAlloc (NULL, (uint64) nSlots * slotSize,
 MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);

Computation of where 0slotIDN-1 is located is also simple:
char *curSlot = buf + slotID * slotSize + shadowSize;

It thus becomes clear why MyBuf::ptr is needed – some searches start in the slot (i.e.,
curSlot), while others in the shadow buffer (i.e., curSlot – L). Similarly, My-
Buf::size may be B-L (i.e., the first slot of the file), B (i.e., all intermediate slots), or
bytesRead+L in the very last slot of the file (which allows matches all the way to the
NULL terminator). Another special case to consider is when the first slot is also the last
one (i.e., the file fits into one buffer).

3.4. Read Ahead

The user selects N from the command line, but what is a good value of N for testing pur-
poses? In order to keep I/O always busy, the disk thread needs to read ahead of the search
and maintain at least K full buffers in Qfull, where K is the number of search threads.
Thus, in theory, N 2K should hold; however, when search speed is pretty constant for
all slots and not much burstiness is expected, N = K+2 or K+5 is sufficient.

 6

3.5. Search

For simplicity, the search is case-sensitive and there is no need to find entire words that
match the keywords, just substrings. For example, given this text:
testest

you should obtain two matches for “test”. In order to use strstr(), make sure to NULL-
terminate each slot as described above using the second shadow buffer.

3.6. Trailing Spaces

You should remove all spaces at the end of every string before starting the search. For
example, “Microsoft” and “Each county has” are followed by a space in keywords-
A.txt. See MSDN for isspace().

4. Traces
These traces were produced on a 12-core AMD server ts.cse.tamu.edu using N=17 slots,
B = 1 MB, and keywords-A.txt. For small files that fit in RAM, make sure to enable OS
caching (i.e., do not specify FILE_FLAG_NO_BUFFERING in CreateFile). The reason
is that the C: drive can read @ only ~250 MB/s, while the OS can supply cached data @
~1.2 GB/s.

4.1. Tiny
100.00% ETA 0, 26.05 MB/s, 0*, found 713,532, CPU 11% RAM 2 MB

[0] individualistic = 12
[1] hello = 41
[2] Microsoft = 343
[3] Texas A&M = 9
[4] wassup = 0
[5] Sergey = 10
[6] from = 36,328
[7] NES = 164
[8] titles = 433
[9] were = 22,061
[10] developed = 2,307
[11] elected legislative branch = 1
[12] companies = 1,010
[13] who = 14,297
[14] had = 16,935
[15] licensed = 176
[16] their = 15,261
[17] title = 2,515
[18] different = 4,225
[19] arcade = 87
[20] manufacture = 826
[21] While = 1,728
[22] the = 581,597
[23] creator = 228
[24] restricted = 295
[25] making = 1,645
[26] competitive = 231
[27] version = 2,960
[28] copyright = 309
[29] holder = 321
[30] precluded = 9
[31] education = 1,393
[32] test = 5,156
[33] judicial = 211
[34] 67 counties = 1
[35] Each county has = 1

 7

[36] Nintendo is great = 0
[37] November 13, 1982 = 2
[38] Aquarius = 39
[39] University of California, Berkeley = 28
[40] Biography = 337

Total delay 0.30 sec, total found 713,532

4.2. Small
78.83% ETA 1, 211.36 MB/s, 9*, found 5,708,776, CPU 85% RAM 19 MB
100.00% ETA 0, 133.62 MB/s, 0*, found 7,214,396, CPU 20% RAM 2 MB

[0] individualistic = 87
[1] hello = 629
[2] Microsoft = 4,580
[3] Texas A&M = 222
[4] wassup = 0
[5] Sergey = 262
[6] from = 368,320
[7] NES = 1,833
[8] titles = 4,607
[9] were = 240,273
[10] developed = 20,658
[11] elected legislative branch = 3
[12] companies = 9,026
[13] who = 155,469
[14] had = 175,989
[15] licensed = 1,557
[16] their = 152,488
[17] title = 29,311
[18] different = 38,364
[19] arcade = 884
[20] manufacture = 8,178
[21] While = 16,670
[22] the = 5,850,484
[23] creator = 2,344
[24] restricted = 2,733
[25] making = 17,562
[26] competitive = 2,081
[27] version = 33,138
[28] copyright = 1,691
[29] holder = 5,022
[30] precluded = 88
[31] education = 13,838
[32] test = 49,993
[33] judicial = 1,973
[34] 67 counties = 11
[35] Each county has = 5
[36] Nintendo is great = 0
[37] November 13, 1982 = 5
[38] Aquarius = 134
[39] University of California, Berkeley = 306
[40] Biography = 3,578

Total delay 2.52 sec, total found 7,214,396

4.3. Medium
5.99% ETA 31, 258.77 MB/s, 12*, found 6,992,803, CPU 99% RAM 19 MB
12.11% ETA 29, 261.30 MB/s, 12*, found 14,496,100, CPU 100% RAM 19 MB
18.00% ETA 27, 259.00 MB/s, 12*, found 21,196,404, CPU 100% RAM 19 MB
23.84% ETA 26, 256.81 MB/s, 12*, found 27,610,377, CPU 100% RAM 19 MB
30.10% ETA 23, 259.10 MB/s, 12*, found 34,496,598, CPU 100% RAM 19 MB
36.61% ETA 21, 262.44 MB/s, 12*, found 41,460,101, CPU 100% RAM 19 MB
43.05% ETA 19, 264.38 MB/s, 12*, found 48,371,179, CPU 100% RAM 19 MB
49.70% ETA 16, 266.94 MB/s, 12*, found 55,261,582, CPU 100% RAM 19 MB
56.19% ETA 14, 268.18 MB/s, 12*, found 61,969,657, CPU 100% RAM 19 MB
62.84% ETA 12, 269.84 MB/s, 12*, found 68,675,278, CPU 100% RAM 19 MB
69.51% ETA 10, 271.30 MB/s, 12*, found 75,290,751, CPU 100% RAM 19 MB

 8

76.19% ETA 8, 272.56 MB/s, 12*, found 81,656,485, CPU 100% RAM 19 MB
83.02% ETA 5, 274.10 MB/s, 12*, found 88,191,515, CPU 100% RAM 19 MB
89.77% ETA 3, 275.17 MB/s, 12*, found 94,775,275, CPU 100% RAM 19 MB
96.49% ETA 1, 276.02 MB/s, 12*, found 101,144,264, CPU 100% RAM 19 MB
100.00% ETA 0, 268.16 MB/s, 0*, found 104,432,469, CPU 55% RAM 2 MB

[0] individualistic = 700
[1] hello = 7,289
[2] Microsoft = 44,014
[3] Texas A&M = 6,231
[4] wassup = 34
[5] Sergey = 6,029
[6] from = 5,904,183
[7] NES = 26,546
[8] titles = 86,502
[9] were = 3,492,034
[10] developed = 235,204
[11] elected legislative branch = 3
[12] companies = 134,061
[13] who = 2,521,807
[14] had = 2,679,115
[15] licensed = 36,429
[16] their = 2,141,865
[17] title = 594,070
[18] different = 410,543
[19] arcade = 16,207
[20] manufacture = 110,372
[21] While = 225,436
[22] the = 83,672,590
[23] creator = 32,016
[24] restricted = 29,756
[25] making = 250,082
[26] competitive = 33,845
[27] version = 496,260
[28] copyright = 21,719
[29] holder = 97,302
[30] precluded = 1,178
[31] education = 274,499
[32] test = 693,513
[33] judicial = 20,632
[34] 67 counties = 63
[35] Each county has = 15
[36] Nintendo is great = 0
[37] November 13, 1982 = 35
[38] Aquarius = 2,013
[39] University of California, Berkeley = 5,903
[40] Biography = 122,374

Total delay 31.24 sec, total found 104,432,469

4.4. All
1.49% ETA 133, 223.87 MB/s, 9*, found 6,033,237, CPU 77% RAM 19 MB
3.02% ETA 129, 226.80 MB/s, 9*, found 12,699,699, CPU 75% RAM 19 MB
4.56% ETA 127, 227.94 MB/s, 9*, found 18,748,114, CPU 76% RAM 19 MB
6.09% ETA 124, 228.39 MB/s, 9*, found 24,771,022, CPU 76% RAM 19 MB
7.61% ETA 122, 228.55 MB/s, 9*, found 30,630,240, CPU 75% RAM 19 MB
9.15% ETA 120, 228.83 MB/s, 9*, found 36,331,268, CPU 75% RAM 19 MB
...
94.94% ETA 7, 229.74 MB/s, 8*, found 304,490,523, CPU 71% RAM 19 MB
96.47% ETA 5, 229.75 MB/s, 8*, found 308,700,402, CPU 70% RAM 19 MB
98.01% ETA 3, 229.75 MB/s, 8*, found 313,017,339, CPU 71% RAM 19 MB
99.54% ETA 1, 229.75 MB/s, 8*, found 317,455,326, CPU 71% RAM 19 MB
100.00% ETA 0, 227.33 MB/s, 0*, found 318,766,976, CPU 21% RAM 2 MB

[0] individualistic = 1,443
[1] hello = 52,731
[2] Microsoft = 104,577
[3] Texas A&M = 10,558
[4] wassup = 412
[5] Sergey = 10,124

 9

[6] from = 17,676,504
[7] NES = 59,905
[8] titles = 244,509
[9] were = 6,587,563
[10] developed = 357,286
[11] elected legislative branch = 6
[12] companies = 411,933
[13] who = 6,719,033
[14] had = 5,121,472
[15] licensed = 321,147
[16] their = 4,885,636
[17] title = 5,827,312
[18] different = 1,562,894
[19] arcade = 28,206
[20] manufacture = 164,011
[21] While = 574,678
[22] the = 252,323,231
[23] creator = 673,798
[24] restricted = 68,927
[25] making = 1,890,032
[26] competitive = 50,241
[27] version = 1,577,209
[28] copyright = 3,700,802
[29] holder = 342,128
[30] precluded = 2,276
[31] education = 467,364
[32] test = 5,723,529
[33] judicial = 36,947
[34] 67 counties = 108
[35] Each county has = 24
[36] Nintendo is great = 2
[37] November 13, 1982 = 40
[38] Aquarius = 3,729
[39] University of California, Berkeley = 7,127
[40] Biography = 1,177,522

Total delay 131.62 sec, total found 318,766,976

4.5. Medium using Rabin-Karp (Extra Credit)
15.72% ETA 9, 802.60 MB/s, 12*, found 18,563,743, CPU 85% RAM 405 MB
35.00% ETA 7, 815.23 MB/s, 12*, found 39,676,605, CPU 100% RAM 406 MB
54.37% ETA 5, 820.42 MB/s, 12*, found 60,096,264, CPU 100% RAM 406 MB
74.00% ETA 3, 825.76 MB/s, 12*, found 79,523,833, CPU 100% RAM 407 MB
93.76% ETA 1, 830.07 MB/s, 12*, found 98,493,707, CPU 100% RAM 407 MB
100.00% ETA 0, 733.72 MB/s, 0*, found 104,432,469, CPU 31% RAM 389 MB

[0] individualistic = 700
[1] hello = 7,289
...
[39] University of California, Berkeley = 5,903
[40] Biography = 122,374

Total delay 10.38 sec, total found 104,432,469

 10

 11

313 Homework 3 Code

Name: ______________________________

 Points Break
down

Item Points

5 Generic PC class
5 Disk thread
5 Search threads
5 Shadow buffer present

Basic code
structure

25

5 Sector alignment
5 Small file

5 Medium file
Searching files 15

5 Large file

3 % done
3 ETA
2 Current speed

Stats printed 10

2 CPU & RAM usage
10 Crash
5 Use STL/std libraries
5 Hardwired parameters
5 Speed too slow
5 Use too much RAM
5 Cannot search with keywords-D.txt

Other 25

Code points: ________________

313 Homework 3 Report
Points Item Points
5 Document a few results of using keywords-B.txt on vari-

ous Wikipedia sizes

5 Test read file speed with and without OS cache
10 Plot the search speed as a function of the number of key

words, extrapolate the time needed to search the large
file with 213,496 keywords

5 Plot the physical disk read speed vs. buffer size

Report points: __________________

